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Abstract
We generalize both the notion of polynomial functions on Lie groups and the notion of 
horizontally affine maps on Carnot groups. We fix a subset S of the algebra � of left-invar-
iant vector fields on a Lie group � and we assume that S Lie generates � . We say that a 
function f ∶ 𝔾 → ℝ (or more generally a distribution on � ) is S-polynomial if for all X ∈ S 
there exists k ∈ ℕ such that the iterated derivative Xkf  is zero in the sense of distributions. 
First, we show that all S-polynomial functions (as well as distributions) are represented by 
analytic functions and, if the exponent k in the previous definition is independent on X ∈ S , 
they form a finite-dimensional vector space. Second, if � is connected and nilpotent, we 
show that S-polynomial functions are polynomial functions in the sense of Leibman. The 
same result may not be true for non-nilpotent groups. Finally, we show that in connected 
nilpotent Lie groups, being polynomial in the sense of Leibman, being a polynomial in 
exponential chart, and the vanishing of mixed derivatives of some fixed degree along direc-
tions of � are equivalent notions.
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1 Introduction

Following the terminology of Gromov, a polarized manifold is a (connected) manifold 
equipped with a choice of a subbundle of its tangent bundle, which most of the times is 
assumed Lie bracket generating and called space of horizontal directions. In subRiemannian 
geometry, in analysis, but also in group theory, there are several phenomena showing that the 
bracket generation property upgrades a “horizontal” property to one in every direction: this is 
the case, for example, of the Chow–Rashevskii Theorem, see [25], the Pansu differentiability 
Theorem [28] and from a more analytic point of view of the celebrated Hörmander Theorem 
[16]. In this paper, we consider functions on a polarized Lie group that have the property that 
are polynomials along horizontal directions.

We stress that polynomial maps between groups have been studied also from an algebraic 
point of view, see, e.g., [6, 15, 19, 24, 29, 32] and references therein.

From the point of view of Harmonic Analysis, the notion of polynomial map in the setting 
of homogeneous groups naturally emerges while studying PDEs. We point out the study of 
harmonic polynomials in the Heisenberg groups by means of the Kelvin transform in [18], and 
the generalizations discussed in [17] and [3, Sect. 18.5]. For additional references on polyno-
mials on homogeneous groups, the reader may consult [3, Chapter 20]. For some recent con-
tributions related to the study of Schrödinger operators and homogeneous Besov spaces on Lie 
groups, we refer to [4, 5], respectively. Even if our interest is mainly analytic and geometric, 
we will also highlight the connections of our results with the algebraic point of view.

Let � be a Lie group with Lie algebra � , seen as left-invariant vector fields on � . We fix a 
left-Haar measure � on � . Let S ⊆ � be a subset that is Lie bracket generating, i.e., the only 
subalgebra of � that contains S is �.

We say that a distribution f on � is S -polynomial if for all X ∈ S there exists k ∈ ℕ such 
that the iterated derivative Xkf  is zero in the sense of distributions on � . We say that a distri-
bution f is S -polynomial with degree at most k if for every X ∈ S we have that Xkf  is zero in 
the sense of distributions on � . For basic definitions and properties of distributions on Lie 
groups, we refer the reader to Sect. 2.2. The first main outcome of this paper is a regularity 
result for S-polynomial distributions on arbitrary Lie groups, see Proposition 3.11 and 3.3 for 
the proof of the following statement.

Theorem 1.1 Let � be a Lie group, let f be a distribution on � , and let S ⊆ � be a subset 
of the Lie algebra � that Lie generates � . If f is S-polynomial, then it is represented by an 
analytic function. Moreover, the vector space of S-polynomial distributions with degree at 
most k ∈ ℕ on each connected component of � is finite-dimensional.

It is natural to ask if an S-polynomial distribution on � is actually a polynomial in some 
sense. Various definitions of polynomial maps between groups have been proposed and stud-
ied in the literature, see [29] for arbitrary groups, and [6, 32] and references therein for the 
case of Abelian groups. A notion of polynomial map between arbitrary groups that showed 
to be versatile has been studied, with a special attention toward the nilpotent case, in [24], see 
Remark 3.5. In the case we deal with, i.e., the case of maps f ∶ 𝔾 → ℝ , Leibman’s definition 
can be generalized for distributions. Let us define the operator Dg acting on distributions f on 
� as follows:

Dgf ∶= f ◦Rg − f ,
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where Rg stands for the right translation by g ∈ � and f◦Rg should be properly defined, see 
(2.22). We say that a distribution f on � is polynomial à la Leibman with degree at most 
d ∈ ℕ if

We stress that our main result Theorem 1.1 helps in proving that the latter notion of being 
polynomial, which is “discrete” in spirit, in our setting is equivalent to a “differential” one. 
We say that a distribution f on � is polynomial (in the differential sense) with degree at 
most d ∈ ℕ if

For some benefit towards the understanding of the next result, we recall that, given a Lie 
algebra � , the nilpotent residual �

∞
 of � is the intersection ∩k∈ℕ�k , where � ∶= �0 ⊇ �1 ⊇ … 

is the lower central series associated to � . Notice that � ∕ �
∞

 is the biggest nilpotent quo-
tient of � . Let us denote �

∞
 the closure of the unique connected subgroup of � with Lie 

algebra �
∞

 . We call N
�
∶= � ∕ �

∞
 the maximal nilpotent Lie quotient. The following 

statement is a corollary of Theorem 1.1 and Remark 5.1, see 5.1.

Theorem 1.2 Let � be a connected Lie group. 

(1) A distribution on � is polynomial à la Leibman with degree at most d ∈ ℕ , see (1.1), if 
and only if it is polynomial (in the differential sense) with degree at most d, see (1.2).

(2) Every polynomial distribution is represented by an analytic function.
(3) The vector space of distributions that are polynomial with degree at most d ∈ ℕ is 

finite-dimensional.
(4) For every distribution f that is polynomial of degree at most d, and for every X in the d-

th element of the lower central series, we have Xf ≡ 0 . Consequently, for every analytic 
function f that is polynomial, there exists a function f̃ ∶ N

𝔾
→ ℝ that is polynomial 

such that f̃◦� = f  , where � is the projection onto the maximal nilpotent Lie quotient 
N
�
.

Thus, with the previous result jointly with Theorem 1.1, it becomes clear that a continu-
ous polynomial map f ∶ 𝔾 → ℝ à la Leibman is analytic and in particular it is S-polyno-
mial, no matter what is the choice of a Lie generating S. Instead, the converse may not be 
true in arbitrary Lie groups. The counterexample is already found in the two-dimensional 
group of the orientation-preserving affine functions of ℝ , called Aff+(ℝ) . With the classi-
cal choice of coordinates on Aff+(ℝ) one can find a Lie generating S such that an S-poly-
nomial function that is not polynomial is f (x, y) = (x + 1) log y , see (A.1).

The last part of the statement of Proposition 1.2 tells us that polynomial maps always factor 
via a nilpotent group. Hence, we shall only study polynomial maps on nilpotent Lie groups. 
When � is a connected nilpotent Lie group exp ∶ � → � is an analytic and surjective map, 
and thus one could also give another definition of “polynomial”, namely a map f ∶ 𝔾 → ℝ 
is polynomial in exponential chart if and only if f◦ exp ∶ � → ℝ is a polynomial. In case 
� is a connected and nilpotent Lie group, we show that the property of being S-polynomial 
propagates to the entire Lie algebra. Namely, we prove that a S-polynomial distribution on � 
is represented by a polynomial in exponential chart, and thus, in particular, it is �-polynomial 
of some degree k ∈ ℕ , see Remark 4.10. Our second main result now can be stated as follows, 
see Sect. 4.1 for the proof of the following statement.

(1.1)g1,… , gd+1 ∈ � ⇒ Dg1
⋯Dgd+1

f ≡ 0, in the sense of distributions on�.

(1.2)X1,… ,Xd+1 ∈ � ⇒ X1 ⋯Xd+1f ≡ 0, in the sense of distributions on�.



2066 G. Antonelli, E. Le Donne 

1 3

Theorem 1.3 Let � be a connected nilpotent Lie group, let f be a distribution on � , and let 
S be a Lie generating subset of � . If f is S-polynomial, then it is represented by a function 
that is polynomial in exponential chart.

We stress that if � is not nilpotent, being S-polynomial for a Lie generating S may not 
imply being �-polynomial, or even being polynomial in exponential chart, see (A.1) for such 
a counterexample in Aff(ℝ)+ . For non-nilpotent groups, we do not know either if being �
-polynomial implies being polynomial, or even if being �-polynomial passes to the maximal 
nilpotent Lie quotient.

With the previous main result, we can prove that on a connected nilpotent Lie group � the 
different notions of being polynomial that we discussed above are equivalent and in particular 
they are equivalent to being S-polynomial for any Lie generating S. The following statement is 
a corollary of Theorem 1.3, 1.2, and 5.3, see 5.2.

Corollary 1.4 Let � be a connected nilpotent Lie group, and let f be a distribution on � . 
Then, the following are equivalent 

(1) f is an S-polynomial distribution for some Lie generating S ⊆ �,
(2) f is an S-polynomial distribution for all S ⊆ �,
(3) f is represented by a function that is polynomial in exponential chart,
(4) f is a polynomial distribution (in the differential sense), see (1.2).
(5) f is a polynomial distribution à la Leibman, see (1.1).

A characterization of polynomial functions on stratified groups has been provided also in 
[3], and we stress that our result is stronger than this characterization in [3, Corollary 20.1.10], 
see 5.4. We also notice that a characterization of harmonic polynomials in stratified groups 
through Almgren’s frequency function has been provided in [14, Theorem 9.1].

Let us discuss the strategy of the proofs of 1.1 and 1.3. The starting idea is to prove the 
results first when f is smooth, and then, we recover the general statements for distributions by 
using convolutions with smoothing kernels. The latter strategy can be performed since smooth 
functions that are S-polynomials with degree at most k ∈ ℕ form a finite-dimensional vector 
space, see 3.11.

The idea for proving the statements when f is smooth is to somehow propagate the informa-
tion about being S-polynomial to the directions not in S. Let us give here, in a particular case, 
a hint of how we do this. Let f be smooth and polynomial with degree at most 2 with respect to 
X, Y ∈ � , and let us denote with e the identity element of � . We have the following equalities 
for t, s ∈ ℝ,

where in the first, second and third equalities we are using that f is 2-polynomial with 
respect to Y and X, respectively, and in the last equality, we are using the definition of the 

(1.3)

f (exp(tX) exp(sY)) = f (exp(tX)) + s(Yf )(exp(tX))

= f (e) + t(Xf )(e) + s
d

d � |�=0
f (exp(tX) exp(�Y) exp(−tX)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

p�

exp(tX))

= f (e) + t(Xf )(e) + s
d

d � |�=0

(
f (p�) + t(Xf )(p�)

)

= f (e) + t(Xf )(e) + s(Adexp(tX)Y)f (e) + st(Adexp(tX)YX)f (e),
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adjoint, see 2.1. In the general case, the proper generalization of the latter representation 
formula, see (3.8), allows to conclude the following statement: given � ∈ ℕ , the function f 
along the concatenation of � horizontal curves exp(t1Y1)⋯ exp(t

𝓁
Y
𝓁
) , with Y1,… , Y

�
∈ S , 

is analytic in (t1,… , t
�
) and depends only on the value of the jet of order �1 of f at the 

identity, where �1 depends only on � and the order of polynomiality of f along Y1,… , Y
�
 . 

The latter observation is enough to conclude both the fact that f is analytic and the finite-
dimensional result of 1.1. To this aim, it is important that in every polarized Lie group, 
there exists a chart, around every point p, that can be written as the concatenation of a fixed 
number (twice the dimension of the group) of flow lines, starting from p, of horizontal vec-
tor fields, see 3.10.

In the particular case in which � is nilpotent, the representation formula (1.3) gives 
an additional piece of information because Adexp(tX) is a “polynomial in t” sum of opera-
tors, see (2.1). Thus, in case � is nilpotent, one concludes, from the proper generaliza-
tion of (1.3), see 4.4, the following statement: given � ∈ ℕ , the function f along the 
concatenation of � horizontal curves exp(t1Y1)⋯ exp(t

𝓁
Y
𝓁
) , with Y1,… , Y

�
∈ S , is a pol-

ynomial in (t1,… , t
�
) with degree at most �2 , where �2 depends only on � and the order 

of polynomiality of f along Y1,… , Y
�
 , and where the coefficients of the polynomial only 

depend on some mixed derivatives of f of bounded order at the identity.
In order to prove 1.3, one first reduces to the case when � is simply connected by 

passing to the universal cover. Then, the first idea is to lift the problem to free-nilpotent 
groups, see the proof of theorem 4.7. Free-nilpotent groups are stratified, and stratified 
Lie groups are also called Carnot groups. We then notice that it is sufficient to prove 1.3 
in the case � is a Carnot group. Now, if � is a Carnot group, we exploit that f is analytic, 
which we have previously obtained in the setting of arbitrary Lie groups, and a blow-up 
argument, which we can perform since � has a homogeneous structure, to obtain that 
each term in the homogeneous Taylor expansion of f at the identity is S′-polynomial of 
a fixed order k ∈ ℕ , where S′ ⊆ S is Lie generating, see the proof of 4.6. Now the obser-
vation above according to which every S′-polynomial of order k ∈ ℕ is a polynomial of 
bounded degree along exp(t1Y1)⋯ exp(t

𝓁
Y
𝓁
) allows us to conclude that every S′-polyno-

mial of order k ∈ ℕ has a polynomial growth order of bounded degree at infinity: this 
is done by using 4.5 according to which we can bound below, up to a constant, the dis-
tance of a point p = exp(t1Y1)⋯ exp(t

𝓁
Y
𝓁
) from the identity with |t1| +⋯ + |t

𝓁
| . Thus, 

the homogeneous Taylor expansion of f at the identity cannot have terms of arbitrarily 
large order, and then, f is a polynomial, concluding the proof.

Let us finally discuss our initial motivation for studying such a problem. If � is a 
Carnot group of step s with stratification � = V1 ⊕⋯⊕ Vs , we take S = V1 and we take 
a function f such that for every X ∈ V1 we have X2f ≡ 0 , we recover the notion of hori-
zontally affine maps on a Carnot group, which has recently been introduced and studied 
in [21]. The main result of [21], i.e., [21, Theorem 1.1], is a complete characterization 
of horizontally affine maps on step-2 Carnot groups. Our main result 1.3 can be seen as 
a broad generalization of the part of the statement in [21, Theorem  1.1] according to 
which every horizontally affine map on a step-2 Carnot group is ultimately polynomial 
in exponential chart. Indeed, our 1.3 holds for arbitrary connected nilpotent Lie groups, 
an arbitrary degree of polynomiality, and even if we ask the polynomial property with 
respect to a finite set S that Lie generates, which is not necessarily a vector subspace of 
�.

The interest toward horizontally affine maps on Carnot groups is motivated by the 
fact that they are linked to precisely monotone sets, which have been first introduced 
and studied in [7, 8], in order to show that the first Heisenberg group ℍ1 with the 
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subRiemannian distance does not biLipschitz embed into L1(ℝ,L1
) . A precisely 

monotone set E in a Carnot group � is a subset of � such that E and the complement Ec 
are h-convex, see [30, Definition 3.1]. A set E is h-convex in � if whenever a, b ∈ E and 
there exists � an integral curve of a horizontal left-invariant vector field with extrema 
a, b, then � is contained in E. It is simple to observe, from the very definition, that the 
sublevel sets of a horizontally affine map on a Carnot group are precisely monotone sets.

The problem of classifying precisely monotone sets is rather difficult already in 
the easiest Carnot groups. The precisely monotone sets have been completely classi-
fied in the Heisenberg groups ℍn , see [7, Theorem 4.3], and [27, Proposition 65], and 
in ℍ1

×ℝ , see [26, Theorem  1.2]. In all the latter three cases, one can prove that if 
E ∉ {�,�} is precisely monotone, then �E is a hyperplane in exponential chart and 
Int(E) and E are one of the open, respectively, closed, half-spaces bounded by �E . On 
the contrary, from the results in [21], it follows that, already in the step-2 case, there are 
sublevel sets of horizontally affine maps, and thus precisely monotone sets, that are not 
half-spaces in exponential chart. The results in [21, Theorem 1.1] show that in arbitrary 
Carnot groups, there are plenty of horizontally affine maps that are not affine, and we 
could construct plenty of precisely monotone sets that are not half-spaces in exponential 
chart. On the other hand, since we proved in particular that in arbitrary Carnot groups 
horizontally affine maps are polynomial in exponential chart, the precisely monotone 
sets constructed as sublevel sets of horizontally affine maps result in being semialge-
braic sets in exponential chart. Also we stress that in some Carnot groups, e.g., the free 
Carnot group of step 3 and rank 2, there are precisely monotone sets whose boundary is 
not an algebraic variety in exponential chart, see [2, Theorem 6.2]. As a consequence, 
in general, it is even not true that the boundary of a precisely monotone set in a Carnot 
group is a zero-level set of a horizontally affine function.

The structure of the paper is as follows.
In Sect. 2, we recall some basic facts about Lie groups. In particular, in Sect. 2.1, we 

discuss the convolution in arbitrary Lie groups. In Sect.  2.2, we recall basic facts about 
distributions on arbitrary Lie groups. In Sect.  2.3, we fix the notation on nilpotent and 
stratified, also called Carnot, groups. In Sect. 3, we prove Theorem 1.1. In particular, in 
Sect. 3.1, we introduce the definition of S-polynomial distributions and polynomial distri-
butions in arbitrary Lie groups and we study how S-polynomiality behaves under pointwise 
convergence. In Sect. 3.2, we prove Lemma 3.8 that will allow to prove the representation 
formula in Lemma 3.9. In Sect. 3.3, we conclude the proof of 1.1. In Sect. 4, we prove 1.3. 
In particular, in Sect. 4.1, we reduce to the case of Carnot groups and then we conclude by 
exploiting Lemma 4.4, a consequence of 3.8. In Sect. 5, we give the proof of 1.2 and of 1.4. 
Finally, in 1, we discuss some examples.

2  Preliminaries

2.1  Adjoint and convolutions on Lie groups

We recall here the definition of the adjoint map on an arbitrary Lie group, mostly to fix 
notation and have formulas ready for later.
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Definition 2.1 (Conjugate and adjoint) Let � be a Lie group with identity e. Let us fix 
g ∈ � and define the conjugate function Cg ∶ � → � as Cg(h) ∶= ghg−1 , and the adjoint 
operator Adg ∶ � → � as Adg(X) ∶= ( d (Cg)e)(X).

Remark 2.2 (Formula for the adjoint) In an arbitrary Lie group �, the following formula 
holds

where the operator adX ∶ � → � is defined as adX(Y) ∶= [X, Y] , see [9, Equation (3) page 
12]. Notice that if � is nilpotent then (2.1) is a finite sum.

We recall the notion of modular function on a Lie group � . We follow closely the pres-
entation in [11, Chapter 2]. We fix a left-Haar measure � on �.

Recall that every two left-invariant Haar measures are one a constant multiple of 
the other, see [11, Theorem 2.20]. For every x ∈ � the measure defined by the equality 
�x ∶= (Rx−1 )∗� , where Rg stands for the right translation by g, is a left-invariant Haar meas-
ure. Thus, there exists Δ(x) > 0 such that �x = Δ(x)� . The function x ↦ Δ(x) is called 
modular function and it enjoys the following properties

• Δ ∶ 𝔾 → ℝ is an analytic function and 

 for every x ∈ � , see [11, Proposition 2.24 and Proposition 2.30];
• we have 

 where inv stands for the inverse function on � , see [11, Equation (2.32)].
A Lie group is unimodular if Δ ≡ 1 , i.e., if � is also a right-invariant Haar measure. Notice 
that every connected nilpotent Lie group is unimodular, due to (2.2). We introduce now the 
convolution between two functions.

Definition 2.3 (Convolution) Let � be a left-invariant Haar measure on a Lie group � . Let 
f , g ∈ L1(�,�) . The convolution of f , g ∶ 𝔾 → ℝ is defined as

The definition is well-posed since an application of Fubini theorem implies that the inte-
gral is absolutely convergent for every x ∈ � , see [11, page 50].

It is readily seen by the very 2.3 that when g is continuous with compact support, the con-
volution f ∗ g is continuous. Moreover, if g ∈ C∞

c
(�) we get that X(f ∗ g) = f ∗ Xg for every 

left-invariant vector field X. Thus if g ∈ C∞

c
(�) we conclude that f ∗ g ∈ C∞

(�) . In addition 
one has that supp(f ∗ g) ⊆ supp(f ) ⋅ supp(g) , and then if f and g have compact support, then 
also f ∗ g has compact support.

The following change of variable formula holds, taking into account [11, Equation (2.36)],

(2.1)Adexp(X)(Y) =

+∞∑

j=0

1

j!
(adX)

jY ,

(2.2)Δ(x) = detAdx,

(2.3)(inv)
∗
� = (Δ ◦ inv)�,

(2.4)f ∗ g(x) ∶= ∫
�

f (y)g(y−1x) d�(y), ∀x ∈ �.
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whenever f , g ∈ L1(�,�) and x ∈ � , since (2.3) holds. Let us introduce a variant of the 
convolution ∗ introduced before. Given f , g ∈ L1(�,�) , we define

where the first integral is absolutely convergent since f , g ∈ L1(�,�) and the sec-
ond formula holds taking (Rx)∗� = Δ(x−1)� into account. It is readily seen that, when f 
and g have compact support, then f ∗̃ g has compact support and if g ∈ C∞

c
(�) we can 

write X(f ∗̃ g) = f ∗̃Xg whenever X is a left-invariant vector field. As a consequence if 
g ∈ C∞

c
(�) then f ∗̃ g ∈ C∞

(�) . Let us notice the following fact, which comes from (2.3), 
(Rx−1 )∗� = Δ(x)� , (2.5) and (2.6)

We recall that, when the following integral makes sense for functions f , g ∶ 𝔾 → ℝ , we 
denote

We claim that the following formula holds

Indeed, taking (2.7) into account, by Fubini theorem and the fact that � is left-invariant we 
have

Notice that if we are on a unimodular Lie group, (2.9) implies the well-known formula 
⟨f ∗ h, g⟩ = ⟨h, f̌ ∗ g⟩ when the integral makes sense.

Let us end this section by computing, for every left-invariant vector field X on � , the 
action of the adjoint X⊤ of X with respect to ⟨⋅, ⋅⟩ , on the smooth functions with compact 
support. We recall that if � ∈ C∞

c
(�) , the operator X⊤ acting on � is the unique smooth 

function X⊤𝜑 such that

For every f , g ∈ C∞

c
(�) , every X ∈ � and t > 0 the following equality holds

(2.5)f ∗ g(x) ∶= ∫
�

f (y)g(y−1x) d�(y) = ∫
�

f (xy−1)g(y)Δ(y−1) d�(y),

(2.6)f ∗̃ g(x) ∶= ∫
�

f (y)g(yx) d�(y) = ∫
�

f (yx−1)g(y)Δ(x−1) d�(y),

(2.7)f �∗ g = ̌(fΔ) ∗ g, where, for a function h ∶ 𝔾 → ℝ, we define ȟ ∶= h ◦ inv.

(2.8)⟨f , g⟩ ∶= ∫
�

f (x)g(x) d�(x).

(2.9)
⟨f ∗ h, g⟩ = ⟨h, f �∗ g⟩ = ⟨h, ̌(fΔ) ∗ g⟩, for every f , g, h continuous with compact support.

(2.10)

⟨f ∗ h, g⟩ = ∫
�

�

∫
�

f (y)h(y−1x) d𝜇(y)

�
g(x) d𝜇(x)

= ∫
�

�

∫
�

g(x)h(y−1x) d𝜇(x)

�
f (y) d𝜇(y)

= ∫
�

�

∫
�

g(yx)h(x) d𝜇(x)

�
f (y) d𝜇(y)

= ∫
�

�

∫
�

f (y)g(yx) d𝜇(y)

�
h(x) d𝜇(x) = ⟨h, f �∗ g⟩ = ⟨h, ̌(fΔ) ∗ g⟩.

⟨X⊤𝜑,𝜓⟩ = ⟨𝜑,X𝜓⟩, for all𝜓 ∈ C∞

c
(�).
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due to the fact that (Rx−1 )∗� = Δ(x)� . We deduce that X⊤
= −Δ(e)X − (XΔ)(e)id = −X − (XΔ)(e)id , 

since Δ(e) = 1 . Namely

2.2  Distributions on Lie groups

In this section, we recall some basic facts about the theory of distributions on a Lie group 
� , see also [10]. We stress that we will use a variant of the definition of convolution 
between functions and distributions with respect to [10]. We fix a left-invariant Haar meas-
ure � on � . We remark that every vector space considered will be a vector space over ℝ.

We denote with D(�) ≡ C∞

c
(�) the topological vector space of real-valued C∞ functions 

with compact support on � equipped with the final locally convex topology with respect to 
the immersions C∞

K
(�) ↪ D(�) , where K is a compact subset of � and C∞

K
(�) is the space 

of real-valued C∞ functions with compact support contained in K. Let us recall that, if we 
fix {X1,… ,Xn} a basis of the Lie algebra � , the (countably many) seminorms that induce 
the locally convex topology on C∞

K
(�) are

where r ∈ ℕ and j1,… , jr ∈ {1,… , n} . Let us denote with D�
(�) the dual of D(�) , i.e., 

the set of continuous linear functionals from D(�) to ℝ , equipped with the locally convex 
weak* topology. If Φ ∈ D

�
(�) , we recall that by ⟨Φ,�⟩ we mean the evaluation of Φ at 

� ∈ D(�) . Let us remark that if f ∈ L1
loc
(�,�) , there is a canonical way of seeing f as a 

distribution, by means of

so that the notation of the evaluation ⟨⋅, ⋅⟩ for a distribution is consistent with the one intro-
duced in (2.8).

We recall that if fj ∈ D(�) , and f ∈ D(�) , then fj → f  in D(�) if and only of there 
exists a compact subset K ⊆ � such that all the supports of fj ’s are contained in K and for 
every r ∈ ℕ and every j1,… , jr ∈ {1,… , n} we have Xj1

…Xjr
fj → Xj1

…Xjr
f  uniformly 

on K. On the other hand if Φj,Φ ∈ D
�
(�) , we have that Φj → Φ in the weak* topology of 

D
�
(�) if and only if ⟨Φj, f ⟩ → ⟨Φ, f ⟩ for every f ∈ D(�).

Definition 2.4 (Derivative of a distribution and convolution with a function) If X is a left-
invariant vector field on � and Φ ∈ D

�
(�), we define

where the action of the adjoint X⊤ of X on D(�) has been explicitly computed in (2.11).
Moreover, if f ∈ D(�) and Φ ∈ D

�
(�), we define

∫
�

f (y exp(tX))g(y) d�(y) = ∫
�

f (y)g(y exp(−tX))Δ(exp(−tX)) d�(y),

(2.11)⟨Xf , g⟩ =∶ ⟨f ,X⊤g⟩ = ⟨f ,−Xg − (XΔ)(e)g⟩, for every f , g ∈ C∞

c
(�).

‖f‖j1,…,jr ,K
∶= sup

x∈K

�Xj1
…Xjr

f (x)�,

⟨f ,�⟩ ∶= ∫
�

f (x)�(x) d�(x), for all� ∈ D(�),

⟨XΦ, g⟩ ∶= ⟨Φ,X⊤g⟩, ∀g ∈ D(�),
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where f ∗̃ g is defined in (2.6), see also (2.7).

Remark 2.5 (Derivative and convolution of a distribution) We notice that the definitions 
given in Definition 2.4 are consistent with the case in which Φ is a function, see (2.11) 
and (2.9). Moreover, if {gn}n∈ℕ ⊆ D(𝔾) and gn → g ∈ D(�) in the topology of D(�) , then 
X⊤gn → X⊤g and f ∗̃ gn → f ∗̃ g in the topology of D(�) , due to the explicit expressions in 
(2.11), and (2.6), respectively. Thus, XΦ and f ∗ Φ are well-defined distributions whenever 
Φ ∈ D

�
(�) , f ∈ D(�) , and X is a left-invariant vector field.

Actually, we claim that for every f ∈ D(�) and every Φ ∈ D
�
(�) , the distribution f ∗ Φ 

coincides with the C∞
(�) function defined as follows:

Indeed, it can be verified1 that f ∗ Φ(x) is C∞
(�) and for every h ∈ D(�) we have

where the last two equalities follow from (2.6) and (2.7), respectively.

Remark 2.6 (Derivative of a convolution) Let us prove that if f ∈ D(�) , Φ ∈ D
�
(�) and 

X ∈ �, we have

Indeed, for every g ∈ D(�),

where we only exploited Definition 2.4 and in the third equality we used the fact that 
X⊤

= −X − (XΔ)(e)id , see (2.11), and X(f ∗̃ g) = f ∗̃ (Xg).

Definition 2.7 (Approximate identity) We say that a sequence {𝜑n}n∈ℕ ⊆ D(𝔾) is an 
approximate identity if the following holds

We now construct an approximate identity on a Lie group � . On � we fix an arbitrary 
right-invariant distance d that induces the manifold topology, which for example can be 
taken to be Riemannian. We fix � a left-invariant Haar measure on � as well. We know 
that exp ∶ � → � is a local analytic diffeomorphism around 0 ∈ � , see [9, page 11]. By a 
classical choice of smooth functions that are compactly supported in a sufficiently small 
neighbourhood of 0 ∈ � , and by reading these functions on � through the exponential 

(2.12)⟨f ∗ Φ, g⟩ ∶= ⟨Φ, f �∗ g⟩ = ⟨Φ, ̌(fΔ) ∗ g⟩, ∀g ∈ D(�),

f ∗ Φ(x) ∶= ⟨Φ, y ↦ f (xy−1)Δ(y−1)⟩.

∫
�

f ∗ Φ(x)h(x) d𝜇(x) = ⟨Φ, y ↦ ∫
�

f (xy−1)h(x)Δ(y−1) d𝜇(x)⟩ = ⟨Φ, f �∗ h⟩ = ⟨Φ, ̌(fΔ) ∗ g⟩,

(2.13)X(f ∗ Φ) = f ∗ (XΦ).

(2.14)
⟨X(f ∗ Φ), g⟩ = ⟨f ∗ Φ,X⊤g⟩ = ⟨Φ, f �∗ (X⊤g)⟩

= ⟨Φ,X⊤
(f �∗ g)⟩ = ⟨XΦ, f �∗ g⟩ = ⟨f ∗ XΦ, g⟩,

(2.15)�n ∗ Φ → Φ, in the topology ofD�
(�) for allΦ ∈ D

�
(�).

1 Compare with [10, Proposition 6]. Let us call � fx (y) ∶= f (xy−1)Δ(y−1) . It is sufficient to prove that, if 
f ∈ D(�) is fixed, the map x ↦ � fx is continuous from � to D(�) and that t−1(� f

exp(tX)x
− � fx ) → �X

Rf
x  in D(�) 

as t goes to zero.
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map, we can readily build a family of positive functions {𝜑n}n∈ℕ ⊆ D(𝔾) such that the 
following conditions hold 

(1) ∫
�
�n(y) d�(y) = 1 , for all n ∈ ℕ;

(2) The family {supp(�n)}n∈ℕ is a fundamental system of compact neighbourhoods of the 
identity element e ∈ � contained in a common compact neighbourhood of e.

Proposition 2.8 With the notation and the setting above, whenever f ∈ D(�) , it holds 
�n ∗̃ f → f  in the topology of D(�) , where ∗̃ is defined in (2.6). Thus, whenever Φ ∈ D

�
(�) , 

we conclude �n ∗ Φ → Φ in the topology of D�
(�) and then {�n}n∈ℕ is an approximate 

identity.

Proof By the definitions of convolution with a distribution, see (2.12), and of convergence 
in D�

(�) , the second part of the statement readily follows from the first part.
Hence, let us fix f ∈ D(�) and let K be the support of f. Since {supp(�n)}n∈ℕ is a fun-

damental system of compact neighbourhoods of the identity element e ∈ �, there exists an 
infinitesimal decreasing sequence �n → 0 such that

Moreover, since supp (𝜑n �∗ f ) ⊆ supp (𝜑n)
−1 ⋅ supp f  , there exists a compact set �K ⊇ K 

such that

Moreover, there exists a compact set K′ ⊇ �K such that

Let us fix x ∈ K̃ . Then from the fact that for all n ∈ ℕ it holds ∫
�
�n(y) d�(y) = 1 , and by 

the very definition of the convolution ∗̃ we get, for all n ∈ ℕ , that the following inequality 
holds

Now, from (2.18), we get that whenever x ∈ K̃ and y ∈ supp (�n) we have {x, yx} ⊆ K� . 
Since f is uniformly continuous on the compact set K′ , taking into account also (2.16), 
we get that for every 𝜀 > 0 there exists n0 = n0(�) such that for every n ≥ n0 the following 
holds

where we used that d is right-invariant. Thus if we fix 𝜀 > 0, we can use (2.20) and con-
tinue (2.19) in order to obtain that for all x ∈ K̃ and for every n ≥ n0(�), the following 
inequality holds

(2.16)if x ∈ � is such that d(x, e) > 𝜀n then𝜑n(x) = 0.

(2.17)supp(f ), supp(𝜑n �∗ f ) ⊆ �K, ∀n ∈ ℕ.

(2.18)supp (𝜑n) ⋅
�K ⊆ K�, ∀n ∈ ℕ.

(2.19)
|�n ∗̃ f (x) − f (x)| =

||||��

�n(y)(f (yx) − f (x)) d�(y)
||||

≤ �
{y∈�∶y∈ supp (�n)}

�n(y)|f (yx) − f (x)| d�(y).

(2.20)
if x ∈ K̃ and y ∈ supp (�n), then d(yx, x) = d(y, e) ≤ �n and thus |f (yx) − f (x)| ≤ �,
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The previous equation implies that

Let us fix {X1,… ,Xn} a basis of � . By exploiting the fact that X(f ∗̃ g) = f ∗̃ (Xg) for every 
left-invariant vector field X and every f , g ∈ D(�) , we get arguing exactly as before, that 
for every multi-index � ∶= (j1,… , jr) with r ∈ ℕ and j1,… , jr ∈ {1,… , n},

where X�
∶= Xj1

…Xjr
 . Hence, (2.17) and (2.21) precisely means that �n ∗̃ f → f  in the 

topology of D(�) that was what we wanted to prove.   ◻

We define now the precomposition of a distribution with a right translation.

Definition 2.9 ((Right translation of a distribution) Let f be a distribution on a Lie group � 
and let Rg denote the right translation by g ∈ � . Then, we define

By using the fact that (Rg)∗� = Δ(g−1)� for all g ∈ � , we see that the above definition is 
consistent with (2.8) when f is a smooth function. Moreover, let us define, for every g ∈ � , 
the operator Dg acting on distributions f on � as follows:

Remark 2.10 (Commutation of convolution and right translation) We claim that if 
� ∈ D(�) , f ∈ D

�
(�) and g ∈ � then the following equality holds

Indeed, we have

where in the first and the fourth equalities we used the definition in (2.22), in the second 
and the fifth equalities we used the definition in (2.12), and in the third equality we used 
� ∗̃ (� ◦Rg−1 ) = (� ∗̃�) ◦Rg−1 , which we now prove. Indeed, for every x ∈ �,

where we used the definition in (2.6). As a consequence of (2.24), we obtain the following 
equality, for every � ∈ D(�) , f ∈ D

�
(�) and g ∈ �

|�n ∗̃ f (x) − f (x)| ≤ �
{y∈�∶y∈ supp (�n)}

�n(y)� d�(y) ≤ �
�

�n(y)� d�(y) = �.

lim
n→+∞

sup
x∈K̃

|�n ∗̃ f (x) − f (x)| = 0.

(2.21)lim
n→+∞

sup
x∈K̃

|X�
(�n ∗̃ f )(x) − X�f (x)| = lim

n→+∞

sup
x∈K̃

|(�n ∗̃X
�f )(x) − X�f (x)| = 0,

(2.22)⟨f ◦Rg,�⟩ ∶= ⟨f ,Δ(g−1)� ◦Rg−1⟩, for all� ∈ D(�).

(2.23)Dgf ∶= f ◦Rg − f .

(2.24)⟨(� ∗ f ) ◦Rg,�⟩ = ⟨� ∗ (f ◦Rg),�⟩, for all� ∈ D(�).

⟨(� ∗ f ) ◦Rg,�⟩ = ⟨� ∗ f ,Δ(g−1)� ◦Rg−1⟩ = ⟨f ,Δ(g−1)� ∗̃ (� ◦Rg−1 )⟩
= ⟨f ,Δ(g−1)(� ∗̃�) ◦Rg−1⟩ = ⟨f ◦Rg,� ∗̃�⟩
= ⟨� ∗ (f ◦Rg),�⟩,

� ∗̃ (� ◦Rg−1 )(x) = ∫ �(y)�(yxg−1) d�(y) = (� ∗̃�) ◦Rg−1 (x),
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2.3  Nilpotent Lie groups and stratified groups

We now focus the attention on special classes of Lie groups. First, we discuss nilpotent 
groups, and then, we discuss stratified groups, also called Carnot groups. For the notions in 
this section, we refer the reader to classical books and recent surveys or lecture notes, e.g., 
[3, 9, 12, 20, 34]. We stress that every vector space (or Lie algebra) considered will be a 
vector space (or Lie algebra) over ℝ.

We recall that a connected Lie group is nilpotent if and only if its algebra is nilpotent. It 
is well known that the exponential map exp ∶ � → � is a global analytic diffeomorphism 
whenever � is a simply connected nilpotent Lie group, while in general, if � is connected 
and nilpotent but not necessarily simply connected, it is an analytic and surjective map, see 
[34, Theorem 3.6.1].

We say that a Lie algebra � is stratifiable if there exist a stratification of it, namely there 
exist subspaces V1,… ,Vs of the Lie algebra � such that

When one of such stratifications is fixed we say that � is a stratified Lie algebra. Recall that 
two stratifications of a stratifiable Lie algebra differ by an automorphism, see [20, Propo-
sition 2.17]. Notice that every stratified Lie algebra is nilpotent. A stratified group (also 
called a Carnot group) � is a simply connected Lie group whose Lie algebra � is stratifi-
able and one such stratification is fixed. If the stratifications of � are made with vector sub-
spaces V1,… ,Vs , we call s the step of � , while m ∶= dim(V1) is called rank of � . For every 
i = 1,… , s , we call Vi the i -th layer of the stratification.

Every Carnot group has a one-parameter family of dilations that we denote by 
{𝛿𝜆 ∶ 𝜆 > 0} . These dilations act on � as

and are extended linearly. We will indicate with �� both the dilations on � and the group 
automorphisms corresponding to them via the exponential map. For some features of the 
general theory of homogeneous Lie groups, we refer the reader to [12, Chapter 1, Sect. A]. 
For recent developments, we refer the reader to [22].

We recall that ‖ ⋅ ‖ is a homogeneous norm on a Carnot group � if it is continuous from 
� to [0,+∞) and

On a Carnot group a homogeneous norm always exists and moreover two arbitrary homo-
geneous norms are biLipschitz equivalent.

Moreover if ‖ ⋅ ‖ is a homogeneous norm on a Carnot group �, there exists C > 0 such 
that ‖xy‖ ≤ C(‖x‖ + ‖y‖) for every x, y ∈ � , see [12, Proposition 1.6]. We can always 
construct, on an arbitrary Carnot group, a homogeneous norm such that the previous C is 

(2.25)Dg(� ∗ f ) = � ∗ Dgf .

� = V1 ⊕⋯⊕ Vs, [V1,Vj] = Vj+1 ∀j = 1,… , s − 1, [V1,Vs] = {0}.

(𝛿𝜆)|Vi
∶= 𝜆i(id)|Vi

, ∀𝜆 > 0, ∀1 ≤ i ≤ s,

(2.26)

‖g‖ = 0, if and only if g = 0,

‖𝛿𝜆g‖ = 𝜆‖g‖, ∀𝜆 > 0, ∀g ∈ �,

‖g‖ = ‖g−1‖, ∀g ∈ �.
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1: it suffices to take any Carnot–Carathéodory distance from the identity element of � , see 
[20, Sect. 3.3].

On a Carnot group � with a stratification � = V1 ⊕⋯⊕ Vs , let us set m0 ∶= 0 and 
mj ∶= dimVj for any j = 1,… , s . We stress that m = m1 . Let us define n0 ∶= 0 , and 
nj ∶=

∑j

�=1
m

�
 for any j = 1,… , s . The ordered set (X1,… ,Xn) is an adapted basis for � if 

the following facts hold. 

 (i) The vector fields Xnj+1
,… ,Xnj+1

 are chosen among the iterated commutators of order 
j of the vector fields X1,… ,Xm , for every j = 1,… , s − 1.

 (ii) The set {Xnj+1
,… ,Xnj+1

} is a basis for Vj+1 for every j = 0,… , s − 1.

If we fix an adapted basis (X1,… ,Xn) , and � ∈ {1,… , n} , we define the holonomic degree 
of � to be the unique j∗ ∈ {1,… , s} such that nj∗−1 + 1 ≤ � ≤ nj∗ . We denote deg� ∶= j∗ 
and we also say that j∗ is the holonomic degree of X

�
 , i.e., deg(X

�
) ∶= j∗ . If an adapted 

basis (X1,… ,Xn) of the Lie algebra � of a Carnot group � is fixed, we identify x ∈ � with a 
point of ℝn through exponential coordinates of the first kind as follows:

We recall that the homogeneous degree of the monomial xa1
1
⋅ ⋯ ⋅ x

an
n  in exponential coordi-

nates of the first kind associated to the adapted basis (X1,… ,Xn) is 
∑n

𝓁=1
a
𝓁
⋅ deg𝓁.

We recall here the definition of free-nilpotent Lie algebras see [3, Definition 14.1.1].

Definition 2.11 (Free-nilpotent Lie algebras of step s with m generators) Let m ≥ 2 be an 
integer number. We say that �m,s is the free-nilpotent Lie algebra of step s with m generators 
X�

1
,… ,X�

m
 if the following facts hold. 

 (i) �m,s is a Lie algebra generated by the elements X�

1
,… ,X�

m
 , i.e., �m,s is the smallest 

subalgebra of �m,s containing {X�

1
,… ,X�

m
};

 (ii) �m,s is nilpotent of step s, i.e., nested Lie brackets of length s + 1 are always 0;
 (iii) for every nilpotent Lie algebra � of step s and for every map Ψ ∶ {X�

1
,… ,X�

m
} → � , 

there exists a unique homomorphism of Lie algebras Ψ ∶ �m,s → � that extends Ψ.

We stress that every free-nilpotent Lie algebra is stratifiable, see [20, Example 2.5], with 
span{X�

1
,… ,X�

m
} being the first layer of a stratification. Thus, there exists a unique Carnot 

group �m,s such that its Lie algebra is the free-nilpotent Lie algebra of step s and with m 
generators.

3  Polynomial and S‑polynomial distributions on Lie groups

In Sect. 3.1, we introduce the notion of polynomial distribution with respect to a sub-
set S of the Lie algebra � of an arbitrary Lie group � . Roughly speaking we say that a 
distribution f is polynomial with respect to S, or briefly S-polynomial, when for every 
X ∈ S there exists k such that Xkf ≡ 0 in the sense of distributions on � , see Definition 
3.1. When k is independent on X ∈ S we say that f is k-polynomial with respect to S, or, 
that is the same, S-polynomial with degree at most k. We introduce also the definition 
of polynomial distribution on arbitrary Lie groups � , see Definition 3.3: namely, a dis-
tribution on � is polynomial if there exists k ∈ ℕ such that for all X1,… ,Xk ∈ � we have 

x ≡ (x1,… , xn) ↔ exp(x1X1 +⋯ + xnXn).
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X1 …Xkf ≡ 0 in the sense of distributions on � . This latter definition happens to be con-
sistent with the definition of polynomial map between groups introduced by Leibman in 
[24], see 3.5. We conclude the subsection by proving a lemma about the pointwise limit 
of smooth k-polynomial functions with respect to X, where X ∈ � , see Lemma 3.6, and 
3.7. These latter results about convergence will come into play in the proof of 4.6.

In Sect. 3.2, we prove formula (3.6), see Lemma 3.8. Namely, given a smooth func-
tion f ∶ 𝔾 → ℝ for which Xkf ≡ 0 for some X ∈ � and k ∈ ℕ , we show that knowing 
f on an open set U ⊆ � completely determines f on the set U ⋅ exp(ℝX) . Then, we use 
Lemma 3.8 to prove the fundamental representation formula (3.8) in Lemma 3.9 accord-
ing to which if f is S-polynomial with degree at most k, with a Lie generating S, then it 
is completely determined by the jet of some sufficiently big order of f at the identity.

In Sect. 3.3, we prove Theorem 1.1.
The proof of Theorem 1.1, see Proposition 3.11 and Sect. 3.3, is reached by means of 

Lemma 3.10, according to which in a connected Lie group � around every point there 
exists a chart that is a concatenation of horizontal curves, and by means of the represen-
tation formula in Lemma 3.9.

Before starting the discussion, let us recall some basic facts about the analytic struc-
ture of a Lie group. It is a classical result of Gleason, Montgomery and Zippin that a 
topological group that has the structure of a Ck-manifold for some 0 ≤ k ≤ +∞ admits 
exactly one analytic structure that is compatible with the Ck-structure, see the discussion 
in [34, page 42]. Thus, on a Lie group, we can give a meaning to a function f ∶ 𝔾 → ℝ 
being analytic by using an analytic atlas.

3.1  Relations with pointwise convergence

In what follows, we give the definitions of S-polynomial and polynomial distributions 
on Lie groups.

Definition 3.1 (S-polynomial distributions on Lie groups) Let � be a Lie group with Lie 
algebra � , and let us fix a subset S ⊆ � . We say that a distribution f ∈ D

�
(�) is polynomial 

with respect to S, or horizontally polynomial if S is understood, if

If the previous condition holds, we also say that f is S -polynomial. If the choice of k is uni-
form on X ∈ S , we say that f is k-polynomial with respect to S, or horizontally k -polyno-
mial if S is understood. If the previous condition holds, we also say that f is S -polynomial 
with degree at most k. When k = 2 we say that f is affine with respect to S, or horizontally 
affine if S is understood.

Remark 3.2 (Taylor expansion for S-polynomial smooth functions) It is easy to notice that 
if f ∶ 𝔾 → ℝ is a smooth function that is k-polynomial with respect to X, then

The previous observation comes from the fact that for an arbitrary smooth function 
f ∶ 𝔾 → ℝ, the following equality holds

∀X ∈ S ∃k ∈ ℕ such that Xkf ≡ 0 holds on𝔾 in the sense of distributions.

(3.1)f (p exp(tX)) = f (p) + t(Xf )(p) +⋯ +
tk−1

(k − 1)!
(Xk−1f )(p), ∀p ∈ 𝔾,∀t ∈ ℝ.
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Moreover, let us notice that if f ∶ 𝔾 → ℝ is a function such that it is a polynomial with 
degree at most k along the flow lines of X ∈ � , then Xkf ≡ 0 holds on � in the classical 
sense and we can write the expansion in (3.1). To be more precise, if we fix p ∈ � and 
there exist k real numbers a0,… , ak−1 such that

then f is differentiable k times along X at p, Xjf (p) = j!aj for every j = 0,… , k − 1 , and 
Xkf (p) = 0.

Definition 3.3 (Polynomial distributions on Lie groups) A distribution f ∈ D
�
(�) is a 

polynomial distribution if there exists a k0 ∈ ℕ such that for every Y1,… , Yk0 ∈ � we have 
Y1 … Yk0 f ≡ 0 on �.

Remark 3.4 Due to Theorem 1.1, one can equivalently ask f to be an analytic function in 
Definition 3.3.

Remark 3.5 (Comparison between Definition 3.3 and Leibman’s definition in [24]) In 
[24], the author gives and studies the notion of polynomial map f ∶ 𝔾 → ℍ between two 
groups � and ℍ . Given g ∈ � we define the operator Dg that acts on functions f ∶ 𝔾 → ℍ 
as follows:

According to [24, Sect. 0.2], a map f ∶ 𝔾 → ℍ between two groups � and ℍ is a polyno-
mial map with degree at most d, being d ∈ ℕ , if for every g1,… , gd+1 ∈ � we have

where e
ℍ
 is the (function that is constantly equal to the) identity of ℍ . In our case, i.e., 

when ℍ = (ℝ,+) , we can give a definition that mimics the previous one but for distribu-
tions f on � . Let us define the operator Dg acting on distributions f as in (2.23), thus gener-
alizing (3.3) for distributions. We say that a distribution f on � is polynomial à la Leibman 
with degree at most d ∈ ℕ if for every g1,… , gd+1 ∈ � we have

Let us notice that if f is continuous, the two definitions in (3.4) and (3.5) agree. However, 
there are non-continuous functions, already from ℝ to ℝ , that satisfy (3.3) but they cannot 
be seen as distributions, see 5.4.

We stress that the result in Theorem 1.2 tells us that Definition 3.3 and Leibman’s defi-
nition adapted for distributions give raise to the same class of distributions.

We prove the following lemma about the pointwise limit of functions that are polynomi-
als along one line in the direction of X ∈ � emanating from a fixed point p ∈ � . We are 
going to prove that the pointwise limit of such functions, whenever it exists, is still polyno-
mial along the same line.

Xjf (p) =
d
j

d �j |�=0
f (p exp(�X)), ∀p ∈ 𝔾,∀j ∈ ℕ.

(3.2)f (p exp(tX)) = a0 + ta1 +⋯ + tk−1ak−1, ∀t ∈ ℝ,

(3.3)(Dgf )(g
�
) ∶= f (g�)−1f (g�g).

(3.4)Dg1
…Dgd+1

f ≡ e
ℍ
,

(3.5)Dg1
…Dgd+1

f ≡ 0, in the sense of distributions on�.
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Lemma 3.6 Let � be a Lie group. Let p ∈ Ω ⊆ � , where Ω is open, let X be a left-invariant 
vector field on � , and let k ∈ ℕ . Let 0 ∈ I ⊆ ℝ be an interval such that p exp(tX) ∈ Ω for 
all t ∈ I . Let {fn}n∈ℕ be a sequence of functions fn ∶ Ω → ℝ such that, for every n ∈ ℕ , 
there exists a sequence of k-uples of real numbers {(an,0,… , an,k−1)}n∈ℕ such that

Let us assume that there exists a function f ∶ Ω → ℝ such that fn → f  pointwise on the set 
{p exp(tX) ∶ t ∈ I} , as n → +∞ . Then, there exists a k-uple of real numbers (a0,… , ak−1) 
such that an,i → ai for all i = 0,… , k − 1 and for n → +∞ , and

Proof Let us fix k pairwise distinct nonzero real numbers in I and let us call them 
r0,… , rk−1 . By hypothesis we get that, for every n ∈ ℕ , the following holds

For every n ∈ ℕ, we denote with an the column k-vector (an,0,… , an,k−1) , and with f p,X the 
column k-vector (f (p exp(rjX)))j=0,…,k−1 . Thus, we can write the previous convergence as 
follows:

where V is the k × k Vandermonde’s matrix Vji ∶= (ri
j
)j,i=0,…,k−1 . Since V is invertible, we 

conclude that

and thus, if we denote (a0,… , ak−1) the components of the vector V−1
⋅ f p,X , we con-

clude that an,i → ai for all i = 0,… , k − 1 and for n → +∞ . The last part of the state-
ment easily follows from the latter convergence and the fact that fn → f  pointwise on 
{p exp(tX) ∶ t ∈ I} , as n → +∞ .   ◻

Corollary 3.7 Let � be a Lie group, Ω ⊆ � be open, X be a left-invariant vector field on � , 
and k ∈ ℕ . Let {fn}n∈ℕ be a sequence of smooth functions fn ∶ Ω → ℝ such that Xkfn ≡ 0 
on Ω for every n ∈ ℕ . If there exists a function f ∶ Ω → ℝ such that fn → f  pointwise on 
Ω , then Xkf ≡ 0 on Ω in the classical sense.

Proof If we fix p ∈ Ω , since Ω is open there exists an interval 0 ∈ I ⊆ ℝ such that 
{p exp(tX) ∶ t ∈ I} ⊆ Ω . From Remark 3.2, see in particular the localized version of (3.1), 
we get that the sequence {fn}n∈ℕ satisfies the hypotheses of Lemma 3.6. Thus, applying 3.6, 
the function f coincides with a polynomial with degree at most k in t along the piece of line 
{p exp(tX) ∶ t ∈ I} , and arguing as at the end of Lemma 3.2, see in particular the localized 
reasoning above and below (3.2), we get that Xkf (p) = 0 and then we get the conclusion 
since p ∈ Ω is arbitrary.   ◻

fn(p exp(tX)) = an,0 + tan,1 +⋯ + tk−1an,k−1, ∀t ∈ I.

f (p exp(tX)) = a0 + ta1 +⋯ + tk−1ak−1, ∀t ∈ I.

k−1∑

i=0

ri
j
an,i

n→+∞

������������������������→ f (p exp(rjX)), ∀j = 0,… , k − 1.

V ⋅ an
n→+∞

������������������������→ f p,X ,

an
n→+∞

������������������������→ V−1
⋅ f p,X ,
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3.2  Propagation of being S‑polynomial

In the following lemma, we are going to prove a formula that will be of crucial importance in 
the proof of Theorem 1.1 and Theorem 1.3, since it is the main tool to prove the representation 
formulas in Lemma 3.9, and Lemma 4.4.

Lemma 3.8 Let � be a Lie group. Let us fix k ∈ ℕ , X ∈ � , and let f ∶ 𝔾 → ℝ be a smooth 
function such that Xkf ≡ 0 on � . Then if we fix r ∈ {0, 1, 2,…} and X1,… ,Xr ∈ � , the 
following formula holds

for every q ∈ � and every t ∈ ℝ.

Proof Let us prove the statement by induction on r. If r = 0 the formula holds true by (3.1). 
Let us now suppose that the statement holds true for some r ∈ {0, 1, 2,…} and let us prove 
that it holds true for r + 1 . Indeed, let us fix X1,… ,Xr+1 ∈ � , t ∈ ℝ , and q ∈ � . Then, we 
compute the derivative of X2 …Xr+1f  along X1 as follows:

where in the third equality we used the inductive hypothesis, and in the last equality we 
used that the curve � → q� has Adexp(tX)(X1)|q as tangent vector at � = 0 .   ◻

Lemma 3.9 Let � be a Lie group, and let f ∶ 𝔾 → ℝ be smooth and k-polynomial with 
respect to {Y1,… , Y

�
} ⊆ � for some k,� ∈ ℕ . Given t1,… , t

�
∈ ℝ , let us define, for every 

j = 2,… ,� , the element of the group gj ∶= exp(t1Y1)… exp(tj−1Yj−1) , and let us denote 
g1 ∶= e the identity of the group. Then, the following equality holds

Proof Let us show, for simplicity, the computations only in the nontrivial case � = 3 , while 
the general case follows along the same lines and we omit it. For every (t1, t2, t3) ∈ ℝ

3, the 
following equality holds

(3.6)(X1 …Xrf )(q exp(tX)) =

k−1∑

i=0

ti

i!
(Adexp(tX)(X1)…Adexp(tX)(Xr)X

if )(q),

(3.7)

X1(X2 …Xr+1f )(q exp(tX)) =
d

d � |�=0
(X2 …Xr+1f )(q exp(tX) exp(�X1))

=
d

d � |�=0
(X2 …Xr+1f )(q exp(tX) exp(�X1) exp(−tX)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
q�

exp(tX))

=
d

d � |�=0

k−1∑

i=0

ti

i!
Adexp(tX)(X2)…Adexp(tX)(Xr+1)X

if (q�)

=

k−1∑

i=0

ti

i!

d

d � |�=0
Adexp(tX)(X2)…Adexp(tX)(Xr+1)X

if (q�)

=

k−1∑

i=0

ti

i!
Adexp(tX)(X1)…Adexp(tX)(Xr+1)X

if (q),

(3.8)

f (exp(t1Y1)… exp(t
�
Y
�
)) =

k−1∑

i1,…,i
�
=0

t
i1
1
… t

i
�

�

i1!… i
�
!

(
(Adg

�
Y
�
)
i
� (Adg

�−1
Y
�−1)

i
�−1 …(Adg1

Y1)
i1 f
)
(e).
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where in the first equality we used that f is k-polynomial with respect to Y3 ; in the sec-
ond equality we used (3.6) with r = i3 , X1 = ⋯ = Xr = Y3 , X = Y2 , and q = exp(t1Y1) ; 
in the third equality we used again (3.6) with r = i3 + i2 , X1 = ⋯ = Xi3

= Adexp(t2Y2)
Y3 , 

Xi3+1
= ⋯ = Xi3+i2

= Y2 , X = Y1 , and q = e ; and in the fourth equality we used that 
AdgAdh = Adgh for every g, h ∈ � .   ◻

3.3  Proof of theorem 1.1

Before starting the proof of 1.1, we recall here a lemma that tells us that on a connected Lie 
group we can find local charts by concatenating a fixed amount of flow lines of horizontal 
vector fields. This is a standard result in control theory.

Lemma 3.10 ([1, Lemma 3.33]) Let � be a connected Lie group of topological dimension 
n and let S be a subset of the Lie algebra � that Lie generates � . Then, there exists an open 
neighbourhood U of the identity e and 2n elements X1,… ,X2n ∈ S such that for all p ∈ � 
and all q ∈ p ⋅ U there exist s1,… , s2n ∈ ℝ such that

more precisely there exist an open bounded set V̂ ⊆ (0, 1)n and (ŝ1,… , ŝn) ∈ (0, 1)n such 
that

is a diffeomorphism for every p ∈ �.

As a first step toward the proof of Theorem 1.1, we prove the finite-dimensional result in 
the second part of Theorem 1.1 for analytic functions on connected Lie groups. The proof 
of the forthcoming Proposition 3.11 is reached by joining the previous representation for-
mula proved in Lemma 3.9 with Lemma 3.10.

f (exp(t1Y1) exp(t2Y2) exp(t3Y3)) =

k−1∑

i3=0

t
i3
3

i3!
(Y

i3
3
f )(exp(t1Y1) exp(t2Y2))

=

k−1∑

i3=0

t
i3
3

i3!

k−1∑

i2=0

t
i2
2

i2!

(
(Adexp(t2Y2)

Y3)
i3Y

i2
2
f
)
(exp(t1Y1))

=

k−1∑

i3=0

t
i3
3

i3!

k−1∑

i2=0

t
i2
2

i2!

k−1∑

i1=0

t
i1
1

i1!

(
(Adexp(t1Y1)

Adexp(t2Y2)
Y3)

i3 (Adexp(t1Y1)
Y2)

i2Y
i1
1
f
)
(e)

=

k−1∑

i1,i2,i3=0

t
i1
1
t
i2
2
t
i3
3

i1!i2!i3!

(
(Adexp(t1Y1) exp(t2Y2)

Y3)
i3 (Adexp(t1Y1)

Y2)
i2Y

i1
1
f
)
(e),

q = p exp(s1X1)… exp(s2nX2n);

(3.9)
�̂�p ∶ V̂ → p ⋅ U,

�̂�p(s1,… , sn) ∶= p exp(s1X1)… exp(snXn) exp(−ŝnXn+1)… exp(−ŝ1X2n),
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Proposition 3.11 Let � be a connected Lie group of topological dimension n, and let S be a 
Lie generating subset of � . Then for every k ∈ ℕ, there exists � , which depends on k and n, 
such that the vector space

is finite-dimensional and its dimension is bounded above by �.

Proof Let �̂�e ∶ V̂ ⊆ ℝ
n
→ U ⊆ 𝔾 be the local chart around e constructed as in (3.9). 

This chart induces a local frame (�x1 ,… , �xn ) of the tangent bundle TU. We denote with 
� ∶= (�1,… , �n) an arbitrary n-uple of natural numbers, we set |�| ∶= �1 +⋯ + �n and we 
denote

Recall that �̂�e has the following explicit expression

for some X1,… ,X2n ∈ S , and (ŝ1,… , ŝn) ⊆ (0, 1)n . Moreover, since Ad , the exponential 
map, and the product on the group � are analytic functions, from (3.8) read in coordinates 
and the previous explicit expression of �̂�e we get that there exists D ∶= D(k, n) such that

for every (s1,… , sn) ∈ V̂  , and where, for every multi-index � , the function 
h𝛼(s1,… , sn) ∶ V̂ → ℝ is an analytic function depending on the chart �̂�e . Now, there exists 
� ∶= �(D) such that the number of the operators (�x� )|e with |�| ≤ D is � . Let us define the 
vector space

and let Ψ ∶ F
�
→ ℝ

� be the linear map defined by Ψ(f|U ) ∶= ((�x� f )(e))|�|≤D for every 
f|U ∈ F

� . From (3.10), we get that Ψ is an injective map, and thus, the dimension of F′ is 
finite and bounded above by �.

Let Ψ�
∶ F → F

� be the linear map defined by Ψ�
(f ) = f|U for every analytic function f 

on � . By analytic continuation, we deduce that whenever f|U ≡ g|U for two analytic func-
tions, then f ≡ g on �.

Thus, Ψ� is injective as well and we deduce that F  is finite-dimensional and its dimen-
sion is bounded above by � .   ◻

Proof of theorem  1.1 We first notice that we can reduce to work with the case � is 
connected. Indeed, the connected component of the identity of � is itself a Lie group, 
and if we know the result for such a connected component, we obtain the result for all 
the connected components by composing the distribution f to the right with some left 
translation, which preserves the condition of being S-polynomial. Thus, from now on in the 
proof, we assume � is connected.

Up to taking a subset of S that is finite and still Lie generates � , we may assume that S 
is finite. Since now S is finite, there exists k ∈ ℕ such that f is k-polynomial with respect to 

F ∶= {f ∶ 𝔾 → ℝis analytic and k - polynomial with respect to S},

�x� ∶= �x1 … x1
⏟⏟⏟

�1

⋯xn … xn
⏟⏟⏟

�n

.

�̂�e(s1,… , sn) = exp(s1X1)… exp(snXn) exp(−ŝnXn+1)… exp(−ŝ1X2n),

(3.10)f (�̂�e(s1,… , sn)) =
∑

|𝛼|≤D
h𝛼(s1,… , sn)(𝜕x𝛼 f )(e),

F
�
∶= {f|U , where f ∶ 𝔾 → ℝ is analytic and k-polynomial with respect to S},



2083Polynomial and horizontally polynomial functions on Lie groups  

1 3

S. Let �n be an approximate identity as in Definition 2.7. Thus, �n ∗ f  is a smooth function 
on � , see Remark 2.5, and X(�n ∗ f ) = �n ∗ Xf  for every X ∈ � , see (2.13). Thus, iterating 
(2.13), �n ∗ f  is smooth and k-polynomial with respect to S. We claim that for every n ∈ ℕ 
the function �n ∗ f  is analytic on �.

Indeed, for the sake of notation, let us fix n ∈ ℕ and let us rename h ∶= �n ∗ f  . For 
every g ∈ � , the function h ◦Lg , where Lg is the left translation by g ∈ � , is still smooth 
and k-polynomial with respect to S. Thus in order to prove that h is analytic, it is sufficient 
to prove that h ◦Lg is analytic in a neighbourhood of e for every g ∈ � . In conclusion, 
in order to prove that h is analytic on � , we only need to prove that every h̃ ∈ C∞

(�) 
which is k-polynomial with respect to S is analytic in a neighbourhood of the identity. Let 
�̂�e ∶ V̂ ⊆ ℝ

n
→ U ⊆ 𝔾 be the local chart around e constructed as in (3.9) from S. From the 

fact that for every (s1,… , sn) ∈ V̂ , we have

for some X1,… ,X2n ∈ S and (ŝ1,… , ŝn) ⊆ ℝ
n , and the fact that the representation formula 

(3.10) holds with some analytic functions h� that only depend on the chart �̂�e , we conclude 
that, for every h̃ ∈ C∞

(�) that is k-polynomial with respect to S, the function �h ◦ �̂�e is an 
analytic real-valued function defined on V̂  . Moreover, �̂�e is an analytic map, since it is a 
composition of the exponential map with the product of the group. Since �̂�e is invertible 
being a chart, by the inverse function theorem, we conclude that (�̂�e)

−1 is analytic as well2 
as a map from U to V̂  . Thus, for every h̃ ∈ C∞

(�) that is k-polynomial with respect to S, 
we have that �h = (�h ◦ �̂�e) ◦ (�̂�e)

−1 is analytic as a map from U to ℝ , since it is the composi-
tion of analytic functions, and then the proof of the claim is concluded.

Hence, �n ∗ f ∈ F  , see 3.11, and F  is closed in the weak*-topology of D�
(�) since it 

is finite-dimensional, see [31, Theorem 1.21]. Since �n ∗ f → f  in the topology of D�
(�) , 

because �n is an approximate identity, we conclude that f has a representative in F  as well, 
and thus f is represented by an analytic function.

In order to prove the second part of Theorem 1.1, let us fix a distribution f that is S-pol-
ynomial with degree at most k ∈ ℕ . Hence, f is represented by an analytic function from 
what we proved above, and the application of Theorem 3.11 concludes the proof.   ◻

4  The case of nilpotent Lie groups

In this section, we focus our attention on the case when � is a connected nilpotent Lie 
group. We recall that the exponential map exp ∶ � → � is a global analytic diffeomorphism 
whenever � is a simply connected nilpotent Lie group, while, when � is connected and 
nilpotent but not necessarily simply connected, it is an analytic and surjective map, see 
[34, Theorem 3.6.1]. Hence, we can use the exponential map to give a natural definition of 

�̂�e(s1,… , sn) = exp(s1X1)… exp(snXn) exp(−ŝnXn+1)… exp(−ŝ1X2n),

2 This assertion follows from the fact that if a diffeomorphism � between open subsets of ℝn is analytic, 
then �−1 is analytic as well. Indeed, there exists a complex holomorphic extension of � , say �̃  , between 
open subsets of ℂn . At every x ∈ dom(�) , the Jacobian determinant det((J�)x) is nonzero since � is a 
diffeomorphism. Then, when seeing x as an element of ℂn , the complex Jacobian determinant det((J�̃)x) , 
see [13, page 30], is nonzero as well due to [13, Chapter I, Theorem 7.2]. Thus from the complex Inverse 
Function Theorem, see [13, Chapter I, Theorem 7.5], �̃  is biholomorphic in a neighbourhood of x seen in 
ℂ

n , and then, by restriction, �−1 is analytic in a neighbourhood of �(x).
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polynomial in exponential chart. We say that a function f ∶ 𝔾 → ℝ is polynomial in expo-
nential chart if f ◦ exp is a polynomial, see Definition 4.1. Such a notion, in the nilpotent 
setting, is consistent, see Remark 4.2, with both the definition of polynomial distribution 
on a Lie group, see Definition 3.3, and with Leibman’s definition in Remark 3.5.

In Lemma 4.4, we use the formula in Lemma 3.8 to prove that whenever a smooth func-
tion f is k-polynomial with respect to S in a nilpotent Lie group of nilpotency step s, then 
f is polynomial along the concatenation of flows of elements of S emanating from a fixed 
p ∈ � . More precisely we prove that, if p ∈ � is fixed, � ∈ ℕ , and Y1,… , Y

�
∈ S , the map 

(t1,… , t
�
) ↦ f (p exp(t1Y1)… exp(t

�
Y
�
)) is a polynomial in the variables t1,… , t

�
 and we 

explicitly bound the degree of the polynomial with a constant � ∶= �(k, s,�).
Thus, we use the latter result to give the proof of Theorem 1.3 in Sect. 4.1. In order to 

do so, we first prove that on a simply connected nilpotent Lie group � a distribution that is 
polynomial with respect to a set S that Lie generates � is actually polynomial in exponential 
chart, and then, we reduce to the simply connected case by passing to the universal cover. 
In order to prove the result for � nilpotent and simply connected, we reduce ourselves to the 
case of Carnot groups, by lifting the problem to a free-nilpotent Lie algebra, see the proof 
of Theorem 4.7.Theorem 1.3 in the case of Carnot groups is proved in 4.6 and the proof 
goes as follows. First, we use the main result in Theorem 1.1 to obtain that a distribution 
that is k-polynomial with respect to a set S that Lie generates the Lie algebra is represented 
by an analytic function. Second, we prove that each homogeneous term in the Taylor series 
of f around the identity, see (4.7), is k-polynomial with respect to S as well. Third, we con-
clude because, thanks to the fundamental Lemma 4.4, and thanks to an improvement of 
Lemma 3.10 in the setting of Carnot groups, namely Lemma 4.5, a smooth k-polynomial 
function with respect to S has polynomial growth of bounded order at infinity. Thus, the 
Taylor expansion of f at the identity is finite, and from the fact that f is analytic, we con-
clude that f coincides with this finite Taylor expansion, namely f is a polynomial.

We give the following notion of polynomial in exponential chart. Let us stress that the 
following definition agrees with the one given in [3, Definition 20.1.1] and therein studied 
in the more restrictive setting of stratified groups. We also stress that the forthcoming defi-
nition does not depend on the choice of a basis of the Lie algebra �.

Definition 4.1 (Polynomial in exponential chart on connected nilpotent Lie groups) Given 
a connected nilpotent Lie group � of dimension n and a basis {X1,… ,Xn} of the Lie 
algebra � , we say that f ∶ 𝔾 → ℝ is polynomial in exponential chart if

is a polynomial function of the variables t1,… , tn.

Remark 4.2 ((Definition 4.1, (Definition 3.3, and Leibman’s definition are consistent) 
When � is a connected and nilpotent Lie group, the result in 1.4 tells us that the definition 
of polynomial in exponential chart, see (Definition 4.1, the definition of polynomial 
distribution à la Leibman, see Remark 3.5, and the definition of polynomial distribution, 
see (Definition 3.3, are equivalent.

In the forthcoming Lemma 4.4, we prove that on an arbitrary nilpotent group � a 
smooth k-polynomial function with respect to S is polynomial along the concatenation of 
lines in the directions of S. In order to prove this, we exploit the formula in 3.8 and the fol-
lowing remark.

ℝ
n
∋ (t1,… , tn) ↦ f (exp(t1X1 +⋯ + tnXn)),
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Remark 4.3 (Formula (3.6) on nilpotent groups) Let us notice that if � is a nilpotent Lie 
group of nilpotency step s we have that (adX)s(Y) ≡ 0 for all X, Y ∈ � . Then, from (2.1), we 
get

for very X, Y ∈ � and every t ∈ ℝ . Thus, if we fix t ∈ ℝ , r ∈ {0, 1, 2,…} , and 
X,X1,… ,Xr ∈ � , we conclude that Adexp(tX)(X1)…Adexp(tX)(Xr) is a sum of left-invariant 
operators of the form Xi1

…Xik
 , where k is at most rs and Xi1

,… ,Xik
∈ {X,X1,… ,Xr} , 

each one multiplied by a polynomial in t. This means that, if in the setting of 3.8 the group 
� is nilpotent of nilpotency step s, the right hand side in (3.6) can be written as the sum of 
at most rs + k − 1 mixed derivatives, in some of the directions X,X1,… ,Xr , of f, each one 
multiplied by a polynomial in t. Notice also that the degree of t in the right hand side of 
(3.6) can be at most r(s − 1) + k − 1.

Lemma 4.4 For each positive integers s, k,�, there exist positive integers D, � with the 
following property. Let � be a nilpotent Lie group of nilpotency step s and p ∈ � . Let us 
assume that f ∶ 𝔾 → ℝ is smooth and k-polynomial with respect to Y1,… , Y

�
∈ � . Then, 

there exists a polynomial P ∶ ℝ
�
→ ℝ with degree at most � , whose coefficients depend on 

mixed derivatives along some directions of {Y1,… , Y
�
} of order at most D of f at p, such 

that

for every t1,… , t
�
∈ ℝ.

Proof If � = 1 the proof is straightforward from (3.1). Let us assume � ≥ 2 . Let us 
inductively construct the string of natural numbers {a0,… , a

�−1} as follows:

Let us inductively define the string of natural numbers {�1,… , �
�−1} as follows:

where if � = 2 the second part of the previous equation does not come into play. We claim 
that

Let us prove an intermediate result. Let us fix {Y1,… , Y
�
} ⊆ S . We want to prove by 

induction on j = 1,… ,� − 1 the following statement. For every 0 ≤ m ≤ aj , and for every 
Xi1

,… ,Xim
∈ {Y1,… , Y

�
} there exists a polynomial Pj ∶ ℝ

j
→ ℝ with degree at most �j 

whose coefficients depend on the mixed derivatives of f at p of order at most a0 along some 
directions of {Y1,… , Y

�
} , such that for every t1,… , tj ∈ ℝ , the following equality holds

Let us go through the base step. Let us fix 0 ≤ m ≤ a1 and Xi1
,… ,Xim

∈ {Y1,… , Y
�
} , and 

we want to write (Xi1
…Xim

f )(p exp(t1Y1)) . In order to do this, we use (3.6) in the case 

Adexp(tX)(Y) =

s−1∑

j=0

1

j!
(adtX)

j
(Y),

(4.1)f (p exp(t1Y1)… exp(t
�
Y
�
)) = P(t1,… , t

�
),

(4.2)a
�−1 ∶= k − 1, aj−1 ∶= saj + k − 1, ∀1 ≤ j ≤ � − 1.

(4.3)
�1 ∶= k − 1 + a1(s − 1), �j+1 ∶= �j + k − 1 + aj+1(s − 1), ∀j = 1,… ,� − 2,

(4.4)� = �(k, s,�) ∶= �
�−1 + k − 1, D = D(k, s,�) ∶= a0.

(4.5)(Xi1
…Xim

f )(p exp(t1Y1)… exp(tjYj)) = Pj(t1,… , tj).
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� is a nilpotent group, see Remark 4.3. Indeed, from the right hand side of (3.6) and 
the reasoning in Remark 4.3, we get that (Xi1

…Xim
f )(p exp(t1Y1)) is a sum of at most 

sm + k − 1 ≤ sa1 + k − 1 = a0 mixed derivatives of f evaluated at p in some directions of 
the set {Y1,… , Y

�
} each one multiplied by a polynomial in t1 . Moreover, the degree of t1 

is at most k − 1 + m(s − 1) ≤ k − 1 + a1(s − 1) = �1 , see again the right hand side in (3.6) 
and the reasoning in Remark 4.3. Thus, we have proved (4.5) in the base step j = 1.

Let us now proceed with the induction and let us assume the statement is true for some 
j = 1,… ,� − 2 . We want to prove it true for j + 1 . Thus, let us fix 0 ≤ m ≤ aj+1 and 
Xi1

,… ,Xim
∈ {Y1,… , Y

�
} , and we want to write

We can thus apply (3.6) with p′ instead of q.
From the right hand side of (3.6) and the reasoning in 4.3, we get that 

(Xi1
…Xim

f )(p� exp(tj+1Yj+1)) is a sum of at most sm + k − 1 ≤ saj+1 + k − 1 = aj , 
see (4.2), mixed derivatives of f in some directions of {Y1,… , Y

�
} evaluated at 

p� = p exp(t1Y1)… exp(tjYj) , each one multiplied by a polynomial in tj+1 . Moreo-
ver, the degree of tj+1 is at most k − 1 + m(s − 1) ≤ k − 1 + aj+1(s − 1) , see again the 
right hand side of (3.6) and the reasoning in 4.3. By the inductive hypothesis, every 
mixed derivative of order at most aj of f in some directions of {Y1,… , Y

�
} evaluated at 

p� = p exp(t1Y1)… exp(tjYj) is a polynomial in (t1,… , tj) with degree at most �j whose 
coefficients depend on mixed derivatives of f at p of order at most a0 along some directions 
of {Y1,… , Y

�
} . Then, for all t1,… , tj+1 ∈ ℝ, we can write

where Pj+1 is a polynomial with degree at most �j + k − 1 + aj+1(s − 1) = �j+1 , see (4.3), 
and whose coefficients depend on mixed derivatives of f at p of order at most a0 along 
some directions of {Y1,… , Y

�
} . Thus, this concludes the proof of (4.5) by induction.

Let us now complete the proof. By (3.1) we can write, for every t1,… , t
�
∈ ℝ , that

By the induction before, see (4.5), and since a
�−1 = k − 1 , see (4.2), we conclude that, for 

every 0 ≤ i ≤ k − 1 , (Yi
�
f )(p��) = (Yi

�
f )(p exp(t1Y1)… exp(t

�−1Y�−1)) is a polynomial in 
(t1,… , t

�−1) with degree at most �
�−1 whose coefficients depend on mixed derivatives of 

f at p of order at most a0 along some directions of {Y1,… , Y
�
} . Thus, we conclude (4.1) 

where P is a polynomial with degree at most � ∶= �
�−1 + k − 1 whose coefficients depend 

on mixed derivatives of f at p of order at most D = a0 along some directions of {Y1,… , Y
�
} . 

Thus, we obtained the result with the constants chosen in (4.4).   ◻

(Xi1
…Xim

f )(p exp(t1Y1)… exp(tjYj)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

p�

exp(tj+1Yj+1)).

(Xi1
…Xim

f )(p exp(t1Y1)… exp(tjYj)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

p�

exp(tj+1Yj+1)) = Pj+1(t1,… , tj+1),

f (p exp(t1Y1)… exp(t
�−1Y�−1)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
p��

exp(t
�
Y
�
)) =

k−1∑

i=0

ti
�

i!
(Yi

�
f )(p��).
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4.1  Proof of theorem 1.3

Before starting the proof of Theorem 1.3, we give a refinement of Lemma 3.10 when � is 
a Carnot group.

Lemma 4.5 Let � be a Carnot group of topological dimension n, let S be a basis of its 
first layer, and let d

�
 be the subRiemannian distance associated to S. Then, there exist C̃ , 

and X1,… ,X2n ∈ S such that given two arbitrary points p, q ∈ � there exist t1,… , t2n ∈ ℝ 
such that

and

Proof Without loss of generality, we can prove the statement for p = e . From Lemma 
3.10, by using the same notation therein, up to eventually reduce V̂ , there exists 𝜀 > 0 
such that (�̂�e)|V̂ ∶ V̂ → B𝜀(e) is a diffeomorphism, where V̂ ⊆ (0, 1)n , and B�(e) is the 
open ball, in the metric d

�
 , of radius � and centre the identity e. Thus, we have shown that 

there exist 𝜀 > 0 and X1,… ,X2n ∈ S such that for all q ∈ B�(e), there exists at least one 
(t1,… , tn) ∈ V̂ ⊆ (0, 1)n such that

We now claim that the Lemma holds true with C̃ ∶= �∕(4n) , and with the 2n vector fields 
X1,… ,X2n ∈ S found above. Let us define the norm ‖g‖

�
∶= d

�
(g, e) . Let us take an arbi-

trary q ∈ � and consider q� ∶= ��∕(2‖q‖
�
)
q , where � is defined above and �� is the dilation of 

factor � on � . Since q� ∈ B�(e), we have that there exists (t1,… , tn) ∈ (0, 1)n such that

where ŝ ∈ (0, 1)n is as in Lemma 3.10. Thus if we dilate by a factor k ∶= 2‖q‖
�
∕� the pre-

vious equality we get, since X1,… ,Xn are in the first layer

Since (t1,… , tn) ∈ (0, 1)n and (ŝ1,… , ŝn) ∈ (0, 1)n, we get that

and thus we conclude that every point q ∈ � can be connected to the identity e ∈ � by 
means of a concatenation of at most 2n horizontal lines in the directions X1,… ,X2n , and 
moreover (4.6) holds with C̃ = �∕(4n) . This concludes the proof.   ◻

We now show that on an arbitrary Carnot group, a k-polynomial distribution with 
respect to a basis of the first layer of the Lie algebra is polynomial in exponential chart. 
The forthcoming proposition is the first step to prove Theorem 1.3. Indeed the forthcom-
ing Proposition 4.6 is precisely Theorem  1.3 in the setting of Carnot groups. Then, we 
will prove Theorem 4.7, which is Theorem 1.3 for simply connected nilpotent groups, and 
eventually we conclude this section by giving the proof of Theorem 1.3.

q = p exp(t1X1)… exp(t2nX2n),

(4.6)d
�
(p, q) ≥ C̃(||t1|| +⋯ + ||t2n||).

�̂�e(t1,… , tn) = q.

exp(t1X1)… exp(tnXn) exp(−ŝnXn+1)… exp(−ŝ1X2n) =∶ �̂�e(t1,… , tn) = q�,

exp(kt1X1)… exp(ktnXn) exp(−kŝnXn+1)… exp(−kŝ1X2n) = q.

��kt1�� +⋯ + ��ktn�� + ��kŝ1�� +⋯ + ��kŝn�� ≤ 4n

𝜀
‖q‖

�
,
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Proposition 4.6 Let k, n, s be positive integers. Then, there exists a constant � such that the 
following holds. Let � be an arbitrary Carnot group of step s and topological dimension n, 
and assume that f ∈ D

�
(�) is a distribution that is k-polynomial with respect to a basis S 

of the first layer of � . Then, f is a polynomial in exponential chart, see Definition 4.1, with 
degree at most �.

Proof We stress a little abuse of notation in this proof. For a function g ∶ 𝔾 → ℝ, we will 
write without making a distinction between g and g ◦ exp , since when � is a Carnot group 
exp is a global analytic diffeomorphism. In other words, we will identify 𝔾 ≡ � ≡ ℝ

n by 
means of the exponential map exp and a choice for an adapted basis of � that extends S.

From 1.1, we get that f is represented by an analytic function. Let us fix Ω an open 
neighbourhood of the identity of � on which f coincides with his Taylor expansion. Thus in 
particular, we have the following equality in the pointwise sense

where pd(t1,… , tn) is the polynomial of the Taylor expansion that is ��-homogeneous with 
degree d. We claim that for every d ≥ 0, the polynomial pd is k-polynomial with respect 
to S. Indeed, let us prove this statement by induction on d. Clearly if d = 0, the conclusion 
is proved since constant functions are always k-polynomial with respect to S. Let us now 
assume that pi is k-polynomial with respect to S for i = 0,… , d . We want to prove that 
pd+1 is k-polynomial with respect to S. First of all, by linearity of the condition of being 
S-polynomial with degree at most k, we get that

Since gd is k-polynomial with respect to S, we also get that gd ◦ �� is k-polynomial with 
respect to S for every 𝜆 > 0 . This last assertion comes from the iteration of the equality

From (4.7), we get that

Since gd ◦ �� is a k-polynomial function with respect to S the same is true for (gd ◦ ��)∕�d+1 , 
and thus for pd+1 + �R�

d+1
 , on ��−1Ω , for every 𝜆 > 0 , since the previous equality holds. Let 

us fix Ω� an arbitrary open bounded set of � . Since Ω� is bounded there exists �0 such that 
Ω

� ⊆ 𝛿𝜆−1Ω for all � ≤ �0 . Thus, for every � ≤ �0 , the function pd+1 + �R�
d+1

 is a k-polyno-
mial function with respect to S on Ω� . Since pd+1 + �R�

d+1
 converges pointwise to pd+1 on 

Ω
� as � → 0 , we can apply 3.7 to infer that pd+1 is k-polynomial with respect to S on Ω� . 

Since Ω� is arbitrary we get that pd+1 is k-polynomial with respect to S on the entire � and 
thus the induction is complete.

Let us now prove an independent result that will lead to the conclusion of the proof. Let 
us prove that there exists a constant � , which depends on k, s, n, such that if f is an arbi-
trary smooth function that is k-polynomial with respect to S on � , then f (p) = O(‖p‖�

�
) as 

(4.7)f (t1,… , tn) =

∞∑

d=0

pd(t1,… , tn), for all (t1,… , tn) ∈ Ω,

gd ∶= f −

d∑

i=0

pi is k-polynomial with respect to S.

X(gd ◦ 𝛿𝜆)(p) =
d

d 𝜀 |𝜀=0
(gd ◦ 𝛿𝜆)(p exp(𝜀X)) = 𝜆(Xgd)(𝛿𝜆(p)), for all S, 𝜆 > 0, p ∈ �.

gd ◦ 𝛿𝜆
𝜆d+1

= pd+1 + 𝜆

(
+∞∑

i=d+2

𝜆i−d−2pi

)
=∶ pd+1 + 𝜆R𝜆

d+1
, on 𝛿𝜆−1 Ω, for all 𝜆 > 0.
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‖p‖
�
→ +∞ , where ‖ ⋅ ‖

�
 is the homogeneous norm associated to the subRiemannian dis-

tance d
�
 induced by S, i.e., ‖p‖

�
∶= d

�
(p, e) , where e is the identity of the group.

Indeed, as a direct application of 4.5, we first get that there exist C̃ , and some 
X1,… ,X2n ∈ S such that for every point p ∈ � we can write the following equality

for some t1,… , t2n ∈ ℝ , and moreover the following inequality holds

Moreover, as a direct application of 4.4, there exist a constant � , which depends on s, k, n, 
and a constant C, which may depend also on f, such that

Thus f (p) = O(‖p‖�
�
) , as ‖p‖

�
→ +∞ . In order to conclude the proof let us prove that in 

the sum (4.7), pd ≡ 0 for all d ≥ � + 1 . Let us fix d ≥ � + 1 and let us suppose by con-
tradiction that max

{‖x‖
�
=1} pd(x) = pd(x) = m > 0 , for some x ∈ � with ‖x‖

�
= 1 . Hence 

for an arbitrary 𝜆 > 0 , since pd is a ��-homogeneous polynomial of degree d, we have 
pd(��x) = �dpd(x) = m�d . Hence, being d ≥ � + 1 and m > 0 , the previous inequality is a 
contradiction with the fact that pd(x) = O(‖x‖�

�
) as ‖x‖

�
→ +∞ , which holds true since we 

proved that pd is k-polynomial with respect to S, and since we obtained the polynomial-
growth bound above. Thus, we conclude that pd ≡ 0 for all d ≥ � + 1 , and then by analytic 
continuation (4.7) holds everywhere on � , where now the sum is taken up to � . Then, f is a 
polynomial in exponential chart. Moreover, its homogeneous degree, and thus its degree, is 
bounded above by � .   ◻

Theorem  4.7 Let � be a simply connected nilpotent group of nilpotency step s, and let 
S ⊆ � be a subset that Lie generates � . If f ∈ D

�
(�) is a distribution that is S-polynomial 

then f is a polynomial in exponential chart, see 4.1.

Proof We stress a little abuse of notation in this proof. For a function g ∶ 𝔾 → ℝ, we 
will write without making a distinction between g and g ◦ exp , since when � is a simply 
connected nilpotent group, exp is a global analytic diffeomorphism. In other words, 
we identify 𝔾 ≡ � ≡ ℝ

n by means of exp and a choice for a basis of � . Up to taking a 
subset of S that is finite and still Lie generates � , we may assume that S is finite, namely 
S = {X1,… ,Xm} for some X1,… ,Xm ∈ � . Since now S is finite, there exists k ∈ ℕ such 
that f is k-polynomial with respect to S.

From 1.1, we get that f is represented by an analytic function. Let us consider the free 
Lie algebra �m,s of step s and with m generators {X�

1
,… ,X�

m
} introduced in 2.11. By item 

(iii) of 2.11 there exists a Lie algebra homomorphism � ∶ �m,s → � such that �(X�

i
) = Xi 

for every 1 ≤ i ≤ m . We claim that f ◦� is smooth and k-polynomial with respect to 
{X�

1
,… ,X�

m
} . This latter assertion is true since, first of all f ◦� is smooth since f is analytic 

and � is linear, and second because, from the fact that �(X�

i
) = Xi for every 1 ≤ i ≤ m , we 

conclude that

and thus iterating

p = exp(t1X1)… exp(t2nX2n),

‖p‖
�
≥ C̃(��t1�� +⋯ + ��t2n��).

�f (p)� = ��f (exp(t1X1)… exp(t2nX2n))
�� ≤ C(1 + ��t1�� +⋯ + ��t2n��)� ≤ C(1 + ‖p‖

�
∕C̃)� .

X�

i
(f ◦�) = Xif ◦�, ∀1 ≤ i ≤ m,
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Since span{X�

1
,… ,X�

m
} is the first layer of a stratification of �m,s , we can apply 4.6 and con-

clude that f ◦� is a polynomial in exponential chart with degree at most �′ , where �′ 
depends on k, m, s since the topological dimension of �m,s is bounded above by a function 
of m and s. Since {X1,… ,Xm} Lie generates � , since �(X�

i
) = Xi for every 1 ≤ i ≤ m , and 

since � is a Lie algebra homomorphism, we get that � is surjective. Hence, there exists a 
linear map �−1

∶ � → �m,s such that � ◦�−1
= id|

�

 . Thus, f = (f ◦�) ◦�−1 is a polynomial 
in exponential chart since it is the composition of a polynomial in exponential chart with a 
linear map. Notice that the degree of f in exponential chart is at most �′ since � is linear.  
 ◻

Proof of theorem  1.3 From [34, Theorem  3.6.1], we deduce that there exists a unique 
simply connected nilpotent Lie group �′ with Lie algebra � , and � is the quotient of �′ with 
one central discrete subgroup Γ of �′ . Let � ∶ �

�
→ �

�
∕ Γ ≃ � be the projection map, 

which is open. Then, �
∗
∶ � → � is surjective, and hence a bijection. We claim that the map 

f ◦� is (�
∗
)
−1
(S)-polynomial in �′ . Indeed, for every X ∈ (�

∗
)
−1
(S) we have

and thus iterating and using that f is S-polynomial we get the sought claim. Hence 
f ◦� ◦ exp

�′ is a polynomial, according to 4.7, since (�
∗
)
−1
(S) Lie generates � as well. But 

since f ◦� ◦ exp
�� = f ◦ exp

�
◦�

∗
 , and since �

∗
 is a bijection, we get that f ◦ exp

�
 is a 

polynomial as well, and then we are done.   ◻

Remark 4.8 (The constant � in Proposition 4.6) We stress that from the proof of Proposition 
4.6, we infer that the homogeneous degree of f, and thus also the degree of f, in the 
exponential chart is at most �(k, s, 2n) , where � is explicitly provided in the proof of Lemma 
4.4, see (4.4). Thus, the constant � in Proposition 4.6 can be taken to be �(k, s, 2n) . This 
in particular gives, in case � is connected and nilpotent, an explicit bound on the degree 
of the polynomial in exponential chart that represents a distribution f that is k-polynomial 
with respect to a Lie generating S, see the proofs of Theorem 4.7 and Theorem 1.3.

Remark 4.9 (Relaxation of the hypotheses in Theorem 1.3) The hypothesis of f ∈ D
�
(�) 

being polynomial with respect to S in Theorem 1.3 can be relaxed to the following one: 
for every X ∈ S there exists k ∈ ℕ and a polynomial in exponential chart g such that 
Xkf = g in the distributional sense on � . Indeed, if this is the case, there exists a finite 
subset {X1,… ,Xm} ⊆ S that Lie generates � and such that Xki

i
f = gi for 1 ≤ i ≤ m , where 

ki ∈ ℕ and gi are polynomials in exponential chart. Thus, taking Proposition 5.3 into 
account, there exists a sufficiently large k ∈ ℕ such that f is k-polynomial with respect to 
{X1,… ,Xm} , and then, we can use Theorem 1.3.

Remark 4.10 (S-polynomial implies �-polynomial) Let us further notice the following non-
obvious fact, which is a consequence of 1.3 and 5.3. If � is a connected nilpotent Lie group 
and S Lie generates � , then if f ∈ D

�
(�) is S-polynomial, f is �-polynomial, with a degree 

of polynomiality k uniform with respect to X ∈ � , but that may eventually depend on f. 
This latter assertion is true since if f is S-polynomial, then 1.3 tells us that f is a polynomial 
in exponential chart and thus we can apply 5.3.

(X�

i
)
k
(f ◦�) = Xk

i
f ◦� ≡ 0, ∀1 ≤ i ≤ m.

(4.8)X(f ◦�) = (�
∗
X)f ◦�,
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Remark 4.11 The example in (A.1) shows that our 1.3 is sharp in the class of connected 
nilpotent Lie groups.

Remark 4.12 In case � is simply connected and nilpotent, exp is a global analytic 
diffeomorphism and so the class of polynomial distributions à la Leibman on � coincides, 
up to identifying � ≡ � , with the class of polynomials on ℝn , where n is the topological 
dimension of � . If � is nilpotent but not necessarily simply connected it might happen that 
the class of polynomial trivializes: for example it is readily seen that the polynomials on a 
torus �1

× �
1 are just the constant functions.

5  Relations between various notions of polynomial

In this section, we shall prove Theorem 1.2 and Corollary 1.4.

5.1  Proof of theorem 1.2

Let us now prove 1.2, that is, let us prove that our definition of polynomial distribution à la 
Leibman, see 3.5, is consistent with our definition of polynomial distribution, see 3.3, on 
every connected Lie group. We first prove this equivalence on smooth functions and then 
conclude by using convolutions with smooth kernels.

Proposition 5.1 Let � be a connected Lie group and let � ∶ 𝔾 → ℝ be a smooth function. 
Then � is a polynomial with degree at most d à la Leibman, see (3.5), if and only if for 
every X1,… ,Xd+1 ∈ � we have

Proof First, let us prove that (3.5) implies that whenever X1,… ,Xd+1 ∈ � then
X1 …Xd+1� ≡ 0 on � . In order to show this, let us notice that, defined 

gd+1(t) ∶= exp(tXd+1) , then t−1Dgd+1(t)
� converges pointwise on � to Xd+1� as t → 0 . More-

over, for every g ∈ � , the operator Dg is continuous with respect to the pointwise conver-
gence of functions, i.e., if �n → � pointwise on � as n → +∞ , then Dg�n → Dg� point-
wise on � as n → +∞ , for every g ∈ � . By also using that Dg(��) = �Dg(�) for every 
g ∈ � and � ∈ ℝ , and putting gd+1(t) in (3.5) we get

for every g1,… , gd ∈ � , where in the previous conclusion we are taking t → 0 and we are 
exploiting the continuity of the operators Dg with respect to the pointwise convergence. 
Now if we iterate the argument with Xd+1� instead of � , we obtain

which is what we wanted.
Regarding the opposite direction, let us now denote Pd

L
 the vector space of smooth 

functions on � that are polynomials à la Leibman with degree at most d, see (3.5). Let us 
denote Pd

D
 the vector space of smooth functions � such that for every X1,… ,Xd+1 ∈ � we 

have X1 …Xd+1� ≡ 0 on � . Let us now prove the following statement

(5.1)X1 …Xd+1� ≡ 0, on�.

Dg1
…Dgd

(t−1Dgd+1(t)
𝜑) ≡ 0, for all t > 0 on� ⇒ Dg1

…Dgd
Xd+1𝜑 ≡ 0,

X1 …Xd+1� ≡ 0, on�,
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where we recall that Rg stands for the right translation by g ∈ � . It is readily seen that the 
first part of the previous statement proves the proposition. Let us prove (5.2) by induction 
on d.

If d = 0 , one readily sees that P0
L
= P

0
D

 and they agree with the set of constant func-
tions on � . Thus, the statement (5.2) is verified for d = 0 . Let us now assume that (5.2) is 
true for d − 1 , with d ≥ 1 , and let us prove it true for d. Let us start from the second part of 
the statement (5.2). Let us fix Y ∈ � and � ∈ P

d

D
 . We have, for x ∈ � , and X ∈ �,

Since � ∈ P
d

D
 we get that Adexp(−Y)(X)� is in Pd−1

D
 by the definition of Pd

D
 . Thus 

by the inductive hypothesis in the second part of the statement (5.2), we get that 
Adexp(−Y)(X)� ◦Rexp(Y) ∈ P

d−1
D

 . Thus by (5.3) we get that X(� ◦Rexp(Y)) ∈ P
d−1
D

 and then, 
by arbitrariness of X, we conclude � ◦Rexp(Y) ∈ P

d

D
 . This conclude the induction for the 

second part of (5.2). Let us now complete the induction by proving the first part of (5.2) 
with d ≥ 1 , assuming it is true for d − 1.

First of all, the first argument in the proof of this proposition shows that Pd

L
⊆ P

d

D
 . Let 

us prove Pd

L
⊇ P

d

D
 . Take � ∈ P

d

D
 . From 1.1, we conclude that � is analytic. In order to 

prove that � ∈ P
d

L
, we claim that it suffices to prove that

for every g1,… , gd ∈ � and every Y ∈ � . Indeed, the map 
(g1,… , gd, gd+1, g) ↦ (Dg1

…Dgd
Dgd+1

�)(g) is analytic from �
d+2 to ℝ , since 

� and the group operation ⋅ are analytic, recall (3.3). Thus, since the set 
{(g1,… , gd, g, exp(Y)) ∶ g1,… , gd, g ∈ �,Y ∈ �} contains an open neighbourhood of the 
identity in �d+2 , if we show (5.4) we are done by analytic continuation. Let us prove (5.4).

Since � ∈ P
d

D
 , we get that Y� ∈ P

d−1
D

 . We also have

and (Y�) ◦Rexp(tY) ∈ P
d−1
D

 for every t ∈ [0, 1] , since Y� ∈ P
d−1
D

 and since the sec-
ond part of (5.2), which we already proved, holds. Thus, by the inductive hypothesis, 
(Y�) ◦Rexp(tY) ∈ P

d−1
L

 for every t ∈ [0, 1] , and since Pd−1
L

 is a vector space closed under 
pointwise convergence, we finally get that Dexp(Y)� ∈ P

d−1
L

 by exploiting (5.5). By the def-
inition of Pd−1

L
 the latter conclusion implies (5.4), and thus the induction, and the proof, 

are concluded.

Proof of proposition 1.2 Let f be a distribution such that there exists d ∈ ℕ for which 
X1 …Xd+1f ≡ 0 in the sense of distributions on � whenever X1,… ,Xd+1 ∈ � . In particular, 
the distribution f is �-polynomial with degree at most d + 1 and thus, from 1.1, we deduce 

(5.2)
for every d ∈ {0, 1,…}, Pd

L
= P

d
D
, and for every � ∈ P

d
D
and every Y ∈ �

the map x
� ◦ Rexp(Y)

→ � (x exp(Y)) defined on � is in P
d
D
,

(5.3)

X(� ◦Rexp(Y))(x) =
d

d � |�=0
� ◦Rexp(Y)(x exp(�X))

=
d

d � |�=0
�(x exp(Y) exp(−Y) exp(�X) exp(Y))

=

(
Adexp(−Y)(X)�

)
(x exp(Y)) = Adexp(−Y)(X)� ◦Rexp(Y)(x).

(5.4)Dg1
⋯Dgd

Dexp(Y)� ≡ 0, on�,

(5.5)Dexp(Y)�(x) = �(x exp(Y)) − �(x) = ∫
1

0

(Y�)(x exp(tY)) d t, for all x ∈ �,
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that it is represented by an analytic function. Since in particular f is represented by a smooth 
function, we can thus use 5.1 to obtain that f is a polynomial distribution à la Leibman with 
degree at most d.

Vice versa, let f be a distribution that is polynomial à la Leibman with degree at most d. 
Let {�n}n∈ℕ be an approximate identity. Then, iteratively applying (2.25), the convolution 
�n ∗ f  is a smooth function that is polynomial à la Leibman with degree at most d. Thus, 
from 5.1, we get that for every n ∈ ℕ and every X1,… ,Xd+1 ∈ � we have

where in the second equality we are iteratively applying (2.13). Thus, letting n → +∞ in 
the previous equality, since {�n}n∈ℕ is an approximate identity we get that X1 …Xd+1f ≡ 0 
in the sense of distributions on � whenever X1,… ,Xd+1 ∈ � , concluding the proof of the 
equivalence.

The fact that f is represented by an analytic function and the conclusion about the finite 
dimension of the vector space of the polynomial distributions with degree at most d ∈ ℕ à 
la Leibman is now a direct consequence of 1.1.

Let us prove the final part of the statement of 1.2. Let us recall that the lower central 
series is defined inductively as follows: �0 ∶= � , and �k ∶= [�, �k−1] for every k ≥ 1 . We 
now prove that the distributions f that are polynomial à la Leibman with degree at most 
d ∈ ℕ are invariant along the directions of �d , namely for every X ∈ �d we have Xf = 0 on 
�.

Indeed, for every d ≥ 0 , every element of �d can be written as a linear combination of 
left-invariant operators that are the composition of at least d + 1 left-invariant vector fields. 
To see the latter property, we proceed by induction on d. The case d = 0 is true by definition, 
so let us suppose the assertion true for d ≥ 0 and prove it for d + 1 . If X ∈ �d+1 = [�, �d] , 
then for some n ∈ ℕ , X =

∑n

i=1
ci[Xi, Yi] , where Xi ∈ � and Yi ∈ �d . By the inductive 

step, for every 1 ≤ i ≤ n, there exists ji ∈ ℕ such that for every 1 ≤ k ≤ ji there exists 
integers mi,k ≥ d + 1 and real numbers �i,k such that Yi =

∑ji
k=1

�i,kXi,k,1 …Xi,k,mi,k
 , with 

Xi,k,1,… ,Xi,k,mi,k
∈ � . Thus expanding the commutator in the equality X =

∑n

i=1
ci[Xi, Yi] 

and by using the previous equalities on Yi we conclude. As a consequence, since every pol-
ynomial distribution à La Leibman with degree at most d ∈ ℕ is such that X1 …Xd+1f = 0 
on � for every X1,… ,Xd+1 ∈ � , see 1.2, and since every X ∈ �d can be written as a linear 
combination of left-invariant operators that are composition of at least d + 1 elements of � , 
we conclude that Xf = 0 for every X ∈ �d.

Thus, since the nilpotent residual �
∞

 equals the intersection ∩k∈ℕ�k , the previous reason-
ing shows that every distribution f that is polynomial à la Leibman of an arbitrary degree 
on � is �

∞
-invariant, namely Xf = 0 for every X ∈ �

∞
 . As a consequence, we conclude that 

every polynomial à la Leibman on a connected Lie group passes to the quotient to a poly-
nomial à la Leibman on the nilpotent group � ∕ �

∞
 , where �

∞
 is the closure of the unique 

connected (and normal, since �
∞

 is an ideal) Lie subgroup of � with Lie algebra �
∞

 .   ◻

Remark 5.2 (A variant of the first part of 1.2) We notice that the proofs provided for the 
first part of 1.2 and for 5.1 can be exploited, with very little modifications, to prove the 
following variant of the first part of 1.2. Let � be a distribution on � , a connected Lie 
group with Lie algebra � , and let S ⊆ � be an Ad-closed cone, i.e., for every X ∈ S then 
tX ∈ S for every t ∈ ℝ , and for every X, Y ∈ S we have Adexp(X)Y ∈ S . Then, (5.1) holds 
for every X1,… ,Xd+1 ∈ S if and only if (3.5) holds for every g1,… , gd+1 ∈ exp S.

0 ≡ X1 …Xd+1(�n ∗ f ) = �n ∗ X1 …Xd+1f , on�,
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5.2  Proof of Corollary 1.4

The following proposition shows that when � is a connected nilpotent Lie group, a polyno-
mial in exponential chart, see 4.1, is k-polynomial with respect to � for some k ∈ ℕ . This is 
the last main step in order to obtain 1.4.

Proposition 5.3 Let � be a connected nilpotent Lie group and let f ∶ 𝔾 → ℝ be a 
polynomial in exponential chart on � , see 4.1. Then, there exists k0 ∈ ℕ such that for every 
Y1,… , Yk0 ∈ � we have Y1 … Yk0 f ≡ 0 on �.

Proof Let us first prove the statement when � is simply connected. In the latter case, exp 
is a global analytic diffeomorphism; hence, we will abuse a little the notation in the proof 
of this case: for a function g ∶ 𝔾 → ℝ we will write without making a distinction between 
g and g ◦ exp . Let {X1,… ,Xn} be a basis of � , and let s be the step of nilpotency of � . 
From the definition of free-nilpotent Lie algebras, we get that there exists a Lie algebra 
homomorphism � ∶ �n,s → � such that �(X�

i
) = Xi for every 1 ≤ i ≤ n , and we recall that 

V �

1
∶= span{X�

1
,… ,X�

n
} is the first layer of a stratification of �n,s , where X�

1
,… ,X�

n
 are the 

generators of �n,s . We stress a little abuse of notation: we will denote with � also the map 
exp ◦� ◦ exp−1 ∶ �n,s → �.

We claim that there exists k0 ∈ ℕ such that for every Y �

1
,… , Y �

k0
∈ {X�

1
,… ,X�

n
} , we have 

Y �

1
… Y �

k0
(f ◦�) ≡ 0 on �n,s . Indeed, since �n,s is a stratified Lie algebra with V ′

1
 as a first 

layer, we get that, in exponential coordinates, every X′

i
 , with 1 ≤ i ≤ n , is an operator of 

homogeneous degree −1 ; that is to say if p is a polynomial in exponential chart on �n,s of 
homogeneous degree d, see the last part of 2.3 for the definition of homogeneous degree, 
then

The latter assertion is a simple consequence of the explicit expression of X′

i
 , for every 

1 ≤ i ≤ n , in exponential coordinates, see [12, Proposition 1.26]. In conclusion, since f is 
a polynomial in exponential chart and � is a linear map, we get that f ◦� is a polynomial 
in exponential chart as well. Thus, the claim is true taking into account (5.6), and setting k0 
to be strictly greater than the maximum of the homogeneous degrees of the monomials of 
f ◦�.

Now we claim that for every Y1,… , Yk0 ∈ {X1,… ,Xn} , we have Y1 … Yk0 f ≡ 0 on � . 
Indeed, since �(X�

i
) = Xi for every 1 ≤ i ≤ n , we conclude that Xif ◦� = X�

i
(f ◦�) on �n,s 

for every 1 ≤ i ≤ n . Thus, iterating, we obtain that for every Y1,… , Yk0 ∈ {X1,… ,Xn} we 
have

Thus, since � is surjective, the previous equality and the first claim proven above imply the 
latter claim. The proof of the proposition in the case � is simply connected thus follows 
from the latter claim taking into account that every Y ∈ � can be written as a linear combi-
nation of X1,… ,Xn.

Let us now deal with the general case in which � is connected. As at the beginning of 
the proof of 1.3 we have a unique simply connected nilpotent �′ , with Lie algebra � , such 
that � is the quotient of �′ with one central discrete subgroup Γ of �′ . Let 
� ∶ �

�
→ �

�
∕ Γ ≃ � be the projection map, and then one has that �

∗
∶ � → � is a 

(5.6)
the homogeneous degree of Xi� p is less or equal than d − 1 for every 1 ≤ i ≤ n.

Y1 … Yk0 f ◦� = Y �

1
… Y �

k0
(f ◦�), on �n,s.
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bijection. If f ∶ 𝔾 → ℝ is such that f ◦ exp
�
 is a polynomial, then also 

f ◦ exp
�
◦�

∗
= f ◦� ◦ exp

�� is a polynomial, since �
∗
 is bijective. Hence, f ◦� is polyno-

mial in exponential chart in �′ and we can apply the first part of this proof to obtain that 
there exists k0 such that for every Y �

1
,… , Y �

k0
∈ Lie(�

�
) ≃ � we have Y �

1
… Y �

k0
(f ◦�) ≡ 0 on 

�
′ . Thus, iteratively applying (4.8), and by using that �

∗
 is a bijection and � is surjective we 

conclude that for every Y1,… , Yk0 ∈ Lie(�) ≃ � we have Y1 … Yk0 f ≡ 0 on � , that is the 
sought conclusion.   ◻

We now provide the proof of Corollory 1.4, and we conclude with a remark.

Proof of proposition 1.4 (1)⇒(3) is a direct consequence of Theorem 1.3. (3)⇒(4) is a direct 
consequence of Proposition 5.3. (4)⇒(2) and (2)⇒(1) are trivial by definitions. (4)⇔(5) is 
Theorem 1.2.   ◻

Remark 5.4 (Comparison with the results in [19] and [3]) We stress that a slightly weaker 
statement of the equivalence of (3)⇔(5) of 1.4 has recently appeared in [19]. Indeed, in [19, 
Theorem C], the authors prove the equivalence between being a continuous polynomial 
map à la Leibman and being a polynomial in exponential chart, in the setting of simply 
connected nilpotent Lie groups. The proof given there is algebraic and is completely 
different from ours. Let us moreover notice that we do not ask for the continuity of f in (5) 
of 1.4, but we work with distributions.

Let us finally stress that, without some regularity assumption on f, it is not true that 
every polynomial map f ∶ 𝔾 → ℝ à la Leibman, see 3.5, is smooth. Indeed, there exist 
non-continuous homomorphisms, and thus polynomial maps with degree at most 2 à la 
Leibman, from (ℝ,+) to (ℝ,+).

Let us also stress that the equivalent notions of being polynomial on connected nilpotent 
Lie groups in 1.4 agree with the one given in the Carnot setting in [3, Definition 20.1.1]. We 
also notice that 1.3 is a sharpening of a result contained in [3]. Let � be an arbitrary Carnot 
group of step s with stratification � = V1 ⊕⋯⊕ Vs and let S ∶= {X1,… ,Xm} be a basis of 
V1 . In [3, Corollary 20.1.10], it is proved that if there exists a smooth function f ∶ 𝔾 → ℝ 
and a natural number d such that for every X1,… ,Xd ∈ S we have X1 …Xdf ≡ 0 , then f is 
a polynomial in exponential chart. Our result 1.3 improves this criterion in the nilpotent 
case by only asking that a priori f could be a distribution, and without asking anything 
on the mixed derivatives; i.e., it suffices that for every 1 ≤ i ≤ m there exists di such that 
X
di
i
f ≡ 0 in the sense of distributions on �.

Appendix A: Examples

We list here some explicit examples of S-polynomial functions in some Lie groups. If an 
adapted basis (X1,… ,Xn) of the Lie algebra � of a Carnot group � is fixed, when we say 
that we work in exponential coordinates of the second kind we mean that we are identifying 
a point x ∈ � with a point of ℝn as follows

On the contrary, when we say that we work in exponential coordinates of the first kind we 
mean that we are identifying a point a ∈ � with a point in ℝn as follows:

x ≡ (x1,… , xn) ↔ exp(xnXn) ⋅ ⋯ ⋅ exp(x1X1).
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Heisenberg group. Let ℍ1 be the first Heisenberg group with Lie algebra

with the only nontrivial bracket relation [X1,X2] = X3 . If we work in exponential coordi-
nates of the second kind (x1, x2, x3) with respect to the adapted basis (X1,X2,X3) we can 
write

see [23, page 11]. Every distribution f such that X2
1
f = X2

2
f = 0 on � is represented by a pol-

ynomial, see 1.3, and moreover one can check with straightforward computations by using 
the expressions of the vector fields above that f ∈ span{1, x1, x2, x3, x1x2, x1x3} . Notice that 
in this case, for every such f, X2

3
f = 0 . Nevertheless, it is not true that every {X, Y}-affine 

function is affine along every direction of the algebra: indeed, (X1 + X2)
k
(x1x3) ≢ 0 for all 

k ≤ 3.
If in addition to X2

1
f = X2

2
f = 0 we ask that (X1X2 + X2X1)f = 0 , the two conditions 

together being equivalent to asking that X2f = 0 for every X ∈ V1 , we conclude that 
f ∈ span{1, x1, x2, x3 − (1∕2)x1x2} . Notice that, when read in exponential coordinates of 
the first kind, the functions x1, x2, x3 − (1∕2)x1x2 are precisely the coordinate functions 
a1, a2, a3 , respectively. In this way we recover the already known property that every hori-
zontally affine function in ℍ1 is actually affine in exponential coordinates of the first kind. 
For the complete characterization of horizontally affine maps in Carnot groups of step 2, 
one can see [21].

Engel group. Let �1 be the Engel group, i.e., the Carnot group of topological dimension 
4 with stratified algebra

the only nontrivial bracket relations being [X1,X2] = X3 , and [X1,X3] = X4 . Working in 
exponential coordinates of the second kind with respect to the adapted basis (X1,X2,X3,X4) 
we can write

see [23, page 13]. We notice that a distribution f is a horizontally affine function on �1 , i.e., 
such that X2f = 0 for every X ∈ span{X1,X2} , if and only if it satisfies the three equalities 
X2
1
f = (X1X2 + X2X1)f = X2

2
f = 0 on �1 . Let us write explicitly the horizontally affine maps 

in exponential coordinates of the first kind.
First notice that X3 = [X1,X2] = X1X2 − X2X1 and 

X4 = [X1,X3] = X2
1
X2 − 2X1X2X1 + X2X

2
1
 . Hence, since f is horizontally aff-

ine, X3f = 2X1X2f  , by exploiting that (X1X2 + X2X1)f = 0 . Moreover, exploiting 
(X1X2 + X2X1)f = X2

1
f = 0 we get X4f = 3X2

1
X2f .

From [X1,X4] = 0 we deduce 0 = [X1,X4]f = (3X3
1
X2 − X2

1
X2X1)f = 4X3

1
X2f  , 

where in the second equality we are using that X2
1
f = 0 and in the third one we are 

using that (X1X2 + X2X1)f = 0 . Thus X3
1
X2f = 0 . From [X2,X3] = 0 we deduce 

0 = [X2,X3]f = (2X2X1X2 + X2X1X2)f = 3X2X1X2f  , where in the second equal-
ity we are using that X2

2
f = 0 . Hence X2X1X2f = 0 . From [X2,X4] = 0 we deduce 

0 = [X2,X4]f = (3X2X
2
1
X2 + 2X1X2X1X2 − X2X

2
1
X2)f = 2X2X

2
1
X2f  , where in the second 

a ≡ (a1,… , an) ↔ exp(a1X1 +⋯ + anXn).

�
1
= span{X1,X2}⊕ span{X3} = V1 ⊕ V2, ,

X1 = �1, X2 = �2 + x1�3, X3 = �3,

�
1
= span{X1,X2}⊕ span{X3}⊕ span{X4},

X1 = �1, X2 = �2 + x1�3 + (x2
1
∕2)�4, X3 = �3 + x1�4, X4 = �4,
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equality we are using X2
2
f = 0 and in the third one we are using X2X1X2f = 0 , which we 

obtained before. Then X2X
2
1
X2f = 0.

Since X1(X
2
1
X2f ) = X2(X

2
1
X2f ) = 0 , we get that X2

1
X2f  is constant. Thus there 

exists k ∈ ℝ such that X2
1
X2f ≡ k . Then, X1(X1X2f ) ≡ k and X2(X1X2f ) = 0 read-

ily imply that that there exists h ∈ ℝ such that X1X2f = kx1 + h in exponential coor-
dinates of the second kind described above. Thus, X1(X2f ) = kx1 + h and X2(X2f ) = 0 
readily imply that there exists v ∈ ℝ such that X2f = kx2

1
∕2 + hx1 + v . Moreover, 

X2(X1f ) = −X1X2f = −kx1 − h and X1(X1f ) = 0 yield X3(X1f ) ≡ −k and X4(X1f ) ≡ 0 
so that by integrating the system of PDEs we obtain that there exists m ∈ ℝ such that 
X1f = −kx3 − hx2 + m.

Thus if f is horizontally affine, there exist k, h, v,m ∈ ℝ such that X2f = kx2
1
∕2 + hx1 + v 

and X1f = −kx3 − hx2 + m . Thus we obtain that X3f = (X1X2 − X2X1)f = 2kx1 + 2h and 
X4f = (X1X3 − X3X1)f = 3k . Thus, integrating the system of PDEs one obtains that there 
exists n ∈ ℝ such that f = k(3x4 − x1x3) + h(2x3 − x1x2) + vx2 + mx1 + n . Thus, if f is 
horizontally affine, f ∈ span{1, x1, x2, 2x3 − x1x2, 3x4 − x1x3} and it is readily verified 
that each element of the previous vector space is actually horizontally affine, and thus 
this is a characterization of the horizontally affine maps in �1.

We can check, through simple computations involving BCH formula, that

implies that x1 = a1 , x2 = a2 , x3 = a3 + a1a2∕2 , and x4 = a4 + a1a3∕2 + a2
1
a2∕6 . Thus, one 

obtains, by using exponential coordinates of the first kind, that f is horizontally affine if and 
only if f ∈ span{1, a1, a2, a3, 6a4 + a1a3} . As a consequence, already in the easiest step-3 
Carnot group, one has a horizontally affine function that is not affine in exponential coor-
dinates of the first kind, namely f̃ (a1, a2, a3, a4) ∶= 6a4 + a1a3 . As a consequence, the sub-
level sets of f̃  are precisely monotone sets that are not half-spaces.

One can also write down the explicit expression of a family of {X1,X2}-polyno-
mial distributions f. It can be proved through some computations involving the explicit 
expressions of X1,X2 above that the vector space of the distributions f on �1 such that 
X1f = X2

2
f = 0 is span{1, x2, x3, x4, x2x4 − x2

3
∕2} , where the functions are written in expo-

nential coordinates of the second kind associated to (X1,X2,X3,X4).
Free group of step 3 and rank 2. Let �23 be the free Carnot group of step 3 and rank 

2, with Lie algebra �23 equipped with the stratification

with nontrivial bracket relations being [X2,X1] = X3 , [X3,X1] = X4 , [X3,X2] = X5 . In expo-
nential coordinates of the second kind associated to the adapted basis (X1,X2,X3,X4,X5) 
we can write

see [2, pages 21-22].
It can be shown through tedious computations involving the explicit expressions of 

X1,X2 above that if a distribution f on �23 is such that X1f = 0 , and X2
2
f = 0 , then f is 

represented by a polynomial in exponential chart (this comes from 1.3) and the vector 
space of such f’s is span{1, x2, x3, x4, x2x4 − x2

3
∕2, x5 + x2x3∕2}.

SL(2,ℝ ). Let SL(2,ℝ) be the group of 2 × 2 real matrices with determinant equal to 
one. Every element of SL(2,ℝ) in a neighbourhood of the identity can be written as

exp(x4X4) exp(x3X3) exp(x2X2) exp(x1X1) = exp(a1X1 + a2X2 + a3X3 + a4X4),

�23 ∶= span{X1,X2}⊕ span{X3}⊕ span{X4,X5},

X1 = �1, X2 = �2 − x1�3 + (x2
1
∕2)�4 + x1x2�5, X3 = �3 − x1�4 − x2�5, X4 = �4, X5 = �5,
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for some (x1, x2, x3) in a neighbourhood of (1, 0, 0). Thus we can use (x1, x2, x3) as coordi-
nates from an open neighbourhood of (1, 0, 0) in ℝ3 to an open neighbourhood of the iden-
tity matrix in SL(2,ℝ) . It can be computed, see [33, Example 7.16], that, in such a neigh-
bourhood of (1, 0, 0), the left-invariant vector fields X1,X2,X3 such that (Xi)|

(1,0,0)
= (�i)|

(1,0,0)
 

for all 1 ≤ i ≤ 3 , are

We have that [X2,X3] = X1 , and then {X2,X3} Lie generates the lie alge-
bra of SL(2,ℝ) . The coordinate function x3 satisfies X2x3 = 0 and 
X2
3
x3 = X3((1 + x2x3)∕x1) = −x2(1 + x2x3)∕x

2
1
+ (1 + x2x3)∕x1 ⋅ x2∕x1 = 0 . Thus, the coor-

dinate function x3 is {X2,X3}-polynomial but Xk
1
x3 = x3 for every k ≥ 0 , so that in the pre-

vious coordinates x3 is not a polynomial à la Leibman on SL(2,ℝ) even if it is {X1,X2}

-polynomial.
Orientation-preserving affine functions on ℝ . This example shows that a k-polyno-

mial distribution with respect to a subset S that Lie generates � may not be a polynomial 
distribution according to 3.3, and thus it may not be a polynomial à la Leibman, see 1.2. 
Let us consider the Lie group of orientation-preserving affinity of the real line

endowed with the product

that comes from the composition of maps. We identify Aff+(ℝ) with ℝ × (0,+∞) by 
means of the choice of coordinates (x, y). The identity element of the group is (0, 1) and 
the left-invariant vector fields X, Y such that

are

We claim that the analytic function f (x, y) ∶= (x + 1) log y on Aff+(ℝ) is 2-polyno-
mial with respect to {X, Y} but it is not polynomial according to 3.3, and thus it is not 
a polynomial à la Leibman, see 1.2. Indeed, first X2f = (y�x)

2
((x + 1) log y) = 0 , 

and Y2f = (y�y)
2
((x + 1) log y) = 0 , and then f is 2-polynomial with respect 

to {X, Y} . Second, notice that for every � ∈ ℕ we have, by induction, that 
Y�Xf = (y�y)

�
(y�x)((x + 1) log y) = (y�y)

�
(y log y) = y log y + �y : thus f cannot be a poly-

nomial according to 3.3, and then it is not a polynomial à la Leibman, see 1.2.
Let us claim moreover that f is not �-polynomial, even if it is S-polynomial, thus 

showing that there is no propagation of the property of being S-polynomial with a 
Lie generating S in the non-nilpotent case. Indeed, it can be proved by induction that 
(X + Y)nf = y log y + ny for every n ≥ 2 , and (X + Y)f = y log y + x + 1 . Thus, there does 
not exist any n ≥ 0 such that (X + Y)nf ≡ 0.

[
x1 x2

x3
1+x2x3

x1

]
,

X1 = x1�1 − x2�2 + x3�3, X2 = x1�2, X3 = x2�1 +
1 + x2x3

x1
�3.

(A.1)Aff
+
(ℝ) ∶= {𝜓 ∶ t ∈ ℝ ↦ yt + x ∶ x, y ∈ ℝ, y > 0},

(x, y) ⋅ (x, y) = (yx + x, yy),

X|
(0,1)

= (�x)|
(0,1)

, Y|
(0,1)

= (�y)|
(0,1)

,

X|
(x0,y0 )

= y0(�x)|
(x0,y0 )

, Y|
(x0,y0 )

= y0(�y)|
(x0,y0 )

, for all (x0, y0) ∈ ℝ × (0,+∞).
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Let us further notice that the map (�, �) → f ◦ exp(�X + �Y) is not polynomial. 
Indeed, simple computations lead to show that exp(�X + �Y) = (�∕�(e� − 1), e�) 
for every (�, �) ∈ ℝ × (ℝ ⧵ {0}) , while exp(�X) = (�, 1) , for every � ∈ ℝ . Then, 
f ◦ exp(�X + �Y) = �(e� − 1) + � , for every (�, �) ∈ ℝ

2 , which is not a polynomial in 
(�, �) ∈ ℝ

2.
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