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A super pan-genomic landscape of rice
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Pan-genomes from large natural populations can capture genetic diversity and reveal genomic complexity. Using de novo long-
read assembly, we generated a graph-based super pan-genome of rice consisting of a 251-accession panel comprising both
cultivated and wild species of Asian and African rice. Our pan-genome reveals extensive structural variations (SVs) and gene
presence/absence variations. Additionally, our pan-genome enables the accurate identification of nucleotide-binding leucine-rich
repeat genes and characterization of their inter- and intraspecific diversity. Moreover, we uncovered grain weight-associated SVs
which specify traits by affecting the expression of their nearby genes. We characterized genetic variants associated with
submergence tolerance, seed shattering and plant architecture and found independent selection for a common set of genes that
drove adaptation and domestication in Asian and African rice. This super pan-genome facilitates pinpointing of lineage-specific
haplotypes for trait-associated genes and provides insights into the evolutionary events that have shaped the genomic architecture
of various rice species.
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INTRODUCTION
Rice is the most widely consumed crop.1 Improving rice
productivity is essential to meet the growing demands of the
ever-increasing world population.2 Two major cultivated species,
Asian cultivated rice (Oryza sativa, Os) and African cultivated rice
(O. glaberrima, Og), were domesticated independently. Os was
domesticated from Asian wild rice (O. rufipogon, Or)3 and has two
main types: Geng (Os. japonica, Osj) and Xian (Os. indica, Osi).4 Osj
was domesticated as early as 9000 years ago,5,6 while Osi was
formed later, with introgression of domestication alleles from Osj.5

About 3500 years ago, Og was domesticated from O. barthii (Ob),
which diverged from Or approximately 600,000 years ago.6,7

The identification of a comprehensive set of genetic variations,
including single nucleotide variations and structural variations
(SVs), allows for investigation of the population structure and
evolutionary dynamics of cultivated and wild rice, which has
deepened understanding of the genetic basis for adaptation,
domestication, and speciation.4,7–10 However, it should be noted

that genetic variations are typically identified against a single
reference genome; accordingly, DNA sequences that are absent or
highly diverged from the reference genome are disregarded. Pan-
genomes, which combine multiple genomes attempting to
represent the entire set of genes for a species, can help overcome
this issue of absent sequences. Four rice pan-genomes have been
reported,4,11–13 including one constructed using short reads from
453 Os accessions,4 one iteratively assembled using short reads
from 53 Os and 13 Or accessions,12 one assembled using long
reads from 32 Os and 1 Og accessions11 and one assembled using
long reads from 105 Os and 6 Or accessions.13 Notably, these pan-
genomes primarily focused on Os accessions, with Og, Or, and Ob
remaining underexplored.
Here, we integrated Oxford Nanopore Technology (ONT) long

read data and Illumina short read data to generate high-quality
assemblies of 251 rice genomes (202 Os, 28 Or, 11 Og, and 10 Ob).
We constructed a graph-based pan-genome based on these
assemblies and characterized its gene content. Finally, we
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conducted various analyses to illustrate that this fully annotated
pan-genome is a valuable resource for understanding the genetic
basis of trait variation, environmental adaptation, and domestica-
tion in rice.

RESULTS
De novo assembly and annotation of 251 rice accessions
We selected 251 globally distributed rice accessions for their
representativeness of the genetic and phenotypic diversity of
global rice germplasm (Fig. 1a, b; Supplementary information
Table S1a). In brief, we collected the Os accessions from a
MiniCore collection, which was previously collected using a
hierarchical sampling strategy from 50,526 rice varieties based
on phenotypic and genetic variations.14 The Or, Og and Ob
accessions used in the pan-genome were collected based on
geographic diversity. In total, all accessions in the present study
were collected from 44 countries (Supplementary information,
Table S1a). The phylogenetic tree and admixture analysis based on
whole-genome single nucleotide polymorphisms (SNPs) were
used to remove the accessions that were not clustered together
with accessions of the same reported sub-population classification
(Osi, Aus, Osj, Or, Og, and Ob accessions) (Fig. 1b; Supplementary

information Fig. S1a; Additional file 1 at https://zenodo.org/record/
6602280). Since only 4 Aus accessions were collected in the
present study, which is not enough for population analysis, Aus
accessions were removed from the sub-population analysis.
Finally, 135 Osi, 58 Osj, 26 Or, 11 Og, and 8 Ob were retained to
represent the Osi, Osj, Or, Og and Ob sub-populations for
population comparing analysis (Supplementary information,
Table S1a). 251 accessions were used to analyze the genomic
characteristics of rice and to compare the differences between
Asian rice and African rice.
The 251 accessions were de novo assembled using WTDBG

(version 2.5)15 with an average depth of 98 ± 24× using ONT long-
read sequencing. The 251 accessions were also sequenced at an
average depth of 64 ± 9× using short Illumina next-generation
sequencing (NGS) to facilitate the correction during assembly. We
ultimately generated 251 assemblies with average lengths of
386.4 ± 7.0 Mb, 370.6 ± 5.7 Mb, 394.6 ± 8.5 Mb, 342.2 ± 4.4 Mb and
342.7 ± 2.7 Mb for the Osi, Osj, Or, Og and Ob accessions,
respectively (Supplementary information, Table S1b). The average
contig N50 length of the 251 assemblies was 10.9 ± 3.7 Mb
(Supplementary information, Table S1b).
We evaluated the assembly quality in the following four aspects,

and found that: (1) the assembled genome size (9311, N22 and
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Fig. 1 De novo assembly and annotation of the 251 accessions. a Geographic distribution of the 251 accessions examined in this study.
Colored dots indicate the taxonomic classification of each accession. b Phylogeny of 251 accessions based on whole-genome SNPs.
Accessions in different sub-populations are indicated by different colors. c Landscape of genome size and genomic elements across different
sub-populations, including the percentage of gene-regions with different lengths, exons, introns, repeats, CentO repeats, LTR, Gypsy LTR,
Copia LTR, SINEs+ LINEs, and DNA TEs in genome. d–g Pearson correlation coefficients for comparisons between genome size and total
length of annotation regions (d), the total length of TEs (e), the total length of DNA TEs (f) and total length of LTR (g) across different sub-
populations. Colored dots and lines indicate data from each sub-population. Osi, Aus, Osj, Or, Og, and Ob respectively refer to O. sativa indica, O.
sativa aus, O. sativa japonica, O. rufipogon, O. glaberrima, and O. barthii.
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IR64) is comparable to that reported by a recent study11

(Supplementary information, Fig. S1b); (2) 97.7% ± 0.9% of NGS
reads could be mapped to their corresponding assemblies, which
is similar to the rate (98.0%) when mapping Nipponbare16 NGS
reads to its genome (Supplementary information, Fig. S1c); (3) the
completeness estimated by Benchmarking Universal Single-Copy
Orthologs (BUSCO)17 was 96.4% ± 1.6%, which is comparable to
the Nipponbare reference genome (97.6%) (Supplementary
information, Fig. S1d and Table S1b); and (4) the analyses of
collinearity against the Nipponbare reference genome (Additional
file 2 at https://zenodo.org/record/6602280) and the high-
throughput chromosome conformation capture (Hi-C) data from
four assemblies (Supplementary information, Fig. S1e–h) indicate
the high continuity and completeness of the 251 assemblies.
These results suggested that the quality of all of our 251 genome
assemblies were comparable to that achieved by the rice
reference genome (Nipponbare) assembly.
To reveal the variation of genome size during rice domestica-

tion and speciation, we compared genome size among different
sub-populations and observed a reduction of genome size during
Os domestication, while genome size was comparable between
Og and Ob (Fig. 1c; Supplementary information, Fig. S1i).
Consistent with previous studies,4 Osi accessions (386.4 ± 7.0 Mb)
had slightly larger genomes than Osj (370.6 ± 5.7 Mb). To under-
stand the cause for differences in genome size among sub-
populations, we annotated protein-coding genes for each genome
and found that the species have a similar number of genes
(34,974 ± 466), with slightly fewer genes in Or (34,863 ± 358,
Supplementary information, Fig. S1j and Table S1c). In addition,
we also annotated repeat sequences of the 251 assemblies using
EDTA.18 The average sequence length of transposable elements
(TEs) per assembly was 191.9 Mb, accounting for an average of
50.5% of the total assembly length (Supplementary information,
Table S1d). The observed variations in genome size can be
primarily explained by the number of TEs (Fig. 1d; Supplementary
information, Fig. S1k, l), particularly by long terminal repeats (LTRs)
(Fig. 1e–g; Supplementary information, Table S1d).

A super pan-genome of cultivated rice and wild rice
A super pan-genome is a pan-genome constructed from the
genomes of different species within a genus.9 Unifying genomic
features by the super pan-genome enables functional and
evolutionary studies of genes across different species or popula-
tions. We constructed a graph-based pan-genome incorporating
the polymorphisms in orthologous regions across high-quality
assemblies of Asian and African cultivated rice and wild rice
accessions. This pan-genome consisted of 1.52 Gb non-redundant
DNA sequences across genomes, including 1.15 Gb sequences
absent in the Nipponbare reference genome (Fig. 2a, b).
Surprisingly, the 1.15 Gb sequences were mainly contributed by
Or, which is evolutionarily closer to Nipponbare than to Og or Ob
(Fig. 2a), possibly because of the higher genetic diversity of Or
compared to Og and Ob19 and the smaller number of African rice
genomes used in this study compared to the number of Or
genomes.
We clustered the genes in all assemblies of the pan-genome

using OrthoFinder (https://github.com/davidemms/OrthoFinder).
Each group of clustered genes (i.e., orthogroup) was defined as a
non-redundant gene. In total, 51,359 non-redundant genes were
annotated for the pan-genome, including 21,888 core genes (i.e.,
those present in ≥ 95% of the accessions) and 29,471 dispensable
genes (Fig. 2c). The core genes are expressed at a higher level than
the dispensable genes (P < 2.2e−16; Fig. 2d). In the super pan-
genome, 34,001 genes were present in both the Or and Ob
accessions. In addition, 10,101 genes were present only in Asian
rice and 1259 genes were present only in African rice
(Supplementary information, Fig. S2a). To estimate the represen-
tativeness of these accessions, the total number of non-redundant

genes present in a population was estimated by computing the
change in the number of non-redundant genes each time a new
genome was added. After randomizing the order of rice
accessions 500 times, our simulation analysis suggested the total
number of Asian rice genes approached a plateau (Supplementary
information, Fig. S2b) and the number of non-private genes (non-
private genes are defined as non-redundant genes present in at
least two accessions) in African rice was close to a plateau
(Supplementary information, Fig. S2c). To reduce the effect of the
unbalanced sample size of Asian (n= 230) and African accessions
(n= 21) on comparing Asian and African rice characteristics, we
down-sampled the Asian accessions to 21 accessions, and our
data indicated that Asian rice has a larger gene set than African
rice, with fewer core genes and more dispensable genes than
African rice (Fig. 2e–g). The evolutionary divergence between the
Osi and Osj genomes of O. sativa long predates the domestication
of O. sativa from Or. This means that within the single Or species
there are at least two highly diverged genome types.5,6 To
estimate gene variations within and between sub-populations, we
calculated the average numbers of genes that are different
between two accessions and found that Or likely has the highest
intra-species diversity, with an average of 35.5% of genes showing
presence/absence variations (PAVs) between any two randomly
selected Or accessions, a level that is comparable to the difference
between a typical Asian accession and an African accession
(33.25%) (Fig. 2h). The ancient genome divergence between the
Osi and Osj genomes may account for the high intra-species
genomic diversity for Or.
Asian accessions had larger variations than African rice

accessions as the difference in gene content between Or and
Osi/Osj is greater than that between Ob and Og (Fig. 2h). The gene
PAVs could then be used to clearly distinguish the sub-
populations (Supplementary information, Fig. S2d). We found
considerable variations in the functional genes among sub-
populations. We also analyzed and verified PAVs of some
functional genes (Supplementary information, Fig. S2e–i). For
example, the OsSh1 gene, which was previously reported to cause
a shattering-resistant phenotype when its expression is down-
regulated,20 was specifically absent in the non-shattering Og.
Another gene, OsLCT1, that encodes a protein known to effectively
decrease the translocation and accumulation of cadmium (Cd)
into grains when overexpressed,21 was present in most Osj
accessions but absent in all the Osi accessions, consistent with the
observation that Osj accessions generally show lower levels of Cd
than Osi accessions22 (Supplementary information, Fig. S2e–i). The
lineage-specific distribution of PAVs of functionally characterized
genes indicates that discerning haplotypes of functional genes in
different species has the potential to identify lineage-specific elite
genes which could be introduced into other sub-populations for
rice improvement.
To provide access and tools for exploring these genomic

resources, we developed the Rice Super Pan-genome Information
Resource Database (http://www.ricesuperpir.com/). A reference-
free whole-genome multiple sequence alignment for the 251
accessions was performed with Cactus software.23 The resulting
alignment can be visualized using any assembly as the reference
with this database. The database also integrated the SVs, gene
annotations, TE annotations, pan-genome graph, and BLAST tools.

Construction and characterization of a rice pan-NLRome
A family of highly diverse genes known as the nucleotide-binding
leucine-rich repeat receptors (NBS-LRRs, NLRs) function in plant
immunity by specifically recognizing pathogen effectors.24 A
species-wide inventory of NLRs should serve as a valuable
resource for future breeding efforts toward disease resistance.7

The NLRome is an important part of the rice pan-genome. The
pan-NLRome can obtain NLR genotypes and allelic or orthologous
relationships between accessions or species. It can potentially
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solve the problem of low efficiency of traditional linkage or
association analysis for NLRs and display more directly large SV
and copy number variation (CNV) with NLRs.25 It has been shown
in Arabidopsis that there are large differences in NLRs between
accessions, and it is still impossible to determine the true degree
of NLR diversity by fewer species.26 Therefore, we assembled high-

quality rice genomes using long reads data to analyze NLR
diversity.26,27

NLRs tend to cluster together in the genome and contribute to
plant defense,7,24 thus based on the distribution of NLRs in each
accession, we classified the NLRs as singletons, pairs or clusters.
We observed that the number of each type varies in the sub-
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populations. The Asian rice accessions contained more singleton
NLRs than their African siblings' species (Fig. 3a–d; Supplementary
information, Table S2a). Moreover, the cultivated Asian rice
accessions contained fewer paired NLRs than their wild progeni-
tors (Fig. 3c).
Another sign of NLRome diversity across sub-populations is the

change in different integrated domain architectures.24,28 These
domains may relate to proteins that are repeatedly affected by
pathogens, and their recognition provides targets that lead to the
identification of new pathogen effectors.29 Among the total of
113,687 NLRs of all accessions, 10,154 have at least one non-
canonical NLR domain (Fig. 3e; Supplementary information,

Table S2b). The domains of NLRs in different sub-populations show
different patterns with the singleton, paired, and clustered NLRs
containing different domains (Supplementary information, Fig. S3a).
To better compare NLRs in multiple genomes, we constructed a

rice pan-NLRome with all NLRs from 251 accessions. Finally, we
got 496 non-redundant NLRs (Supplementary informa-
tion, Table S2c). We compared the characteristics of non-
redundant NLRs among sub-populations. The core or dispensable
non-redundant NLRs were determined based on their distribution.
Among the Asian rice accessions, wild accessions contained a
higher proportion of dispensable NLRs than the cultivated
accessions (Fig. 3f). More than 80% of NLRs were found to be
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shared between Or and Ob (Supplementary information, Fig. S3b),
suggesting that most NLRs in cultivated rice were retained from
wild rice. All of these dispensable genes can better maintain the
diversity of NLRs, providing the opportunity to potentially analyze
the diversity of all or at least most of the NLR loci. However, there
were no more dispensable NLRs in Ob than Og (Supplementary
information, Fig. S3c). It is generally believed that NLRs are
expressed at low levels under normal conditions.30 We interest-
ingly found that a higher portion of the core NLRs showed
expression as compared with the dispensable NLRs (P-value= 8.4e
−13; FPKM > 0.1; Fig. 3g), whereas there are more expressed
genes in Or whose core NLRs were in a lower number
(Supplementary information, Fig. S3d). This phenomenon indi-
cates that some dispensable NLRs in Or may have not been
preserved during evolution. We also found that paired and
clustered NLRs were more likely to be core NLRs than singleton
ones (Fig. 3h), which suggests that these pairs or clusters of NLRs
might be more conserved and retained in the course of evolution.
In addition, the genomic arrangement of NLRs further

contributes to the diversity of this gene family.7 Since paired
NLRs usually act as helpers and sensors to function together,31 we
investigated the arrangement of paired NLRs in the accessions.
Interestingly, the NLRs in homologous pairs (with the same non-
redundant genes) were almost exclusively found in tail-to-head (T-
H) arrangement, whereas those in heterologous pairs (with
different non-redundant genes) were also found in either head-
to-head (H-H) or tail-to-tail (T-T) arrangement (Fig. 3i). This
distinction in gene orientation may indicate different evolutionary
origins of the homologous and heterologous NLR pairs. Although
we do not understand the effects of these arrangements on the
function of NLRs, our study confirms that the arrangement of NLRs
in rice populations is non-random.
To further understand the arrangement and diversity of NLRs, it

is necessary to identify the NLRs’ collinear loci across accessions. A
pan-genome graph provides a feasible solution.26 We identified
the NLRs in the pan-genome by mapping them to the pan-
genome graph and inferring the NLR loci through the pan-
genome bubbles overlapped with NLRs in the corresponding
assembly. Although the number of clustered NLRs was similar
across sub-populations (Fig. 3d; Supplementary information,
Table S2a), we found that the number of NLRs at each given
locus could diverge dramatically across sub-population (Fig. 3j).
We also found evidence of extensive PAVs of some loci among
rice sub-populations: some NLR cluster loci found in Asian rice
accessions were absent in the syntenic regions of African rice
genomes (Supplementary information, Fig. S3e–p). For example, a
heterologous paired NLR locus on Chromosome 8 of African rice
was syntenic to a singleton NLR among Asian rice accessions. At
this locus, the African rice orthologs contained either a conserved

integrated domain homologous to Pi3632 or a lineage-specific F-
box domain, neither of which was found in the orthologous
singleton NLR in Asian rice genomes (Fig. 3k, m). Similarly, another
NLR locus corresponding to a three-gene NLR cluster on
Chromosome 9 of Asian rice has at least three NLRs among
African rice genomes, which means one more copy is present at
this locus in many African rice (Fig. 3l, n).

Pan-SV identification and characterization
To survey the landscape of structural variation in rice, high-quality
ONT sequencing reads from the 251 accessions were aligned to the
Nipponbare16 genome using minimap233 and NGMLR,34 and SVs
were called using Sniffles.34 We called a total of 193,880 SVs
(including deletions, DELs; insertions, INSs; inversions, INVs; translo-
cations, TRAs; and duplications, DUPs) (Supplementary information,
Table S3a) against the Nipponbare16 reference genome. A typical
accession has 2660 to 32,097 SVs, depending on its evolutionary
distance with the reference genome (Supplementary information,
Fig. S4a and Table S3b). To quantitatively estimate the accuracy of
SV calling, we manually examined 500 randomly selected SVs by
visualizing the corresponding long-read alignment through an
Integrative Genomics Viewer Browser. The SV calling accuracy was
estimated to be 95.8% (Supplementary information, Table S3c). To
validate large SVs, we performed Hi-C sequencing of four accessions
(NH229, NH231, NH265 and NH286) and mapped the Hi-C paired
reads to the corresponding genome assemblies using a chromatin
interaction heatmap at 5 kb resolution with Juice (Supplementary
information, Fig. S4b–e and Table S3c).
To assess whether our current population has reached SV

saturation, and to see how many SV frequencies our Asian and
African rice pan-genome covers, we then compared the SV
content among rice species, and our simulation analysis
suggested that the number of non-private SVs (non-private SVs
are defined as SVs present in at least two rice accessions) in Asian
rice was close to a plateau and the number of non-private SVs in
African rice was close to a plateau (Supplementary information,
Fig. S4f, g). The majority of SVs are relatively short (66.5% are less
than 1 kb in length) (Supplementary information, Fig. S4h, i) and
relatively rare (73.2% of SVs have a minor allele frequency < 0.05
and more than 65.9% of SVs were identified in at least two
accessions) (Supplementary information, Fig. S4i). We identified
2,811 putative SV hotspots across the different sub-populations,
with enrichment on the long arm of Chromosome 11 in Os, but
not in Or, Og, or Ob (Supplementary information, Fig. S4j), and the
difference of SV numbers in each window between variants and
simulated variants was significantly different using Wilcoxon test
(P < 0.01). This hotspot overlapped with many NLR genes
(Supplementary information, Fig. S3e–p) and has been function-
ally implicated in defense responses against bacteria.11,35

Fig. 3 Characterization of NLRs in super pan-genome. a–d Gene numbers across different sub-populations: total number of all NLRs (a),
singleton NLRs (b), paired NLRs (c), and clustered NLRs (d). The white dots indicate the mean values. The lowercase letters in the figure reflect
the levels of statistical significance assessed with the Kruskal-Wallis tests (with Bonferroni’s multiple comparison post hoc tests). e Summary of
integrated domain in NLRs. The heatmap indicates domains’ frequencies (Z-score transformed) among the sub-populations. We used the
Wilcoxon test with FDR adjustment to infer the enrichment of a specific domain in a given sub-population. * adjusted P < 0.05, and ** adjusted
P < 0.01. The barplot indicates the total number of integrated domain identified in all accessions. The figure only shows integrated domain
observed over 10 times and with significant differences between Asian and African accessions. The results for all integrated domain are shown
in Supplementary information, Table S2b. f The percentage of core or dispensable non-redundant NLRs in the Asian sub-population, including
Osi, Osj, and Or. g Expression of core and dispensable non-redundant NLRs. A Wilcoxon test was applied to analyze the raw expression values.
h The percentage of singleton, paired, and clustered NLRs among the core NLRs. The white dots indicate the mean values and the lowercase
letters reflect the significance. Kruskal-Wallis tests (with Bonferroni’s multiple comparison post hoc tests) was used for the statistical
significance analysis. i Combination pattern of paired NLRs. The inner ring represents the homogeneous rate (pink) and the heterogeneous
rate (blue) of pair formation. The outer ring indicates the gene arrangements. H-H, T-T, and T-H respectively refer to the arrangements head-
to-head, tail-to-tail, and tail-to-head. j The average number (the number of NLRs contained in the cluster) of collinearity loci in different sub-
populations. k, l Example collinearity loci of singleton, paired, and clustered NLRs on Chr8 (k) and Chr9 (l). Gray, blue, and red dots indicate
singleton, paired, and clustered NLRs, respectively. m, n The allelic variation among the sub-populations of the collinearity loci Chr8:
2,778,922−2,890,239 (m), Chr9: 20,154,563−20,167,795 (n). As, Af, Osi, Osj, Or, Og and Ob refer to Asian rice, African rice, O. sativa indica, O.
sativa japonica, O. rufipogon, O. glaberrima, and O. barthii, respectively.
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SVs can affect agronomic traits by altering gene expression
The expression of genes can be altered by nearby SVs due to their
interruptions in gene or regulatory sequences. For example, a
520 bp DEL in the promoter of DNR1 in Osi accessions such as
HJX74 reduced DNR1 transcript levels and improved nitrogen
uptake rates in Osi compared to Osj.36 To explore the relationship
between SVs and gene expression, we cataloged the SVs across
our rice pan-genome and found that 35.4% of genes were flanked
by SVs (overlapping with coding regions or putative regulatory
elements) (Supplementary information, Fig. S4k). To discover SVs
affecting gene expression, we associated SVs with the gene
expression levels among Os accessions and identified expression
quantitative trait loci (eQTLs) (Fig. 4a). These eQTLs included some
candidate genes that may be responsible for important agronomic
traits, such as grain size. For example, the expression of a known
grain-weight gene HGW (LOC_Os06g06530)37 was significantly
associated with a 127 bp INS upstream of the gene (Supplemen-
tary information, Fig. S5a–e). The accessions with the INS had
reduced thousand grain weight (TGW) compared to those without
the INS (Supplementary information, Fig. S5f). Likewise, the down-
regulation of a nicotinate phosphoribosyltransferase gene
OsNaPRT1 (LOC_Os03g62110)38 was related to a downstream
DEL (Supplementary information, Fig. S5g–k). The accessions with
the DEL (Hap.2) showed lower TGW than those without the DEL
(Hap.1) (Supplementary information, Fig. S5l). Another eQTL was

found near the QTL qTGW1.2a,39 which was related to TGW
(Fig. 4b), and was fine-mapped to a 77.5 kb region on Chromo-
some 1 containing 13 candidate genes. Among these genes,
LOC_Os01g57250 was covered by a 1.3 kb SV (Fig. 4b). The
expression of LOC_Os01g57250 was detected in Hap.1 accessions
with the 1.3 kb sequence but not in Hap.2 accessions lacking the
1.3 kb sequence (Fig. 4c, d). The haplotypes of LOC_Os01g57250
showed a significant difference in TGW in the Osj accessions, with
Hap.1 associated with lower TGW, indicating that
LOC_Os01g57250 negatively regulated TGW (Fig. 4e). Consistently,
a near-isogenic line in the 9311 genetic background with a
qTGW1.2a region introgressed from Nipponbare had higher
LOC_Os01g57250 expression levels and a lower TGW than 9311
(Fig. 4f–h). These results suggest that LOC_Os01g57250 is a
negative regulator of TGW and is likely the causal gene underlying
the QTL qTGW1.2a.

SVs associate with agronomic traits
The SVs that determine agronomic traits in rice have been
recognized in recent years. For example, the 1,116 bp DEL in the
DTH8 gene (LOC_Os08g07740)40 and the 17.1 kb CNV of GL7
(LOC_Os07g41200)41 were reported to affect rice heading date and
promote grain length, respectively. Discerning haplotypes of SVs
across sub-populations can also facilitate the identification of
beneficial haplotypes for rice improvement. We generated a
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(n= 3). Scale bars, 1 cm. The letters indicate statistical significance levels from one-way ANOVA with Tukey's test (P < 0.05).
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phylogenetic tree based on our SV dataset, which clearly
separated the sub-populations, and showed a structure that
mirrored the SNP-based rice phylogeny (Fig. 1b; Supplementary
information, Fig. S5m). Thus, we next analyzed the distribution of
the functionally characterized SVs among the sub-populations.
The result showed that the DEL in DTH8 is only present in Osi
accessions, while the CNV of GL7 is only found in Osj accessions
(Supplementary information, Fig. S5n). Other than the known
functional SVs, we also found SVs that were present specifically in
African rice accessions, such as a 1.8 kb INS in the first exon of
RFT1 (Supplementary information, Fig. S5n). To demonstrate how
the pan-SVs can be used to facilitate the identification of trait-
associated SVs, we conducted a genome-wide association analysis
of grain length in Os. In addition to GS3, we identified a locus close
to spd6, a previously identified QTL for panicle length, plant
height, and grain size (Fig. 5a). spd6 was identified in recombinant
inbred lines derived from a cross between the Or accession Y2 and
the Osi accession Teqing and contains four candidate genes.42 To
determine the functional gene for spd6, we analyzed the
haplotypes of the locus and found that variations between
Hap.1 and Hap.2 in Osi and between Hap.1 and Hap.3 in Osj were
associated with differences in grain length (Fig. 5a–c), thus
narrowing down the candidate genes to LOC_Os06g04820 and
LOC_Os06g04830. To confirm the causal gene, we then sequenced
the near-isogenic line NIL-spd6or, in the Osj cv. ZH11 background
containing the spd6 segment derived from Or accession Y2.
Sequence analysis revealed that a 4 kb INS occurred at 53 bp
upstream of LOC_Os06g04820 in NIL-spd6or (Fig. 5a). These results
allowed us to infer that LOC_Os06g04820 is the causal gene for

spd6. Further, to verify the function of LOC_Os06g04820, the
LOC_Os06g04820 cDNA from ZH11 was introduced into NIL-spd6Or

and was found to rescue the grain length phenotype (Fig. 5d, e),
strongly supporting that the 4 kb INS disrupts LOC_Os06g04820
function and thus decreases the grain length in NIL-spd6Or.
To date, population studies have relied mostly on high-

throughput short-read DNA sequencing technologies. To facilitate
the identification of the SVs from short-read data and utilize the
corresponding phenotypic data, we constructed a variation graph
based on the Nipponbare reference genome and the pan-SV
dataset. We called SVs by mapping published short-read sequence
data from 605 Os rice accessions to the variation graph
(Supplementary information, Table S4).43 Then we performed a
genome-wide association study (GWAS) for grain yield with the
identified SVs. This identified a grain yield-associated SV (a 1.4 kb
DEL compared to Nipponbare) near OsNPY2 (LOC_Os06g08550).44

Notably, these signals could not be detected by SNPs against the
Nipponbare reference genome (Fig. 5f–h).16 These results
emphasize one major advantage of using a pan-genome to
identify trait-associated genetic variations in rice.

Adaptation in Asian and African rice
To adapt the adverse environments on Earth, including severe and
unfavorable environmental conditions for living organisms, plants
have evolved many biological functions.45–47 Dissecting the
genetic basis underlying local environmental adaptation is
important to understand the evolution of rice. Flooding is a
severe abiotic stress that imposes strong selection on rice.48

Deepwater rice accessions can survive during long-term
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submergence and are grown in flood-prone environments in
South Asia and West Africa.48 The genetic basis underlying
adaptation for submergence has been well characterized in Asian
rice,49–52 but is not well known in African rice. To figure out
whether African rice species have developed a different genetic
mechanism or use a strategy similar to that in Asian rice adapted
to survive in flood-prone environments, we explored the
genotypes of several genes reported to be involved in submer-
gence such as Sub1A/B/C, SNORKEL1/2, DEC1, ACE1 and ACE1-LIKE1
using our pan-genome (Fig. 6a). We found that Sub1A, a gene
previously reported to positively regulate the resistance of rice to
submergence in a “submergence quiescent strategy”,52 was
absent from Ob and Og accessions, whereas SNORKEL1/2 and
ACE1 were present in both Ob and Og (Fig. 6a; Supplementary
information, Table S5). SNORKEL1/249 and ACE1 are positive
regulators of submergence-induced internode elongation,51 while
DEC1 is a negative regulator of this trait.51 These findings indicate
that submergence-induced internode elongation has been
employed as a major adaptive mechanism to escape submer-
gence stress in both Asian and African rice. By the above
haplotype analysis, we newly found that OgDEC1 has a 54 bp in-
frame INS, which may affect its function (Supplementary informa-
tion, Table S5). To determine whether the observed differential
distribution of genotypes of these submergence tolerance genes
among sub-populations was due to selection, we performed FST

analysis. The results show selection on SNORKEL2 orthologues
(FST= 0.75, rank: 2.25%) and DEC1 (FST= 0.79, rank: 0.07%) in
African rice and suggest that independent selection on these
submergence tolerance genes may have contributed to the
adaptation of Og to survive in flood-prone environments
(Fig. 6a–c).

Domestication in Asian and African rice
Cultivated rice differs phenotypically from wild rice. The genes
contributing to these domestication phenotypes can be inferred
from highly diverged outliers between wild and cultivated rice. We
compared wild rice to cultivated rice by estimating genomic
divergence (both SVs and SNPs) using metrics including FST
(Supplementary information, Fig. S6a–h) and Dxy (Supplementary
information, Fig. S6i–n) in both Asian and African rice (Additional
file 3 at https://zenodo.org/record/6602280). Os and Og are
independently domesticated rice species that display parallel
genetic changes, such as a distinct loss-of-function in the same
gene that caused parallel evolutionary changes in phenotypes in
both species. Loss of shattering is a primary domestication trait in
both Os and Og.53–58 Multiple loss of function events in
orthologous genes, such as qSH1, OgGL4/Ossh4 and Ogsh3/OsSh1,
are known to have been independently domesticated in Asian and
African rice. Our data suggested that the parallel selection for loss
of shattering in Asian and African rice was driven by the
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independent selection of variations in different components of a
genetic network (Fig. 6d; Supplementary information, Fig. S6); in
each wild rice to cultivated rice comparison, genes related to loss
of shattering were identified in highly divergent regions. In
addition, we found an orthologue of SHATTERING ABORTION1
(SHAT1)58 in a region that diverged between Ob and Og
(Supplementary information, Fig. S6k), and identified a ~126 bp
insertion 4.5 kb upstream of SHAT1 in Osi comparing to Or and a
~70 bp insertion 3.5 kb upstream of SHAT1 in Og compared to Ob
in the SHAT1 locus (Fig. 6e). These results indicate that the
selection of different variants in SHAT1 orthologues may have
contributed to the domestication of shattering traits in Asian and
African rice.
Rice domestication also involved a transition from prostrate to

erect growth, and this is known to have been mediated by
PROG159,60 in Asian rice and by PROG761 in African rice. OsPROG1
and OgPROG7 are syntenic and orthologs. They both encode zinc-
finger transcription factors.61 We found that Hap.1 of PROG1 was
fixed in Os, while Hap.1 of PROG7 was fixed in Og (Supplementary
information, Fig. S7a, b). A ~110 kb deletion of the RICE PLANT
ARCHITECTURE DOMESTICATION (RPAD) locus, which contains an
array of zinc finger genes (ZNFs) including PROG1, was previously
suggested to have affected plant architecture domestication in
Asian rice,60 which highlights known impacts of large-size SVs in
crop domestication. A similar but independent large deletion also
occurred, which was at a slightly different location within the
RPAD locus, in African rice.60 We found that deletions of the RPAD
locus in both Or and Os accessions overlapped with deletions
existing in both Ob and Og accessions (Fig. 7a; Supplementary
information, Fig. S7c–e). Among the OrZNFs at the OrRPAD locus,
OrZNF5, OrZNF7, and OrZNF8 are known to regulate plant
architecture.60 However, the functional zinc finger genes except
PROG7 in the RPAD locus of African wild rice are still unclear.
Therefore, we constructed the complementary constructs for
ObZNF1−ObZNF9 in the RPAD locus of African wild rice and
transferred the nine constructs separately into the introgression
line GIL28. Transgenic results indicated that transgenic plants of
ObZNF1, ObZNF3, ObZNF7 showed larger tiller angles and
increased tiller numbers compared with the control plants
(Fig. 7b–d). We conclude that among the ObZNFs at the ObRPAD
locus, only the ObZNF1, ObZNF3, and ObZNF7 regulate plant
architecture in African rice. ObZNF1 is the ortholog of OrPROG1,
while ObZNF10 is orthologous to OrZNF8. These results showed
that the selection of independent deletions has resulted in
retaining OrZNF1/OsPROG1 in Asian rice and ObZNF10/OgPROG7 in
African rice (Fig. 7a). The ObZNF10/OgPROG7 is homologous to
OrZNF1/OsPROG1 (Supplementary information, Fig. S7f, g). In
summary, the parallel domestication of plant architecture in Asian
and African rice has been driven by the independent selection of
both the large-size deletions and the functions of distinct
members of an array of zinc finger genes at a single, orthologous
genomic region.

DISCUSSION
Asian and African cultivated rice were domesticated indepen-
dently from Asian and African wild rice species, respectively. Here,
we constructed a rice graph-based super pan-genome (i.e., a
genus-level pan-genome) that integrated gene annotation and
position data across 251 genomes spanning various Asian and
African wild and cultivated rice species. A super pan-genome can
help to discern novel haplotypes for crop potential improvement.9

Under the guidance of this super pan-genome, we systematically
identified the highly diversified NLRs across rice species and have
generated a pan-NLRome for rice. This major resource will inform
and motivate plant immunity research for economically relevant
cereal grains (which is presently limited to the model eudicot
Arabidopsis).24 The genetic variants revealed in this pan-genome is

much more extensive than previous rice pan-genomes. Previous
published rice pan-genomes have been constructed either mainly
based on short-read DNA sequencing data4,12 or based on long-
read DNA sequencing data with much smaller sample sizes.11,13

The accuracy of InDels and SV identification was greatly improved
by the single-molecule sequencing data and high-quality genome
sequence enabled us to uncover complex genetic variants.62 The
discovery of how a set of large DNA fragment deletion events at
the RPAD locus has influenced plant architecture traits during
domestication in both Asian and African rice highlights the
significance of this pan-genome as an excellent resource to
facilitate future genetic improvement of rice. Although we have
sequenced and assembled the largest number of genomes from
Or, Og, and Ob accessions using long-read DNA sequencing data,
the Or, Og and Ob diversity was not saturated. Considering the
high level of genetic diversity present in the wild rice species,
more wild rice accessions need to be sequenced in the future.
Given the scope of traits affected by SV, the characterization of

SVs is important for understanding phenotypes, adaptation and
domestication.63 We provided novel examples of how this pan-
genome facilitates pinpointing genetic variants that determine
agronomic traits, such as grain size or weight, by GWAS and eQTL
analysis. Combining different types of genetic variation (such as
SNPs, InDels and SVs) will greatly improve the efficiency of
association analysis. In addition, the population-scale gene expres-
sion profiles are also helpful to find the causal genetic variants that
affect gene expression and in turn determine the traits accordingly.
We successfully identified a casual genetic variant (i.e., QTN64) of
TGW (QTL-qTGW1.2a) by using both of the pan-SV and gene
expression datasets (Fig. 4). In addition, we showed that
independent episodes of selection on genes in a genetic network
led to the loss of shattering in Asian and African rice. We also
showed how selection in African rice for orthologues of
submergence-related genes can explain the adaptation of African
rice accessions to flood-prone areas. The complete pan-genome
information and advances of genome editing tools can reduce
barriers in using genetic variants from different cultivated and wild
species. The achievement of desirable agronomic traits in cultivated
rice and their wild relatives enable realization of breeding by design
and the rapid de novo domestication of wild rice species.65

To further facilitate exploring this super pan-genome, we
developed the Rice Super Pan-genome Information Resource
Database (http://www.ricesuperpir.com/) to present and visualize
the datasets and provide tools to access these genomic resources.
With pan-genome information, it could be more effectively used to
identify causal genetic variants (such as SNPs, CNV, PAVs) under-
lying domestication traits.63 However, it is still hard to integrate
different types of genetic variations in one graphed pan-genome,
especially when it comes to mapping genetic variations identified
by short-read sequencing data to the graph. To completely
integrate all types of genetic variations in one graphed pan-
genome, it will require the development of more efficient tools.
Understanding how the present genomes of different species

have been shaped by past evolutionary events will facilitate
developing robust strategies for future crop improvement. This
rice super pan-genome is a step forward to uncover genetic
variants underlying traits, adaptation and domestication in rice,
and will provide insights into functional and evolutionary
genomics of other crops.

MATERIALS AND METHODS
Materials
We collected 251 accessions from 44 countries, including 202 Os, 28 Or, 11
Og, and 10 Ob accessions. The Og, Ob, and Or samples were collected
because of their geographic diversity. The 202 Os samples included 22 elite
modern rice varieties, which were collected because of their notable yield,
disease resistance, nitrogen use efficiency, and other specific agronomic
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traits. The rest samples of the Os were collected from a MiniCore
collection.14 The MiniCore was previously collected using a hierarchical
sampling strategy. For example, Chinese Os MiniCore were collected from
50,526 rice varieties in two steps. The primary core collection consists of
4310 varieties (including 3632 landraces or local varieties, 604 modern
pure-line varieties, and 74 parents of trilinear hybrid accessions), which
retained approximately 95% of the morphological variation. A MiniCore
collection of 189 varieties was further selected from the primary core
collection, which retained 70.65% of the simple sequence repeats variation
and 76.97% of the phenotypic variation. Detailed information on these
accessions is provided in Supplementary information, Table S1a.

Whole-genome sequencing with nanopore long reads
251 Genomic DNA (gDNA) samples for Nanopore long-read sequencing
were extracted from shoots of one-month-old seedlings using a QIAGEN®

Genomic DNA extraction kit (Cat #13323, QIAGEN). DNA purity was

measured using a NanoDrop™ One UV-Vis spectrophotometer (Thermo
Fisher Scientific, USA), which showed that OD260/280 ranged from 1.8 to 2.0
and OD260/230 was between 2.0 and 2.2. DNA samples were accurately
quantified using a Qubit® 3.0 Fluorometer (Invitrogen, USA). Size-selected
long DNA fragments were then extracted using the BluePippin system
(Sage Science, USA). DNA was then repaired and adapters were attached to
the ends using an SQK-LSK109 kit. The concentrations of library fragments
were quantified with the Qubit® 3.0 Fluorometer. The DNA library was then
loaded into the primed Nanopore PromethION sequencer (Oxford
Nanopore Technologies, UK) flow cell. For each accession, the coverage
of ONT reads was 98 ± 24× genome coverage. A total of 9.42 Tb of ONT
raw reads were obtained (Supplementary information, Table S1a).

Whole-genome sequencing with Illumina short reads
239 samples were sequenced on the Xten platform (Illumina, San Diego,
CA, USA), and 12 gDNA samples for short-read sequencing were from
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previous publications of our laboratories66 (Supplementary information,
Table S1a). gDNA samples for short-read sequencing were extracted from
leaves of two-week-old seedlings using the CTAB method. Index libraries
were constructed with the New England Biolabs (NEB) Next® Ultra™ DNA
Library Prep Kit for Illumina (NEB, Ipswich, MA, USA) following the
manufacturer’s instructions. Briefly, after quality was assessed, at least
0.2 µg of gDNA from each sample was randomly fragmented by sonication
to a size of 350 bp. Then DNA fragments were endpolished, A-tailed, and
ligated with the full-length adapter for Illumina sequencing, followed by
further PCR amplification. After PCR products were purified by AMPure XP
system (Beckman Coulter, Beverly, USA), DNA concentration was measured
by Qubit®3.0 Flurometer (Invitrogen, USA), libraries were analyzed for size
distribution by NGS3K/Caliper and quantified by real-time PCR (3 nM). The
clustering of the index-coded samples was performed on a cBot Cluster
Generation System using Illumina PE Cluster Kit (Illumina, USA) according
to the manufacturer’s instructions. After cluster generation, the DNA
libraries were sequenced on Illumina platform and 150 bp paired-end
reads were generated. A total of 5.83 Tb raw reads (150 bp paired-end
reads) were generated for 239 accessions with a coverage of 65.4 ± 9×
(Supplementary information, Table S1a).

Transcriptome sequencing
Total RNA was extracted from young leaves of one-month-old seedlings
(from 249 accessions, except CW01 and CW16) with a TRIzol kit
(15596–018). RNA quality was measured with agarose gel electrophoresis,
Nanodrop, Qubit 2.0, and Agilent 2100 bioanalyzer. Libraries with a size of
300 bp per insert were constructed using the TruSeq RNA Library
Preparation Kit, version 2 (Illumina, USA). RNA was sequenced using the
Illumina high-throughput sequencing platform NovaSeq 6000. Finally, a
total of 1.85 Tb RNA-seq raw reads were obtained (Supplementary
information, Table S1a).

Hi-C sequencing
gDNA of four accessions (NH229, NH231, NH265, and NH286) were extracted
and sequenced for Hi-C analysis. Panicles were respectively collected at the
heading stage from NH229 and NH231 accessions. Leaves were respectively
collected at the heading stage from NH265 and NH286 accessions. Plant
material fixation, nuclei extraction, DNA crosslinking, and restriction enzyme
ligation were performed as described previously.67 Digested DNA was blunt-
ended and incorporated with biotin-14-dCTP (Invitrogen), then ligated with
T4 DNA ligase at room temperature for 4 h. After purification, DNA was
sheared by sonication with a Covaris S220. Subsequently, end-repaired DNA
was separated, purified, and ligated with adapters for library preparation.
The final library for Hi-C sequencing was constructed using the DpnII
restriction endonuclease, and paired-end sequencing (2 × 250 bp) was
conducted on the Illumina NovaSeq 6000 platform. A total of 334.35 Gb raw
reads were obtained, NH229, NH231, NH265, and NH286 were 119.6 Gb,
140.1 Gb, 40.0 Gb, and 34.6 Gb, respectively.

SNP calling
Raw Illumina short reads from gDNA samples were trimmed using
Trimmomatic (version 0.36)68 with parameters ‘ILLUMINACLIP:2:30:10 MIN-
LEN:75 LEADING:20 TRAILING:20 SLIDINGWINDOW:5:20’. Clean reads were
mapped to the Nipponbare16 reference genome (MSUv7) using Burrows-
Wheeler Aligner (BWA, version 0.7.17–r1188)69 with default parameters.
SAMtools (mpileup, version 1.8)70 was used to generate BCF files. BCFtools
(version 1.8)70 call was used for SNP calling and filtering (DP < 3 and quality
score < 30). SNP calls were further filtered based on the following criteria: (1)
integrity ≥ 80% and minor allele frequencies (MAFs) ≥ 0.05; (2) consensus
quality ≥ 40; (3) site is diallelic and (4) missing rate < 10%.

Phylogenetic tree and population structure
The maximum likelihood phylogenetic tree based on SNPs was built using
FastTree (version 2.1.11)71 with the Jones-Taylor-Thornton CAT model and
20 rate categories. iTOL (version 6.3.1)72 was used for a tree visualization
(Fig. 1b. The neighbor-joining tree based on SVs (See “SV identification and
validation” in Methods), while the PAVs of genes (present and absent non-
redundant genes, See “Super pan-genome graph and its annotation” in
Methods) were conducted in MEGA (version 7.0.21)73 with default
parameters.
Maximum likelihood clustering analysis was performed on SNPs of the

251 accessions in ADMIXTURE (version 1.3.0)74 using default parameters
with K values ranging from 4 to 15.

De novo genome assembly and evaluation
To get high-quality data, the Nanopore raw reads with quality less than 7
were filtered. The remaining reads were assembled using WTDBG (version
2.5, parameters: -p 0 -k 15 -AS 2 -s 0.05 -L 10000 -l 8192 -e 3).15 Contigs
were polished once with Nanopore clean reads using wtpoa-cns (version
2.5)15 and each polished assembly was further corrected twice with whole
genome sequencing 2 × 150-bp pair-end reads using Pilon.75 To further
improve single base accuracy, NGS short reads were aligned to their
assembly with BWA,69 and the mutation sites in each accession assembly
were identified with FreeBayes (version 1.3.1)76 pipeline. Then, variants
were filtered with parameters ‘QUAL > 20 & DP > 10 & AO > 10’ and the
homozygous sites were replaced.
To remove false duplications from assemblies, Purge Haplotigs (version

1.0.3)77 was applied to each assembly with low, middle, and high read
depth cutoff tuned artificially. In each 100 kb window, the Nanopore reads
depth was plotted against the number of SNPs using a custom R (version
3.1.1) script to detect the redundant sequences (Additional file 4 at https://
zenodo.org/record/6602280). The plots are with only one independent
cluster, indicating that few, if any, false duplications were present.
To remove various contaminating DNA from archaea, bacteria, viruses,

fungi, and other metazoans, the sequences of the protein-coding
annotations (see “Gene annotation and expression” in Methods) were
aligned to the NCBI Nr database (downloaded on 4 June 2021) with
DIAMOND (version 0.9.24)78 using parameters ‘-evalue 1e-5’. Contigs in
which more than 50% of the sequences of protein-coding annotations
aligned to non-viridiplantae organisms were considered contaminants and
filtered out. The average GC content (percentage of G and C bases in 10 kb
windows) and Nanopore reads depth were used to validate the filtration
effect, while the results were displayed using the R package ggplot2
(version 3.3.3)79 (Additional file 5 at https://zenodo.org/record/6602280).
There was only one independent cluster in these diagrams, suggesting
minimal contamination in our assemblies.
Completeness of the assemblies was evaluated through alignment to

the Nipponbare16 reference genome by MUMmer (version 4.0.0, beta)80

with parameters ‘-mum -t 10 -c 90 -l 40’. Syntenic dot plots were visualized
with the R package (https://github.com/shingocat/syntenyPlotByR) (Addi-
tional file 2 at https://zenodo.org/record/6602280), and the collinearity
diagram demonstrates the completeness of the assemblies. Hi-C paired
reads from the NH229, NH231, NH265, and NH286 genomes were mapped
to their assembled contigs using Juicer (version 1.6).81 Contigs were
scaffolded using 3D-DNA (version 180922)82 to generate draft chromo-
somes based on alignments with MAPQ score > 20. The draft
chromosomes were further manually modified to generate Hi-C heatmaps
using Juicerbox (version 1.11.08).83

BUSCO (version 9)17 evaluation of each assembly showed an average of
96.4% ± 1.6% of the 1,440 single copy Embryophyta genes (Supplementary
information, Table S1b), and the BUSCO of Nipponbare16 genome was
97.6% using the same way. Continuity was measured by N50 and NG50
contig size. N50 was calculated by Perl script, and NG50 was calculated
with QUAST84 with Nipponbare genome as reference (Supplementary
information, Table S1b). Moreover, the average completeness of each
assembly, estimated by 2 × 150 bp pair-end reads of each assembly, was
97.7% ± 0.9% (Supplementary information, Table S1b), which highlights
the completeness of the 251 assemblies.

Gene annotation and expression
A strategy combining ab initio gene prediction, homology-based gene
prediction, and RNA-seq was used for gene annotation. For each assembly,
repetitive sequences were first masked with RepeatMasker
(www.repeatmasker.org, version open-4.0.7) based on RepBase (Edition-
20170127, parameter: -species rice). Augustus (version 3.0.3),85 SNAP
(version 2006–07–28),86 and Fgenesh (http://www.softberry.com/) with
their default parameters were performed on the repeat-masked genome
for annotation with only sequence information. Homologous protein
sequences from Arabidopsis thaliana (447_Araport11), Brachypodium
distachyon (314_verison 3.1), Os (323_version 7.0), and Sorghum bicolor
(454_version 3.1.1) were downloaded from Phytozome (https://
phytozome-next.jgi.doe.gov/), and all of these sequences were mapped
to each assembly with tBLASTN (version 2.9.0+)87 with an E-value cutoff of
1e−5. Genewise (version 2.4.2, parameter: -gff -quiet -silent -sum)88 was
used to refine the alignment. Raw RNA-seq reads from leaf tissue of 249
accessions (except CW01 and CW16) were trimmed by Trimmomatic68 with
parameters ‘ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 LEADING:3 TRAILING:3
SLIDINGWINDOW:4:15 MINLEN:36’. RNA-seq reads were aligned to the
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corresponding genomes with HISAT2 (version 2.1.0, default parameter)89

and assembled into transcripts with StringTie2 (version 2.1.4, default
parameter).90 Open reading frames (ORFs) were predicted using TransDe-
coder (version 5.5.0).91 For CW01 and CW16, which lacked corresponding
RNA-seq data, we used RNA-seq data from CW02 and CW15 as
transcriptomic evidence. All results were integrated into consensus gene
models using EvidenceModeler (version 1.1.1).92

Representative proteins (translated from the longest isoforms) of genes
from 251 accessions, together with Nipponbare,16 R498,93 Amborella
trichopoda (291_V1.0), and Brachypodium distachyon (314_V3.1) were
clustered into orthogroups (OGs) based on sequence similarity using
OrthoFinder (version 2.2.6).94 Nipponbare and R498 are typically used as
the reference genomes for Osj and Osi in rice functional research. Both A.
trichopoda95 and B. distachyon were used as outgroups in clustering genes
by OrthoFinder.94 A. trichopoda did not experience whole-genome
duplication and B. distachyon was a model plant for Poaceae Barnhart
plant. Proteins of A. trichopoda and B. distachyon were downloaded from
Phytozome.
To verify the PAVs of OGs (the PAVs across 251 accessions to the

genomes absent of the OGs), we recovered the genes in OGs across the
251 rice accessions and mapped to each genome following the methods
of a recent study:96 (1) A preliminary gene sets with complete gene
structure was obtained. We aligned the coding sequence of genes in OGs
with PAVs across 251 accessions to the genomes absent of the OGs using
GMAP (version 2017–11–15).97 Alignments were filtered to have ≥ 90%
coverage and ≥ 90% identity (parameters ‘-min-trimmed-coverage=0.9
-min-identity=0.9’, version 2017–12–15); (2) The preliminary gene sets
were filtered to remove pseudogenes identified using the PseudoPipe98

program, which was a homology-based computational pipeline, includes
two steps: (i) using protein sequences to find pseudogenes in repeat-
masked intergenic regions by tBLASTN;87 and (ii) realignment of
candidates to corresponding parent(s) by FASTA99 to validate and classify
pseudogenes. The preliminary genes with coverage > 0.7, identity > 0.4
and E-value < 1e−10 were considered as pseudogenes and were filtered
out. Each genome recovered 1288 ± 89 (3.68% ± 0.25%) confidence genes;
(3) The authentic gene set was then evaluated with BLASTP87 and
transcriptomic data. The protein sequences of the authentic genes for the
OGs were aligned with the present protein sequences of corresponding
OGs using BLASTP,87 and the sequence with coverage > 0.9 and identity
> 0.9 and E-value < 1e−10 were considered high-confidence genes and
were kept. Then the high-confidence genes with RNA-seq coverage > 0.5
were considered final target genes, and each genome recovered 293 ± 45
(0.84% ± 0.13%) genes with high confidence and transcriptomic evidence;
(4) This gene set was merged with the original gene annotation result by
EvidenceModeler92 to produce the final gene annotation for each
assembly (Supplementary information, Table S1c). We also updated the
PAV matrix based on the updated annotations. After validation, OGs were
called non-redundant genes in the following analysis.
To assess the completeness of the genome annotations, the number of

the identical genes in 9311 (NH231), IR64 (NH236), and N22 (NH241) from
Qin et al.11 and our study was compared. More than 99% of the genes are
identical. The detailed processes are as follows. First, we compared the
sequences assembled in this study and reported by Qin et al.11 using
MUMmer80 (parameters: NUCmer -c 90 -l 40). The alignment blocks were
filtered with one-to-one alignment mode (-1). The filtered alignment
results were then used to calculate the unmatched sequence by BEDTools
(version 2.29.1)100 complement command, and based on the annotation of
each genome, the command BEDTools intersect100 was applied to
calculate the number of genes that were wrapped in the sequences on
the alignment.
Gene expression levels (fragments per kb of exon per million mapped

fragments (FPKM)) were calculated from the HISAT289 alignment results
using Cufflinks101 with default parameters mapping to each corresponding
assembly.

Repeat sequence annotation
Repeat sequences of the 251 rice assemblies were annotated by Extensive
de novo TE Annotator (EDTA, version 1.9.6)18 composed of eight published
programs. More specifically, LTR_Finder (version 1.07),102 LTRharvest
(version 1.5.10)103 and LTR_retriever (version 2.9.0)104 were incorporated
in this package to identify LTR retrotransposons. Generic Repeat Finder
(version 1.0)105 and TIR-Learner (version 1.23)106 were included to identify
TIR transposons; HelitronScanner (version 1.0)107 identifies Helitron
transposons. RepeatModeler was used to identify TEs (such as SINEs and

LINEs) missed by the other structure-based programs, and RepeatMasker
was used to annotate fragmented TEs based on homology to structurally
annotated TEs. The curated TE library (rice 6.9.5.liban) from the EDTA18

package was used to annotate whole-genome TEs in the 251 rice
assemblies with parameters ‘-overwrite 1 -sensitive 1 -anno 1’ (Supple-
mentary information, Table S1d).

Super pan-genome graph and its annotation
Minigraph (version 0.15-r426)108 with option ‘-xggs’ was used to integrate
the 251 genome assemblies and Nipponbare16 into a multi-assembly
graph. We separately aligned each assembly back to the pan-genome
graph to obtain allele information for each bubble (a locus with variants in
the pan-genome graph), including the path, strand, contig start, and contig
end through the bubble in each assembly (alignment parameters:
minigraph -xasm -call). The approximate locations of bubbles uncalled
by minigraph108 were inferred from the nearest two collineated bubbles.
Based on the allele information from each assembly for each bubble, we
obtained the collineation location of all assemblies.
To integrate gene annotation with the pan-genome graph, the

bubbles, overlapped with the genes on a corresponding assembly were
extracted using the command BEDTools intersect.100 The pan-genome
location and allele information (contig name, contig start and contig end
through the bubble) of these bubbles were then extracted. Bubbles that
were not collineated with other bubbles on both the corresponding
assembly or the pan-genome graph were filtered out. The location of
each gene on the pan-genome graph was inferred based on the location
of overlapping bubbles. Results are shown in the database (http://
www.ricesuperpir.com/).
To select the non-redundant novel sequences of each sub-population,

the redundant sequences of sequence segments in no-reference paths of
each sub-population were removed using a cutoff of 90% identity and 90%
coverage by minimap2 (version 2.17-r974-dirty)33 with the command
‘minimap2 -ct 4 -dual=no -D’. Non-redundant sequences were further
assessed with minimap233 using Nipponbare16 as the reference (para-
meters: -ct 4 -dual=no -D) at a cutoff of 90% identity and 90% coverage.
The remaining sequences formed the non-redundant novel (non-
reference) sequences of each sub-population. The annotations of each
non-redundant novel sequence were extracted from the corresponding
assembly annotation.
Average numbers of non-redundant genes that were different between

any two accessions were evaluated by calculating the average of numbers
of gene with PAVs between two randomly selected accessions. The
average ratio of numbers of gene with PAVs between two randomly
selected accessions and the average gene numbers between them were
also calculated.
The presence and absence of several known genes (Hd1,109 OsSh1,20

Pit,110 and OsLCT121,111) were validated by PCR. Primers are shown in
Supplementary information, Table S6a.
We defined the non-redundant genes present in ≥ 95% of 251

accessions as core non-redundant genes and those present in < 95% as
dispensable non-redundant genes. Distribution of Oryza genes were
inferred by the present pattern of genes in different accessions. All non-
redundant genes from our pan-genome were grouped into 4 taxonomic
levels (I: Genes present in both Or and Ob, II: Genes present in both Or and
Os except genes of level I, III: Genes present in both Og and Ob except
genes of level I, IV: Genes present in both Osi and Osj except genes of level
I and level II). However, some genes could not be clearly determined, e.g.,
genes only present in Osi and Og (likely due to admixture).
The total number of non-redundant genes present in a population was

estimated based on simulations. We evaluated how the total number of
non-redundant genes changed when new accessions were included
(Supplementary information, Fig. S2b, c). To achieve this, we randomized
the order of rice accessions 500 times. Each time, we counted the
observed number of non-redundant genes when a new accession was
added (according to the randomized order). The results of 500 times
simulation were used for the plot using MATLAB (R2016a). We utilized a
different set of genes in this analysis: (1) all genes, non-private genes
(non-private genes are defined as non-redundant genes present in at
least two accessions) in 230 Asian accessions, and (2) all genes and non-
private genes (non-private genes are defined as non-redundant genes
present in at least two accessions) in 21 African accessions. This analysis
estimates the proportion of genes that could be captured by accessions
used in this study, e.g., the total number of Asian rice genes approached
a plateau.
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Variation graph and its application
To facilitate exploration of the super pan-genome in an efficient way, we
used 159,491 DELs and INSs from the pan-SV dataset (against Nippon-
bare16 reference genome; See “SV identification and validation” of
Methods for detailed information). The high-quality Nipponbare16 and
these INSs/DELs were used to construct the graph-based genome by vg
toolkit,112 The short reads of 605 Os accessions (PRJCA000322)43 were
filtered using Trimmomatic68 with the parameters ‘MINLEN:50 LEADING:20
TRAILING:20’. The filtered short reads of each accession were mapped to
the variation graph to call variants using vg toolkit112 with parameters
‘map; pack -Q 20; call’.

Whole-genome alignment
Whole-genome alignment of all assemblies was performed using Cactus
(version 1.3.0).23 To build the guide tree for Cactus alignment, whole-
genome SNPs of 256 rice accessions (including 251 sequenced accessions
in the study, NIP,16 R498,93 one O. glumaepatula accession, one O.
meridionalis accession, and one O. punctata accession) were used to
generate a putative phylogenetic tree following a standard protocol in
FastTree.71 Information about the genomes of R498, O. glumaepatula, O.
meridionalis and O. punctata accessions are in Supplementary information,
Table S6b. To provide outgroup information for sub-problems near the
root, the genomes of O. glumaepatula, O. meridionalis, and O. punctata
were used in phylogenetic tree construction but were removed from the
final alignment. To ensure that a high-quality assembly was always
available as an out-group, NIP16 and R49893 were marked as preferred
outgroups. Repetitive sequences were softmasked by RepeatMasker based
on RepBase (Edition-20170127). We then ran Cactus23 for each sub-
tree with 20–23 accessions on a single node and obtained the final
alignment in a step-by-step manner. Cactus23 alignment-related results,
pan-genome variations and genome annotations are shown on http://
www.ricesuperpir.com/.

Database construction
The Rice Super Pan-genome Information Resource Database (RiceSuperPIRdb)
was constructed to display and manage the rice pan-genome. The basic
architecture of RiceSuperPIRdb consists of an Apache HTTP web server (http://
www.apache.org/), MySQL (http://www.mysql.com/) data management sys-
tem, SpringCloud framework (https://flask.palletsprojects.com/en/1.1.x/), and
a popular front-end component library, Bootstrap (http://getbootstrap.com/).
The rice genome assemblies, annotations, pan-genome variations, TE
annotations, and Cactus23 alignment-related results were displayed in
JBrowse113 and were obtained by loading our assembly results into our
genome browser by copying the hub link (http://www.ricesuperpir.com/) into
the PAN BROWSER page. A BLAST tool was also constructed using
SequenceServer114 and BLAST.87 There are no restrictions on use. Other
related data to the 251 rice accessions used in this study can also be viewed
and accessed at http://www.ricesuperpir.com/.

The analysis of pan-NLRome
Genes containing the NB-ARC domain were identified by InterProScan115

with E-value < 1e−4. The results of NLR-Parser (version 1.0)116 and
InterProScan115 were cross-verified and supplemented to determine the
LRR domain. Genes containing the NB-ARC domain and any one of the
three motifs in 9, 11, and 19,116 which are always common on rice were
identified as NLRs.117

Then we verified the results of NLRs with two approaches to ensure the
accuracy of subsequent analysis. First, we applied the NLR identification
method to the Nipponbare reference genome to estimate the feasibility of
NLR capturing. All currently known and cloned NLRs from Nipponbare
were obtained, proving that the NLR identification method is feasible
(Supplementary information, Table S2d). We also compared the number of
NLRs in each accession with the published the number of NLRs found in
the Nipponbare (including 499 NLRs) and the Tetep genomes117 (including
455 NLRs). We found that the number of NLRs in these genomes were
similar, suggesting that the NLR annotation results are reliable (Supple-
mentary information, Table S2a).
The identification of integrated domains was based on the other

domains obtained from InterProScan.115 We counted the frequency of
integrated NLR domain within each sub-population (FDR < 0.01; Wilcoxon
tests, Supplementary information, Table S2b), and focused on domains
with a significant difference in frequency distribution (Supplementary
information, Fig. S3a). Then, in order to determine how NLRs were

regulated, the expression levels of NLRs under standard growth conditions
were carried out.
To determine the characteristic information of NLRs in the pan-NLRome,

non-redundant NLRs and their evolutionary relationship were obtained
from the non-redundant genes of the pan-genome. In each sub-
population, the core non-redundant NLRs were defined as those present
more than 95% of all the genomes, whereas the rest of genes were defined
as dispensable.
Most of the identified functional NLRs did not exist alone, resulting in

the introduction of NLR pairs and clusters.7,117 If there were fewer than two
non-NLR genes between any two NLRs, these two genes were defined as
“approaching”. Three or more approaching NLRs formed a cluster, whereas
two approaching NLRs were considered as a pair. The remaining NLRs
(without approaching NLRs) were labeled singleton NLRs.117

Combined with the classification results of the non-redundant genes,
the internal homogeneity and heterogeneity of NLR pairs and clusters
were further elucidated. If all genes in each pair or cluster belonged to the
same non-redundant genes, this pair or cluster was considered as
homogeneous; if there were two or more non-redundant genes, the pair
or cluster was regarded as heterogeneous.7 The orientation of NLRs within
a pair was also analyzed. Two paired NLRs in the same direction were
classified as T-H. The H-H orientation assumes the two promoters reside
near each other, whereas the T-T orientation assumes they are on the outer
ends of the region.117

Plots were generated with R (version 3.6.0) packages with ggplot2,79

ggpubr (version 0.4.0),118 and ggpmisc (version 0.4.0).119

Collinearity of NLR singletons, pairs and clusters
To get the genomic collinearity of NLR singletons, pairs, and clusters in all
assemblies, the super pan-genome graph by minigraph108 was employed,
which contained the collinearity of all assemblies. We used the Nipponbare
genome16 as a reference (i.e., the pan-genome location) to show the
collinearity of all assemblies. First, bubbles overlapped with the NLR
singletons, pairs, and clusters in a corresponding assembly were extracted
using the command BEDTools intersect.100 Then the pan-genome location
and allele information (contig name, contig start, and contig end through
the bubble) of these bubbles were extracted. Bubbles that were not
collineated with other bubbles on both the corresponding assembly and
the pan-genome graph were filtered out. The location of NLR singletons,
pairs, and clusters on the pan-genome graph was inferred based on the
location of overlapping bubbles. Finally, once the pan-genome locations of
NLR singletons, pairs, and clusters of different assemblies were overlapped
(identified using the command ‘BEDTools cluster’), they were labeled on
the same locus in the pan-genome graph. If two NLR singletons fell in the
same bubble, only one was kept for comparison across all accessions to
identify the locus; the remaining singleton was put on a new locus 1 bp
away from the original locus. If the locus only contained a singleton NLR, a
single pair, or a single cluster gene, it was excluded from further analysis.
The collinearity accuracy of NLR loci shown in the main text was

confirmed by aligning the NLR loci sequence of each assembly with each
other using MUMmer80 (parameters: NUCmer -c 90 -l 40). The alignment
blocks were filtered using a delta-filter with one-to-one alignment mode
(-1). The collinearity of these NLR loci on the O. longistaminata120 genome
was obtained by aligning the NLR loci sequence with the O. long-
istaminata120 genome using MUMmer.80 The R packages RIdeogram
(version 0.2.2)121 and genoPlotR (version 0.8.11)122 were used for
collinear plot.

SV identification and validation
To call SVs (DELs, INSs, INVs, TRAs, and DUPs), high-quality Nanopore reads
of the 251 accessions were aligned to the Nipponbare16 genome using
minimap233 and NGMLR (version 0.2.7).34 SVs were called using Sniffles
(version 1.0.11, parameters: -l 50 –genotype).34 SVs were removed if they
(1) were larger than 1Mb or smaller than 50 bp; (2) fell in the gap region of
the reference genome; (3) showed a “0/0” genotype; (4) were labeled
“IMPRECISE” by sniffles or (5) had a read depth < 30. SURVIVOR (version
1.0.7)123 (parameters: 1000 2 1–1–1 50) was used to merge SVs called by
both NGMLR34 and minimap233 in each accession (Supplementary
information, Fig. S4a and Table S3b).
To quantitatively estimate the accuracy of SV calling, we manually

examined 500 randomly selected SVs by visualizing the corresponding
long-read alignment through an Integrative Genomics Viewer (IGV, version
2.9.2)124 Browser. The SV calling accuracy was estimated to be 95.8%
(Supplementary information, Table S3c). Large SVs were manually
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validated using a chromatin interaction heatmap at 5 kb resolution based
on Hi-C sequencing data of four accessions by Juicer81 (Supplementary
information, Table S3c). For instance, the Hi-C reads from NH229, NH231,
NH265, and NH286 were mapped to the Nipponbare16 reference genome.
The reads with a MAPQ quality score < 30 were discarded, and the Hi-C
contact heatmaps were visualized using Juicerbox.83 In addition, SVs within
genes including RFT1,125 HGW,37 OsNaPRT138 were validated by PCR
(Supplementary information, Fig. S5n and Table S6a). Primers are shown in
Supplementary information, Table S6a.
SVs relative to Nipponbare genome were used for analyses of SV

hotspots, GWAS, and ADMIXTURE.

SV characteristic analysis
The total number of SVs present in a population was estimated based on
simulations. We evaluated how the total number of SVs changed when a
new accession was included (Supplementary information, Fig. S4f, g). To
achieve this, we randomized the order of rice accessions 500 times. Each
time, we counted the observed number of SVs when a new accession was
added (according to the randomized order). The results of 500 times
simulation were used for the plot using MATLAB (R2016a). We utilized a
different set of SVs in this analysis: (1) all SVs, non-private SVs (non-private
SVs are defined as SVs present in at least two accessions) in 230 Asian
accessions, and (2) all SVs and non-private SVs in 21 African accessions.
This analysis estimates the proportion of SVs that could be captured by
accessions used in this study, e.g., the total number of Asian rice SVs
approached a plateau.

SV genomic feature annotation
Throughout the manuscript, we describe various relationships between
SVs and other genomic features such as genes and intergenic regions.
Generally, we annotated the pan-SV sets with genomic features using
Vcfanno (version 0.3.2)126 with default parameters. Vcfanno126 annotated
SVs by finding their intersection (overlap) with genomic feature intervals.
Accordingly, some annotations reported in the Nipponbare genome16

could be directly interpreted from Vcfanno,126 including gene and
intergenic region (Supplementary information, Fig. S4k). To detect genes
contained by SVs, we first checked if the gene start and end positions
intersected a given SV. If that SV intersected both the start and end of a
gene, it contains that gene.127

Identification of SV hotspot regions
Pan-SV sets of the Osi, Osj, Or, Og, and Ob sub-populations were
respectively merged by SURVIVOR123 (parameters: 1000 1 1–1–1 50). We
calculated the distribution of SV breakpoints for each 200 kb window (with
a 100 kb step size) along each chromosome for each sub-population.11

Then, all 200 kb windows were ranked in descending order according to
the numbers of SVs within the window, the top 10% of all windows with
the highest frequency of SV breakpoints were defined as SV hotspots. All of
the continuous hotspot windows were merged as hotspot regions11

(Supplementary information, Fig. S4j).
To estimate the genomic background of SV content, we simulated SVs

with their sizes matched to the real variants 100 times in five sub-
populations. In each simulation, 76,898 SVs, 45,736 SVs, 122,444 SVs,
34,210 SVs and 42,575 SVs respectively from Osi, Osj, Or, Og, and Ob sub-
populations pan-SV set were randomly generated against the Nippon-
bare16 genome. The SV number difference of each window between
variants and simulated variants was calculated with the Wilcoxon test, the
P-values of Osi, Osj, Or, Og, and Ob sub-populations were 1.7e−180, 8.80e
−219, 2.1e−40, 2e−43 and 1.7e−31, respectively.

GWAS
GWAS was conducted using two different datasets. On one hand, the SNPs,
insertions, and deletions from our dataset were filtered by VCFtools
(version 0.1.13)128 with missing rate < 0.1, allele frequency ≥ 0.05, and no
multiple alleles. Phenotypes in our dataset comprised grain length and
1000-grain weight surveyed at the harvest stage in Lingshui of Hainan
Province, China at 2020. Principal component analysis (PCA) was
conducted by plink2 (version 2.00a3LM)129 (parameters: -allow-extra-chr
-pca 10). The first five principal components and standardized matrix of
kinship (GEMMA,130 version 0.98.1 -gk 2) were used as covariates. GWAS
was performed using a mixed linear model in genome-wide efficient
mixed model association software (GEMMA, parameters: -lmm 4 -k) with

the O. sativa population. The threshold for GWAS was calculated using a
Genetic Type I error calculator (GEC)131 at α= 0.05 level.
On the other hand, GWAS was also conducted using SVs inferred by vg

toolkit112 using the previously reported dataset43 (See “Variation graph and
its application” in Methods). SNPs and phenotypes (grain yield) were
acquired from the same source (Supplementary information, Table S4).
Both markers were also filtered by VCFtools128 with a missing rate < 0.1,
allele frequency ≥ 0.05, and no multiple alleles. GWAS was conducted in
the same way as the current dataset described here.

eQTL analysis
Clean RNA-seq reads were mapped to the Nipponbare genome16 with
TopHat2 (version 2.0.12).132 Based on the alignments, raw read counts
were derived for each gene and normalized to FPKM133 using Cufflinks101

with default parameters. For eQTL analysis, expression data from 202 Os
accessions were used. Genes with a mean FPKM value larger than 0.1 were
used in the downstream analysis and 23,736 genes met this condition. To
obtain a normal distribution of expression values for each gene, FPKM
values of each gene were further normalized using the quantile-quantile
normalization (qqnorm) function in R (version 3.1.2). The top 20 hidden
and confounding factors in the expression data, the normal quantile
transformed expression values were inferred using the probabilistic
estimation of expression residuals (PEER) method.134 There were 39,027
SVs with allele frequency ≥ 0.05 and max-missing ≤ 0.1 filtered by
VCFtools128 for downstream analysis. PCA was conducted to infer
population structure (plink2 -allow-extra-chr -pca 10). Both the first 20
factors in PEER results and the first five principal components in PCA
analysis were used as covariates. The linear regression model of the
MatrixEQTL package (version 2.2)135 was used to detect associations
between SV-gene pairs. P-values corrected by the Benjamini-Hochberg
method at α= 0.05, and P= 1.29e−5 were used as the genome-wide error
threshold (Calcuated by P. adjust package (version 3.1.2)136 in R).
Linkage disequilibrium (LD) decay was measured using PopLDdecay

(version 3.41, parameters: -MaxDist 500 -MAF 0.05 -Het 0.88 -Miss 0.999).137

The stable r2 value (0.11 for deletions and insertions) was considered as the
background level of LD. Candidate eQTL blocks were selected as described
previously.138 In brief, for multiple eQTLs associated with the same gene, if
r2 between two eQTLs was larger than the stable r2, the site with a smaller
P-value would be retained. If an SV resides within the corresponding gene
or is less than 2 kb from the transcriptional start site or the end of a gene, it
was classified as an eQTL.

Domestication and differentiation
Both the relative divergence measure FST and the absolute genomic
divergence measure Dxy were estimated to identify domestication and
differentiation regions. Dxy and Per-site Weir-and-Cockerham FST were
calculated using PBScan (version 1.0)139 and VCFtools,128 each with 20 kb
sliding windows. Dxy and FST values were ranked, and windows with the
top 5% of values were selected as highly divergent regions.

Phylogenetic analysis of RPAD
The cDNA sequences of ObZNF1−ObZNF10 (from NH278) and OrZN-
F1−OrZNF8 (from DXCWR, https://www.ncbi.nlm.nih.gov/nuccore/
MF503970) (Supplementary information, Fig. S7f) were subjected to
multiple sequences alignment using CLUSTALW (version 2.1).140 Based
on the alignment results, FastTree71 was used to conduct phylogenetic
analysis (Supplementary information, Fig. S7f) and iTOL72 was used to
visualize.
To analyze the structure and evolution of proteins ObZNF1, OrZNF1,

ObZNF10, and OrZNF8, the protein sequences from NH278 and DXCWR60

(https://www.ncbi.nlm.nih.gov/nuccore/MF503970) were used for align-
ment using CLUSTALW (version 2.1).140

Functional genomic analyses
To validate the function of the candidate genes, QTL-spd6,42 and QTL-
qTGW1.2a,39 NIL-qTGW1.2aNIP and NIL-spd6Or were developed. An NIL that
carries the qTGW1.2a Hap.1 allele from NIP was constructed by back-
crossing with the indica variety 9311. To develop NIL-spd6Or, Zhonghua 11
(ZH11) was used as the recurrent parent and CSSL58 (in Os. cv Teqing
background with the spd6Or introgression) was used as donor parent, then
the advanced backcross line showing a similar CSSL5842 genotype with
short grain was regarded as NIL-spd6Or (in ZH11 background).
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To validate the expression levels of LOC_Os01g57250 in 9311, NIL-
qTGW1.2aNIP, and NIP, RNA isolation and qPCR were conducted. Total RNA
was extracted from seedlings of the lines using TRIzol reagent (Invitrogen),
then the RNA was reversely transcribed to cDNA using RT SuperMix for
qPCR (Vazyme) following the manufacturer’s instructions. qPCR was
performed using SYBR® qPCR Master Mix (Vazyme). Three independent
RNA samples for each line were used as biological replicates. Primers for
qPCR are listed in Supplementary information, Table S6a.
To generate the pCAMBIA1301-35SN-spd6 over-expression construct,

the cDNA fragment of spd6 (LOC_Os06g04820)42 was amplified from NIP
and cloned into pCAMBIA1301-35SN. Then, the over-expression vector of
spd6 (LOC_Os06g04820) was transferred into a NIL-spd6Or line, which was
developed by backcrossing with the japonica variety ZH11. The genomic
fragments of nine zinc finger genes (ObZNF1–ObZNF9) were acquired from
NH278 or NH283 by PCR amplification (Supplementary information,
Table S6a), and inserted into the binary vector pCAMBIA1300 with a
homologous recombination method to generate complementary vectors
(ObZNF1-CP to ObZNF9-CP). We introduced these vector plasmids into
Agrobacterium tumefaciens strain EHA105 using a freeze-thaw method.
Complementary vectors of nine zinc finger genes were transferred into
GIL28. Primers for vector construction are provided in Supplementary
information, Table S6a.
A phenotypic investigation of plant architecture of transgenic lines of

ObZNF1–ObZNF9 was performed during the tillering stage using 10
individual plants from positive transgenic lines of the nine zinc finger
genes. Besides, agronomic traits including grain length and 1,000-grain
weight for transgenic lines, NIL lines of spd6,42 and NIL lines of qTGW1.2a39

were surveyed at the rice harvest stage.
Nanopore sequencing and Sanger sequencing were used to validate the

genotype of NIL-spd6Or 42. The primers used for PCR were listed in
Supplementary information, Table S6a. The genomic DNA sample for
Nanopore and NGS sequencing was extracted from leaves of a three-
month-old NIL-spd6Or line. The subsequent procedures were conducted as
described in “Whole-genome sequencing with nanopore long reads”,
“Whole-genome sequencing with illumina short reads” and “De novo
genome assembly and evaluation” in Methods.

Haplotype analysis
We analyzed the haplotype pattern of several known submergence tolerance-
related genes in five sub-populations. The sequences including SNORKEL1
(AB510478.1),49 SNORKEL2 (AB510479.1)49 and Sub1A (DQ011598.1)52 were
downloaded from NCBI (https://www.ncbi.nlm.nih.gov/nuccore/). The
sequences including Sub1B (LOC_Os09g11480),52 Sub1C (LOC_Os09g11460),52

DEC1 (LOC_Os12g42250),51 ACE1 (LOC_Os03g22510)51 and ACE1-LIKE1
(LOC_Os07g47450)51 were downloaded from the MSU Rice Genome Annota-
tion Project Database (http://rice.uga.edu/). Then, these gene sequences were
captured in each accession of five sub-populations. Since the absence of
SNORKEL1, SNORKEL2, and Sub1A in Nipponbare genome sequences,16 the O.
rufipogon (IRGC106162)141 and NH231 with scaffold sequences were used as
reference genomes. The sequences of SNORKEL1 and SNORKEL2 were aligned
to O. rufipogon (IRGC106162) and the sequences of Sub1A were aligned to the
assemblies of NH231 with BLASTN87 to get their flanking sequences
(SAMtools70 faidx). Sub1B, Sub1C, DEC1, ACE1, and ACE1-LIKE1 and the flanking
sequences (from upstream 5 kb to downstream 5 kb) were intercepted from
Nipponbare genome.16 The submergence tolerance-related genes with their
flanking sequences were aligned to the genome sequences of each accession
(BLASTN, max_target_seqs 3) to get genomic sequences of the genes in every
accession (SAMtools70 faidx). And then, the complementary DNA sequences of
the genes were aligned to their genome sequences with flanking sequences of
each accession (BLASTN, identities > 90, E-value = 1e−10). When the ratio of
alignment length to the gene length was > 0.9, the gene was identified to be
present in the accession. For the genes including SNORKEL1, SNORKEL2, Su1A,
Sub1B, Sub1C, ACE1, and ACE1-LIKE1 that were present in the accessions, the
haplotypes were distinguished based on the sense mutation in the exon
region. For gene DEC1, the haplotypes were distinguished dependent on a
7 kb DEL in 9 kb upstream of DEC1 and a 54 bp INS in exon region.
The collinearity accuracy of known submergence tolerance related

genes (SNORKEL1/2),49 Sub1A/B/C52 shown in the main text was confirmed
by aligning the gene sequences of each assembly with each other using
MUMmer (version 4.0.0, parameters: NUCmer -c 90 -l 40).80 The alignment
blocks were filtered using a delta-filter with one-to-one alignment mode
(-1). The collinearity location of these known genes on the O. long-
istaminata120 genome was obtained by aligning the SNORKEL1/2, Sub1A/B/

C sequences with the O. longistaminata120 genome using MUMmer. The R
packages genoPlotR (version 0.8.11)122 were used for collinear plot.

Quantification and statistical analysis
All details of the statistics applied are provided alongside in the figure and
corresponding legends and methods. All statistics were carried out in R
using Student's t-test or Wilcoxon rank sum and signed rank tests where
appropriate (unless otherwise indicated). For normally distributed vari-
ables, one-way analysis of variance (ANOVA) with Tukey’s test was
performed using multcomp (version 1.4–16)142 package in R. For non-
normally distributed variables, Kruskal-Wallis test with Bonferroni’s multi-
ple comparison post hoc test was performed using agricolae (version
1.3–5)143 package in R. Normal distribution was tested using the function
by f.shapiro with RVAideMemoire package (version 0.9–80)144 in the R.

DATA AVAILABILITY
All data released with this study can be freely used. We are organizing phylogenomic
analyses and other analyses using the whole-genome alignment, and we encourage
researchers to contact us for collaboration. Genome sequencing data of 251
accessions in this study have been deposited in the NCBI Sequence Read Archive
(https://www.ncbi.nlm.nih.gov/sra) under BioProjects PRJNA656318 and
PRJNA692836. Genome sequencing data of NIL-spd6Or in this study have been
deposited in the NCBI Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra)
under BioProjects PRJNA764059 and PRJNA764040. All rice assemblies and
annotations in this study have been deposited at the Genome Warehouse (GWH)
(https://bigd.big.ac.cn/gwh/) under PRJCA004295. The RiceSuperPIRdb browser
(http://www.ricesuperpir.com/) integrated the super pan-genome graph, annotation
of 251 rice assemblies, alignment of whole-genome annotation of 251 rice
accessions, SVs information of 251 rice accessions and variation graph. Four Hi-C
datasets have been deposited in the NCBI Sequence Read Archive under
PRJNA693366. The RNA sequencing data used in this study have been uploaded to
NCBI SRA under accession PRJNA692672. The additional files for the diagrams are
available in https://zenodo.org/record/6602280, including population structure, GC
content and Nanopore reads depth, highly divergent regions, SNP number and
Nanopore reads depth, and collinearity of assembled genome against Nipponbare
reference genome. RepBase (Edition-20170127) was downloaded online (https://
www.girinst.org/). InterProScan5 database was downloaded online (https://
interproscan-docs.readthedocs.io). Homologous proteins were downloaded from
Phytozome (https://phytozome.jgi.doe.gov/pz/portal.html).

CODE AVAILABILITY
All data were analyzed with standard programs and packages, as detailed above.
Code is available on request.
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