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Laparoscopic procedures can be assisted by intraoperative modalities, such as quantitative perfusion 
imaging based on fluorescence or hyperspectral data. If these modalities are not available at video 
frame rate, fast image registration is needed for the visualization in augmented reality. Three 
feature-based algorithms and one pre-trained deep homography neural network (DH-NN) were 
tested for single and multi-homography estimation. Fine-tuning was used to bridge the domain 
gap of the DH-NN for non-rigid registration of laparoscopic images. The methods were validated 
on two datasets: an open-source record of 750 manually annotated laparoscopic images, presented 
in this work, and in-vivo data from a novel laparoscopic hyperspectral imaging system. All feature-
based single homography methods outperformed the fine-tuned DH-NN in terms of reprojection 
error, Structural Similarity Index Measure, and processing time. The feature detector and descriptor 
ORB1000 enabled video-rate registration of laparoscopic images on standard hardware with 
submillimeter accuracy.

The intraoperative support of laparoscopic procedures with additional information from pre- or intraoperative 
data has great potential for the improvement of patient safety and the reduction of operative time. Sufficient 
organ perfusion is essential during minimally invasive surgery (MIS) and a prerequisite for anastomotic healing, 
therefore intraoperative perfusion imaging is an emerging field. A non-invasive method for intraoperative visu-
alization of perfusion is hyperspectral imaging (HSI). The potential of HSI for a variety of applications, especially 
surgery, was shown in several clinical studies1,2. Spectral imaging with a high spatial and spectral resolution is 
obtained with push-broom scanning. In this technique, one spatial and the spectral dimension are acquired at 
once with a spectrograph, while the second spatial dimension is obtained by moving the sample3, the imaging 
system4, or the spectrograph inside the housing5. Depending on the obtained wavelengths, physiological tissue 
metrics like oxygenation and hemoglobin or water content can be derived from the HSI data. This information 
is visualized as a false-color image but is typically not available at video frame rate6. To guide the localization 
of tissue between static false-color images and video during open surgery, both modalities were overlayed in 
Barberio et al.7, provided that the object and imaging system are not moved. A laparoscopic system for simulta-
neous video and HSI was presented in Köhler et al.5, which provides the hardware requirements for video-rate 
augmentation of static hyperspectral data aimed in this work. During HSI, a frame of the video is saved as the 
reference image and continuously aligned with the current frame after hyperspectral scanning is finished. The 
obtained image transformation enables the overlay of static HSI information and the current frame to support 
intraoperative localization. Depending on the used registration method, movements of the laparoscope and tis-
sue deformations can be taken into account for HSI overlay visualization. This work mainly aims to compensate 
for motion due to breathing and small movements of the laparoscope after HSI record. In case of large tissue 
deformation, occlusion, or perspective change, a new HSI record can be acquired in a few seconds. For common 
working distances during abdominal MIS, registration errors up to 5 mm are clinically acceptable8. Visualization 
of the resulting overlay should be provided at video frame rate and without additional user input.
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Image augmentation with pre‑/intraoperative data.  Since augmented reality (AR) for image-guided 
interventions was introduced in neurosurgery, many laparoscopic applications have also been addressed by AR-
related research9. Abdominal minimally invasive surgery (MIS) is particularly challenging in this context, due to 
smooth organs that elastically deform, tissue motion caused by breathing or manipulation, surgical instruments 
in the field of view, non-planar surfaces, and parallax.

For the localization of lesions in soft organs during MIS, preoperative data from CT or MR can be beneficial. 
The long-term augmentation of laparoscopic images with a 3-D kidney model from CT data was achieved by 
an initial manual annotation of corresponding points and subsequent feature tracking and recovery with high 
accuracy in Puerto-Souza et al.10. Intraoperative AR-guided MIS of the uterus with preoperative MR data is 
demonstrated in Collins et al.11, using an exploratory video for initial registration and multiple keyframes with 
manual input to improve organ tracking. These works show impressive results for intraoperative registration 
with preoperative data. However, these methods are only partially suitable for overlaying intraoperative image 
data, as manual user input and 3D models are required.

Fluorescence imaging with Indocyanine Green (ICG) can be used to visualize perfusion, but only qualita-
tive information can be provided in real-time. Quantitative perfusion maps are created from a sequence of 
fluorescence images and require subsequent registration for color video overlay. That was shown by Selka et al.8 
with feature detection, description, and matching of the reference image and the current frame. To address 
local organ deformations, a non-rigid Moving Least Squares (MLS) deformation grid, previously described in 
Schaefer et al.12, was used and tested in an animal model. However, image registration was only achieved at 5 
frames per second.

Image feature detection, description, and matching.  Most AR methods use image features, that 
can be automatically detected by a variety of methods benchmarked by Tareen et al.13 on non-surgical datasets. 
Scale-invariant feature transform (SIFT) was found to be the most accurate, while Oriented FAST and Rotated 
BRIEF (ORB1000) was the fastest feature-detector-descriptor algorithm. A comparison of seven feature detec-
tors on the green channel of standard color videos from brain surgeries showed, that KAZE14 was the most 
robust and provided the highest density of features15. For homogenous spatial distribution of features, fast imple-
mentations of Adaptive Non-Maximal Suppression (ANMS) have been described16. The description of features 
can be accelerated by the use of BEBLID, a binary descriptor trained with AdaBoost17.

After detection and description, feature matching is used to find corresponding points in different images. 
Puerto-Souza et al.18 presented a hierarchical multi-affine (HMA) algorithm, based on k-means clustering of 
features, to address the difficulties of feature matching in MIS images with non-planar and moving objects. HMA 
provides accurate results for individual image regions, but many dense features are required to cover the entire 
image, which increases computation time.

Matched features can be used for fast and long-term tracking of tissue or instruments in laparoscopic scenes19. 
To address the specific challenges of feature tracking in MIS image data, affine-invariant anisotropic regions20 
and methods for selecting the most suitable algorithm based on the input data at runtime were proposed21. 
Although these methods are promising, they are computationally expensive and continuous feature tracking is 
not necessary for image registration.

Finally, the corresponding features of two images are required for the estimation of the homography, a 3 × 3 
transformation matrix used for image alignment, obtained by Random sample consensus (RANSAC).

Deep homography estimation (DH‑NN).  Recently, deep convolutional neural networks were used for 
homography estimation (DH-NN) on non-clinical images for the first time22. DH-NN methods do not require 
matched features, which is beneficial in scenes with low texture, challenging light conditions, or clustered fea-
tures. On the other hand, a lot of image data is needed for training and the processing is computationally expen-
sive. The process for generating synthetic training data for DH-NN by applying random perspective transforma-
tions described in DeTone et al.22 was transferred to capsule endoscopy and thus used in the clinical context23. 
That method was applied to image sequences and developed further for the continuous generation of synthetic 
data during training by Huber et al.24. They benchmarked different DH-NN against feature-based methods for 
laparoscopic camera motion estimation, aiming at camera automation, independent from object and instrument 
motion. In another application, DH-NN-based mosaicking was used to enable the expansion of the field-of-view 
in fetoscopic image data25. Moving objects and depth differences are challenging for DH-NN as the whole image 
contributes to homography estimation. Therefore, an outlier rejection, known from RANSAC, was introduced 
for content-aware unsupervised deep homography estimation, that was trained and evaluated with non-clinical 
data26. Nie et al.27 extended the depth-awareness of DH-NN with the estimation of a multi-grid deformation 
mesh for handling real-world images with parallax (MG-DHNN).

Contribution.  The main contributions of this work are threefold. Firstly, a non-rigid DH-NN and feature-
detector-descriptor algorithms for single and multi-homography estimation are evaluated for the alignment of 
laparoscopic images.

Secondly, a free available dataset of manually annotated landmarks over 750 frames of a laparoscopic scene 
with occlusions and large tissue deformations is provided. Other ground truth datasets for non-rigid image 
registration mentioned in the literature are not published or not available anymore.

Finally, to the best of our knowledge, registration of laparoscopic video and static HSI data for augmentation 
with physiological tissue information is a novel approach.
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Methods
This section describes the laparoscopic videos used for evaluation and training, as well as the formation of the 
ground truth data. The human dataset used in our study is publicly available and all methods were carried out in 
accordance with relevant guidelines and regulations. All implemented steps from image preprocessing, keypoint 
detection, description, and matching until image transformation are defined. Finally, the quantitative evaluation 
with ground truth data and clinical measurements for qualitative assessment are presented.

The feature-detector-descriptor algorithms were implemented on a Windows machine (2.11 GHz Intel Core 
i7) with Python 3.6 using OpenCV28 and executed on the CPU, whereas the deep homography methods were 
performed on a GPU (NVIDIA MX150) using TensorFlow 1.13.

Ground truth dataset.  Based on a laparoscopic video, recorded during hybrid esophagectomy, the ground 
truth dataset was built. Details about the case and procedure are reported in a video publication29. The raw video 
lasts 106 min at 25 frames per second with an image size of 854 × 480 pixels. Ten scenes with 750 frames (30 s) 
each, were randomly extracted from the raw video. One out of the ten scenes was selected for manual annotation 
because it included surgical instruments, organ motion due to breathing and surgical manipulations, as well as 
perspective changes.

For the manual annotation of corresponding points between frames, the open-source Computer Vision Anno-
tation Tool (CVAT) was used. It supports the import and export of the annotations as XML-file for further 
processing in other environments. The video data and ground truth annotations are made publicly available in 
Supplementary Data S1.

Twenty-eight evenly spaced landmarks were selected. All landmarks drawn on each frame are shown in Sup-
plementary Video S2. Due to the occlusion of individual landmarks in single frames, the average of visible points 
per frame is 20. The motion paths of all 28 landmarks during the entire scene are shown in Fig. 1.

Image preprocessing of video frames.  Image preprocessing is used to increase the number of salient 
features and to reduce the impact of noise, glare artifacts, and illumination changes. First, the green channel of 
the color image was selected as proposed by Sieler et al.15 and confirmed in preliminary tests. This reduced reg-
istration error by 36% for ORB1000 and 4% for the other methods tested.

Glare artifacts and dark areas were masked by setting the 20th and 80th percentile of the maximum value 
range to 0, followed by a morphological erosion of the remaining image area with an elliptical kernel of 5 × 5 pix-
els. This mask is hereafter referred to as glare mask and reduced registration error by up to 35%.

For image smoothing, the single-channel image was convolved with a normalized 5 × 5 box filter. Afterward, 
Contrast Limited Adaptive Histogram Equalization (CLAHE) with a tile size of 8 × 8 and a clip limit of 2.0 was 
performed30. Preliminary tests showed, that CLAHE reduced registration error by 13–19% for all tested methods.

Keypoint detection, description, and matching.  Keypoint detection and description were performed 
on the preprocessed image within the glare mask. Three different methods were investigated: Oriented FAST 
and Rotated BRIEF with a maximum number of 1000 keypoints (ORB1000)31, Accelerated-KAZE (A-KAZE)32, 
and Binary Robust Invariant Scalable Keypoints (BRISK)33. Additionally, all methods were tested in combination 
with Boosted Efficient Binary Local Image Descriptor (BEBLID) with 256 and 512 bits17.

For feature matching, the Hamming distance with crosscheck was applied and 20% of the best matches were 
used for further processing. This resulted in 200 features per frame with ORB1000. The maximum number of 
features per image is not fixed for A-KAZE and BRISK. An average of about 400 and 500 best matches were used 
for A-KAZE and BRISK respectively.

Outlier rejection and image transformation.  Image transformation was performed with: (a) perspec-
tive transformation using a single homography (SH) from RANSAC34 with a reprojection error threshold of 

Figure 1.   Left: Graphical user interface of CVAT showing a frame with landmark occlusion due to a 
laparoscopic instrument. Right: Motion paths of the 28 manually annotated landmarks used as ground truth 
during all 750 frames of the scene.
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5, (b) hierarchical multi-affine (HMA) approach18, (c) image deformation with affine Moving Least Squares 
(MLS)12, and (d) multi-grid deep homography estimation (MG-DHNN)27.

The latter three were tested to compensate for local image deformations due to breathing and manipulations 
from surgical instruments. HMA uses geometrical constraints to create multiple regions with similar keypoints, 
that are further divided and/or expanded if appropriate. Each image area covered by such a region has an individ-
ual homography estimated with RANSAC. The developed Python implementation is based on MATLAB scripts 
from https://​github.​com/​gusta​vhafen/​HMA and the implemented combination of SH and HMA is described in 
section Quality Check and Postprocessing. Dense image deformation can be obtained with MLS. Therefore, the 
matched keypoints are used to obtain an affine transformation for the vertices of a uniform grid and the pixels 
between are bilinearly interpolated. As a trade-off between deformation accuracy and computation time, a grid 
density of 20% was chosen, as suggested in Schaefer et al.12.

To overcome the limitations of feature-based methods in scenes with low texture or unevenly distributed 
features, the MG-DHNN (based on https://​github.​com/​nie-​lang/​Multi-​Grid-​Deep-​Homog​arphy) was tested 
for elastic image registration. The MG-DHNN was chosen because it was trained on images with parallax from 
UDIS-D35 and provides a deformation mesh, suitable to compensate local tissue displacement. Since it can be 
trained fully unsupervised, we used real-world laparoscopic images for fine-tuning with additional 10 k iterations 
and a batch size of 4. No depth information was used and therefore the weights for content and shape were set 
to 1 and 0, respectively. In Nie et al.27, the training parameters are described in detail. The training set contains 
6034 image pairs (a and b) extracted from the video described in section A (excluding the annotated scene used 
for the evaluation) and one video from the LapChole dataset36. Every 30th frame is selected as image a, while 
image b is sequentially selected at 50, 100, 150, 200, 250, or 300 frames distance. Image pairs without or very low 
resemblance were manually discarded. No image preprocessing was performed for the use of the MG-DHNN.

Quantitative evaluation with ground truth.  The estimated transformations were quantitatively evalu-
ated with the manual ground truth annotations. To obtain a more general validation, four frames (number 20, 
200, 400, and 600) were selected as start frames, shown in Fig. 2. Image registration was calculated between a 
start frame and each subsequent frame until frame 750, referred to as a scene.

The estimated transformation was applied to the ground truth points of the start frame and the reprojection 
errors (RE) in pixel were calculated. Each RE was normalized by the individual moved distance. Afterward, the 
RE and normalized RE were averaged over the current frame, scene, and all four scenes. Thus, the normalized 
RE of a point after movement and without any image transformation (identity homography) is 1.

The Structural Similarity Index Measure (SSIM)37 was calculated between the start frame and the transformed 
frames.

Quality check and postprocessing for visualization.  Several quality checks were implemented to 
avoid erroneous visualizations during practical use. It is pointed out, that these steps were not applied during the 

Figure 2.   Images used as start frames for the four scenes. Frame number (a) 20, (b) 200, (c) 400, and (d) 600 of 
the video.

https://github.com/gustavhafen/HMA
https://github.com/nie-lang/Multi-Grid-Deep-Homogarphy
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quantitative evaluation of RE and SSIM. Further image processing was already stopped after feature matching if 
the average matching distance was higher than 35, 55, and 65 for ORB1000, A-KAZE, and BRISK, respectively. 
In those cases, the original current frame was shown. These thresholds were adjusted for each method individu-
ally and correspond to a resulting RANSAC inlier ratio of 0.6, considering a RANSAC inlier is defined by a 
reprojection error of less than 5.

The obtained HMA regions are not covering the full image, for example, due to missing or poor features in 
some areas. Therefore, the start frame was transformed with the homography of each valid HMA region and the 
homography for the full image separately. An HMA region was valid if (a) the area was greater than 2% of the 
image area and (b) the sum of absolute differences between the local homography and the SH was less than 50. 
Difference images of the start frame transformations and the current frame were calculated and a morphologi-
cal closing with a 35 × 35 elliptical kernel was performed. Based on these difference images, the transformation 
with the lowest error was selected for each pixel. This procedure can be easily extended with other methods, for 
example, image deformations obtained from MLS or MG-DHNN. The processing pipeline is illustrated as flow 
chart in Supplementary Fig. S3.

The lowest error for each pixel is used to define the combined error image. This was used to create a binary 
mask where the error was higher than 10% of the maximum value range. Finally, a median filter (35 pixels) was 
applied to this mask that indicates for each pixel whether the result of the transformations or the original cur-
rent frame was shown.

Qualitative evaluation: intraoperative laparoscopic hyperspectral imaging.  In-vivo hyperspec-
tral imaging (HSI) and video data were acquired in one patient with the medical approved successor of the 
laparoscopic system introduced in Köhler et al.5. Video data with an image size of 1920 × 1080 pixels at 30 frames 
per second and hyperspectral data with 720 × 540 pixels in spatial dimension were recorded from two image sen-
sors simultaneously. The latter consists of 100 spectral channels in the wavelength range from 500 to 1000 nm, 
resulting in a spectral resolution of 5 nm. As mentioned in the introduction, this spectral information was used 
to quantify the tissue oxygenation and visualize the same as a static false-color image for the intraoperative 
assessment of organ perfusion. The measurements have obtained ethics approval by the Ethics Committee of the 
University Leipzig under 393/16-ek and were conducted according to the Declaration of Helsinki.

Two main steps are required for the augmentation of the video with the oxygenation maps obtained from HSI. 
First, a one-time registration based on manual annotation of both modalities has to be performed to align the 
video and hyperspectral images. The result of this first step is illustrated in Fig. 3 and a detailed description can 
be found in Köhler et al.5. This calibration does not have to be repeated before surgery because the arrangement 
of the color and hyperspectral image sensor is fixed inside the camera housing. Second, during the HSI record, 
one image of the video is saved as a start frame and will be used for the registration with all consecutive frames. 
The video is augmented by applying the transformations found in steps one and two to the oxygenation map 
and creating a semitransparent overlay with the grayscale image of the current video frame. Due to regulatory 
restrictions, the augmentation process was performed postoperatively.

Ethical approval.  We confirm that all methods were performed in accordance with the relevant guidelines 
and regulations.

Results
Quantitative results.  A mean movement of 41.8  pixels was obtained for the annotated visible points, 
averaged over all frames of each scene, which is equivalent to the mean RE without any transformation (iden-
tity homography). The mean RE and mean normalized RE of the perspective transformation estimated with 
RANSAC from the ground truth annotations were 8.44 and 0.27, respectively.

A-KAZE, ORB1000, and BRISK showed similar mean normalized RE (< 0.38) for the estimation of an SH 
and the HMA method. Although the mean normalized RE inside the HMA clusters were reduced by 47% and 

Figure 3.   One-time registration of color video and hyperspectral data. (a) Image from the color sensor 
with three exemplary markers. (b) Pseudocolor image reconstructed during HSI of the same object. Missing 
information in the blue spectral range causes diverging coloration. Corresponding points to the markers in (a) 
are labeled with circles. (c) Semitransparent overlay of both images after perspective transformation based on 25 
manually annotated points.
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39% compared to the single homography for A-KAZE and BRISK respectively, the improvement for the entire 
image was marginal.

All three feature-detector-descriptor algorithms gave higher errors for the MLS method, only A-KAZE and 
BRISK yielded a mean normalized RE below 1. Keypoint description with BEBLID 512 reduced the mean nor-
malized RE for ORB1000 and BRISK in combination with MLS by 30% and 34% respectively.

The MG-DHNN methods resulted in higher mean RE compared to the algorithms based on SH but per-
formed better than the MLS methods. Fine-tuning of the MG-DHNN reduced the mean RE by 35%, however, 
SSIM was not improved.

Mean SSIM was similar for all methods, with the lowest value for the identity homography (0.431) and the 
highest for the SH calculated with BRISK (0.529), which even outperformed the SH based on manual annotation 
(0.513). The means of RE, normalized RE, and SSIM for all tested methods are given in Table 1.

The registration results of start frame 20 with two exemplary frames, 220 and 430, obtained from SH 
(ORB1000 and A-KAZE) and the original MG-DHNN are shown in Fig. 4. Displacements between ground 
truth and estimated transformation are indicated with crosses. Despite a larger RE in frame 430 with ORB1000, 
all three methods gave similar results for both frames, even under tissue deformation and partial occlusion.

For the comparison of the tested SH and MG-DHNN methods and the ground truth over consecutive frames, 
the mean normalized RE and SSIM of the first scene are plotted in Fig. 5. Additionally, the registration of start 
frame 20 with the subsequent frames based on SH and A-KAZE is available in Supplementary Video S4. A more 
detailed representation of the RE and the movement of each annotation is given in Supplementary Fig. S5 for 
ORB1000 and SH. In frames with small tissue deformation, the original MG-DHNN shows similar or better 
results compared with the SH methods. However, if the tissue deformation is stronger, the mean normalized RE 
is greater than 1 and SSIM is even lower than without transformation. This was not obtained for the SH methods, 
but the MLS with ORB1000 and BRISK. The fine-tuned MG-DHNN performed much better than the original 
MG-DHNN in frames with strong tissue deformation, but SH methods were more robust.

ORB1000 was the fastest feature-detector-descriptor with 22 ms (± 0.3 ms) for preprocessing, detection, and 
description, followed by A-KAZE and BRISK with 66 ms (± 2 ms) and 102 ms (± 2.6 ms) respectively. Feature 
matching was performed in 8 ms (± 0.1 ms) for ORB1000, 52 ms (± 5 ms) for A-KAZE, and 80 ms (± 7.9 ms) for 
BRISK features. Estimating a single homography was faster than the HMA or MLS method for all three feature-
detector-descriptor algorithms. Processing a frame faster than 50 ms (20 fps) was only possible for the estima-
tion of a single homography with ORB1000 (43 ms ± 5.8 ms). Transforming an image with the MG-DHNN was 
performed in 580 ms (± 11.4 ms). The mean normalized RE and mean processing times are shown in Fig. 6 for 
each tested transformation method using the respective BEBLID setting resulting in the lowest normalized RE.

Qualitative results with HSI data.  The developed preprocessing and registration process enabled the 
augmentation of in-vivo laparoscopic video data with tissue oxygenation maps from HSI. Figure 7 shows the 
acquired image data and the resulting overlay of both modalities after perspective transformation with an SH 
found with ORB1000 based on the start and target frame of the video. Regions with an intensity difference 
higher than the error threshold were excluded from the overlay during postprocessing. This prevents misleading 

Table 1.   Quantitative comparison of the tested methods. First and second-best solution are printed in bold 
and italic respectively.

Method Mean RE (↓)
Mean normalized 
RE (↓) Mean SSIM (↑)

No transformation 41.77 1 0.431

Manual annotation

SH 8.44 0.267 0.513

MLS 6.20 0.257 0.531

BEBLID w/o 256 512 w/o 256 512 w/o 256 512

A-KAZE

SH 10.87 10.77 10.88 0.346 0.350 0.355 0.526 0.528 0.528

MLS 25.13 44.89 34.92 0.690 1.104 0.851 0.519 0.489 0.504

SH + HMA 10.88 10.82 10.89 0.346 0.355 0.357 0.518 0.521 0.521

ORB 1000

SH 11.54 12.20 12.16 0.374 0.395 0.390 0.520 0.523 0.523

MLS 57.17 46.01 38.98 1.465 1.214 1.023 0.480 0.494 0.503

SH + HMA 11.54 12.21 12.26 0.374 0.395 0.391 0.517 0.520 0.519

BRISK

SH 11.35 11.52 11.51 0.366 0.367 0.361 0.529 0.527 0.527

MLS 51.02 38.41 30.98 1.240 1.006 0.820 0.487 0.494 0.511

SH + HMA 11.36 12.68 11.52 0.365 0.380 0.361 0.521 0.520 0.520

MG-DHNN25 20.18 0.549 0.515

MG-DHNN fine-tuned 13.17 0.408 0.514
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Figure 4.   Image registration results with the single homography method. (a) Frame 20 is used as the start 
frame of scene 1. (b) Frame 220 with small perspective changes, instrument movement, and organ deformation 
in relation to frame 20. (c) Frame 430 shows occlusions from an instrument and organ deformation due to 
manipulation compared with frame 20. (d)–(i) Semitransparent overlay of the transformed start frame 20 and 
the current frames 220 (left column, red) and 430 (right column, yellow) for ORB1000 (d, e), A-KAZE (f, g), 
and MG-DHNN (h, i). Green crosses indicate the ground truth and blue crosses the estimated position of the 
annotated points. White arrows highlight large registration errors and non-overlapping regions are shown in 
greyscale. The normalized RE averaged over the annotations of the shown frame are 0.1 for d, f, and g; 0.26 for e; 
0.13 for h and i.
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visualization in cases with strong glare artifacts (Fig. 7e) or surgical instruments in the field of view. Although 
the preprocessing was optimized on the ground truth dataset of another organ recorded with a standard lapa-
roscope, robust and accurate augmentation of the multimodal image data was observed. There were no strong 
tissue deformations or surgical instruments in the available scene. Augmentation with other physiological tissue 
maps like hemoglobin or water content can be selected by the user during runtime because they are calculated 
from the same hyperspectral data, a new record is not needed. Image registration is only performed between the 
start frame and the current frame, which makes the method robust against temporary occlusion or changes in 
the field of view. In contrast, strong illumination changes or organ deformations are more challenging for this 
approach in comparison to feature tracking methods. Push-broom HSI takes a few seconds, thus motion arti-
facts can occur during data acquisition and affect the accuracy of the overlay.

Discussion
Minimally-invasive procedures are becoming more common in recent years. Haptic perception is missing dur-
ing MIS, therefore imaging technology has a key role in the improvement of patient safety. The intraoperative 
augmentation of different modalities, such as color and perfusion imaging, can provide additional support. 
Augmenting video data and static images requires real-time registration, which is especially challenging in 
laparoscopy due to tissue deformations, occlusion, or non-planar surfaces.

In this work, a ground truth dataset of 750 frames with an average of 20 manually annotated points per 
frame is made publicly available. Thus, the dataset can be easily extended and modified by others. It can be used 
for the validation of non-rigid image registration methods under challenging real-world conditions. Although 

Figure 5.   (a) Mean normalized RE and (b) SSIM of start frame 20 and all consecutive frames with more than 
15 corresponding manual annotations. Mean normalized RE and SSIM are shown for single homography 
estimation (A-KAZE, ORB1000, BRISK, and manual annotation) and MG-DHNN (original and fine-tuned). 
Additionally, SSIM is shown without any applied transformation. Frames labeled with * are very similar to 
the start frame and show a high SSIM without transformation. The mean normalized RE shows higher values 
for these frames because of the very small moved distances of the manual annotations. However, the SSIM 
of the transformed frames is still higher than without transformation. Frames labeled with ~ include tissue 
deformations caused by surgical instruments. From frame number 390 on, large parts of the image are partially 
occluded by two instruments in the field of view.
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the proposed dataset consists of only one scene, it includes much more annotated frames than previous valida-
tion data used by others8,18. DH-NN typically require thousands of images for training. Thus synthetic data for 
supervised training or similarity measures for unsupervised training are needed. However, for the evaluation of 
registration accuracy, RE from manual annotations are more expressive than similarity metrics.

Image preprocessing improves the performance of feature-detector-descriptor methods on laparoscopic data 
substantially. The green channel gave better results in preliminary tests compared to the typically used grayscale, 

Figure 6.   Mean processing time per frame and mean normalized reprojection error (RE) for each 
transformation and feature-detector-descriptor method. ORB is the short form of ORB1000.

Figure 7.   Augmentation of in-vivo video data with HSI. (a) Start frame from the color sensor acquired during 
the HSI record. The blue outline indicates the region visible in HSI. (b) An exemplary target frame of the 
video, 20 s after HSI was performed. (c) Pseudocolor image reconstructed from hyperspectral data. (d) Static 
color map representing the tissue oxygenation according to the color scale. (e) Semitransparent overlay of the 
oxygenation map and the grayscale of the target frame after registration and postprocessing.
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which is in line with the findings by Sieler et al.15. Additionally, these tests showed that CLAHE reduces the effect 
of illumination changes, resulting in lower RE for all tested feature-based methods. A-KAZE outperformed 
ORB1000, BRISK, and MG-DHNN in terms of RE and normalized RE for the single and multi-homography 
approaches. Image registration at video rate (23 frames per second) was achieved with the single homography 
estimation based on ORB1000.

Although the MLS method outperformed the single homography for the manual annotation (see Table 1), 
it resulted in the highest RE and lowest SSIM of all tested methods. This might be due to the non-uniform 
distribution of detected features and missing outlier elimination, such as RANSAC, which leads to high RE in 
frames with strong tissue deformation. The MLS method was successfully used by Selka et al.8 with SURF for the 
detection of more uniform distributed features. However, the validation dataset differs from the one presented 
here and a comparison with single homography methods was not performed. The processing times needed for 
MLS-based transformation estimation with 200 features reported in Selka et al.8 and this work are almost equal 
(0.18 s and 0.2 s).

In accordance with Puerto-Souza et al.18, the registration of clusters found by HMA in combination with 
A-KAZE and BRISK was improved compared to the SH result of the same region. Using the homographies 
obtained by HMA for image alignment beyond the clusters did not result in substantial improvement. Alternative 
feature-detectors, such as SIFT and SURF, might improve the results of MLS and HMA due to a higher number 
of evenly distributed features, but require more time for total image matching13.

The original MG-DHNN trained on non-medical images showed similar or better results than the single hom-
ography methods for frames with little deformation (see Figs. 4, 5). High errors occurred in frames with larger 
deformations in parts of the image. Fine-tuning with laparoscopic data improved RE and SSIM substantially for 
these frames, but did not reach the performance of the single homography. This is contrary to the findings in 
Huber et al.24, where DH-NN outperformed the feature-based methods SIFT, SURF and ORB. One reason might 
be the missing preprocessing, which is a disadvantage for the latter. Furthermore, the number of frames with large 
deformations included in the validation dataset, the error metric, and the aim to estimate the camera movement, 
could explain the different results. In this work, MG-DHNN was the slowest of the tested methods, but processing 
of two frames is possible in 96 ms on a GPU with NVIDIA RTX 2080 Ti27. Less complex DH-NN can be faster 
than feature-based methods even on a CPU24. As the processing time is no disadvantage of DH-NN necessarily, 
future training data should improve the robustness of these methods in images with large local deformations.

Depending on the image depth, 12 to 17 pixels of a frame represent 1 mm. Besides MLS and the original 
MG-DHNN, all tested methods provide a mean RE lower than 1 mm.

Conclusion
Three feature-detector-descriptor algorithms were tested in combination with single and multi-homography 
methods and compared with a multi-grid DH-NN on manually annotated laparoscopic images. Video-rate 
image registration with submillimeter accuracy was possible using SH transformation based on ORB1000. Future 
work should include multiple ground truth data from different imaging systems and procedures to evaluate the 
transferability of the results found. DH-NN methods are promising for non-rigid image registration, provided 
that suitable training data will be available. Hybrid approaches, combining the advantages of feature-based outlier 
rejection and MG-DHNN could overcome the current limitations for routine clinical use.

Data availability
All data generated or analysed during this study are included in this published article and its Supplementary 
Information files.
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