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Abstract

Inflammation and ageing-related DNA methylation patterns in the blood have

been linked to a variety of morbidities, including cognitive decline and neuro-

degenerative disease. However, it is unclear how these blood-based patterns

relate to patterns within the brain and how each associates with central cellu-

lar profiles. In this study, we profiled DNA methylation in both the blood and

in five post mortem brain regions (BA17, BA20/21, BA24, BA46 and hippo-

campus) in 14 individuals from the Lothian Birth Cohort 1936. Microglial bur-

dens were additionally quantified in the same brain regions. DNA methylation
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signatures of five epigenetic ageing biomarkers (‘epigenetic clocks’), and two

inflammatory biomarkers (methylation proxies for C-reactive protein and

interleukin-6) were compared across tissues and regions. Divergent associa-

tions between the inflammation and ageing signatures in the blood and brain

were identified, depending on region assessed. Four out of the five assessed

epigenetic age acceleration measures were found to be highest in the

hippocampus (β range = 0.83–1.14, p ≤ 0.02). The inflammation-related DNA

methylation signatures showed no clear variation across brain regions.

Reactive microglial burdens were found to be highest in the hippocampus

(β = 1.32, p = 5 � 10�4); however, the only association identified between the

blood- and brain-based methylation signatures and microglia was a significant

positive association with acceleration of one epigenetic clock (termed DNAm

PhenoAge) averaged over all five brain regions (β = 0.40, p = 0.002). This

work highlights a potential vulnerability of the hippocampus to

epigenetic ageing and provides preliminary evidence of a relationship between

DNA methylation signatures in the brain and differences in microglial

burdens.
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1 | INTRODUCTION

Ageing is characterised by a progressive deterioration of
physiological integrity and is a key risk factor for a multi-
tude of diseases. A pervasive feature of ageing is a persis-
tent, or chronic, systemic inflammation (Franceschi
et al., 2000). This process is characterised by a subtle ele-
vation of inflammatory mediators in the periphery, in the
absence of evident precipitants or disease states. Chronic
inflammation has been identified as a common feature in
the preponderance of neurodegenerative diseases and is
increasingly recognised as a potential mediator of cogni-
tive impairment in older age (Amor et al., 2010). There is,
however, still a lack of understanding of the biological
mechanisms involved in chronic inflammation and how
peripheral and central inflammatory mechanisms relate.

Recently, the link between inflammation and the epi-
genetic mechanism of DNA methylation (DNAm) has
begun to be addressed (Gonzalez-Jaramillo et al., 2019;
Ligthart et al., 2016). DNAm is typically characterised by
the addition of a methyl group to a cytosine, in the con-
text of a cytosine-guanine (CpG) dinucleotide. It has been
implicated in the regulation of gene expression and can
itself be influenced by both genetic and environmental
factors (Beck & Rakyan, 2008; Jaenisch & Bird, 2003).
Genome-wide DNAm patterns in the blood have been
leveraged to index lifestyle traits, such as smoking (Liu
et al., 2018; McCartney et al., 2018), and have been used

to investigate diverse physical and mental health-related
phenotypes, including cognitive functioning (McCartney
et al., 2022). In addition to this, by exploiting the mani-
fest alterations in DNAm patterns with ageing, several
DNAm-based markers of age have been developed, which
attempt to provide surrogate measures of biological age-
ing (Hannum et al., 2013; Horvath, 2013; Levine
et al., 2018; Lu et al., 2019). These ‘epigenetic clocks’
have been used to provide a measure of biological age
acceleration, or deceleration, by establishing the differ-
ence between an individual’s chronological and epige-
netic age. Positive age acceleration quantified in the
blood has been associated with an increased risk of mor-
tality and a variety of age-related morbidities, including
with a lower cognitive ability (Beydoun et al., 2020;
Hillary et al., 2019; Marioni et al., 2015). In addition to
this, we found that blood-based DNAm proxies for two
inflammatory mediators—C-reactive protein (CRP) and
interleukin-6 (IL-6)—were inversely associated with cog-
nitive ability in older adults with larger effect sizes com-
pared with the biomarkers themselves (Stevenson
et al., 2020, 2021).

While these findings suggest that an accelerated bio-
logical age, and raised DNAm inflammation patterns
associate with poorer cognitive functioning, it is impor-
tant to note that these studies analysed blood tissue.
While the blood represents a practical, accessible source
by which to investigate such outcomes, DNAm is known
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to confer both cell-type and tissue-specific patterns
(Mendizabal & Yi, 2016). For analyses of brain-based
traits such as cognitive ability, brain samples offer the
optimal disease-relevant tissue; however, given the obvi-
ous limitations of access to such tissue, much of the
research assessing the association between differential
DNAm and disorders of the central nervous system has
been conducted in peripheral whole blood (Chuang
et al., 2017; Di Francesco et al., 2015). While this approach
can provide informative peripheral markers of central
aberration or disease, it is important to investigate the rel-
evant target tissue to characterise both how peripheral
and central patterns equate, and how each relates to cellu-
lar differences within the brain. Microglia are the primary
tissue-resident immune cells of the central nervous system
and have critical roles in homeostasis and neu-
roinflammation. Aged microglia have been shown to be
more responsive to pro-inflammatory stimuli compared
with naïve microglia, and evidence suggests the cells are
particularly sensitive to both acute and chronic systemic
inflammation detected via peripheral-central signalling
pathways (Cunningham et al., 2005; Norden &
Godbout, 2013). Microglia have additionally been impli-
cated in age-related neurological dysfunction
(Kaneshwaran et al., 2019; Luo et al., 2010; Norden &
Godbout, 2013). However, as yet, it is unclear how inflam-
mation and age-related DNAm patterns in both the
periphery and the brain itself relate to microglial burdens.

In this study, we utilise data from 14 participants of
the Lothian Birth Cohort 1936. These individuals have
blood-based DNAm data available at up to 4 time-points
between the ages of 70–79 years and additionally donated
post mortem brain tissue to the study. In the brain, we
profiled DNAm and quantified microglial burdens in five
regions (inferior temporal gyrus [BA20/21], ventral ante-
rior cingulate cortex [BA24], dorsolateral prefrontal cor-
tex [BA46], hippocampus and primary visual cortex
[BA17]). The first four regions were selected as they are
typically implicated in neurodegenerative diseases such
as Alzheimer’s disease. Conversely, BA17 is relatively
spared from pathology until the latter stages of disease
pathogenesis and was thus chosen to act as an internal
control (Cui et al., 2007; Keller, 2006). DNAm CRP and
IL-6 profiles, along with five different DNAm age acceler-
ation measures, were characterised in the blood and in
each brain region to investigate the relationship between
peripheral and central age- and inflammation-related
methylation patterns and how these relate to inflamma-
tory processes in the brain. Given the small sample size
of this study, the results presented here represent prelimi-
nary patterns. However, these data, and the methodology
employed, provide a framework upon which future larger
scale work can be based.

2 | METHODS

2.1 | The Lothian Birth Cohort 1936

The Lothian Birth Cohort 1936 (LBC1936) is a longitudi-
nal study of ageing. Full details on the study protocol and
data collection have been described previously (Deary
et al., 2007; Taylor et al., 2018). Briefly, the cohort com-
prises 1091 individuals born in 1936 most of whom com-
pleted a study of general intelligence—the Scottish
Mental Survey—in 1947 when they were aged around
11 years. Participants who were living in Edinburgh and
the surrounding area were re-contacted around 60 years
later with 1091 individuals consenting to join the
LBC1936 study. At Wave 1 of the study, participants were
around 70 years old (mean age: 69.6 � 0.8 years), and
they have since completed up to four additional assess-
ments, triennially. At each assessment, participants have
been widely phenotyped with detailed physical, cognitive,
epigenetic, health and lifestyle data collected. A tissue
bank for post mortem brain tissue donation was
established at Wave 3 of LBC1936 in collaboration with
the Medical Research Council-funded University of
Edinburgh Brain Banks. To date, �15% of the original
LBC1936 sample have given consent for post mortem tis-
sue collection. At the time of this study, samples from
14 individuals were available.

2.2 | Ethics

Ethical permission for LBC1936 was obtained from the
Multi-Centre Research Ethics Committee for Scotland
(MREC/01/0/56), the Lothian Research Ethics Committee
(Wave 1: LREC/2003/2/29) and the Scotland A Research
Ethics Committee (Waves 2, 3 and 4: 07/MRE00/58).

Use of human tissue for post mortem studies was
reviewed and approved by the Edinburgh Brain Bank
ethics committee and the medical research ethics com-
mittee (the Academic and Clinical Central Office for
Research and Development, a joint office of the Univer-
sity of Edinburgh and NHS Lothian, approval number
15-HV-016). The Edinburgh Brain Bank is a Medical
Research Council funded facility with research ethics
committee (REC) approval (16/ES/0084).

2.3 | DNA methylation preparation

2.3.1 | Blood

DNAm from whole blood was quantified at 485,512 CpG
sites using the Illumina Human Methylation 450k
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BeadChips at the Edinburgh Clinical Research Facility.
Full details of the quality control steps have been
described previously (Shah et al., 2014; Zhang
et al., 2018). Briefly, raw intensity data were background-
corrected and normalised using internal controls. Sam-
ples with inadequate bisulphite conversion,
hybridisation, staining signal or nucleotide extension
were removed upon manual inspection. Further, probes
with a low detection rate (p > 0.01 in >5% of samples),
samples with a low call rate (<450,000 probes
detected at p < 0.01), samples exhibiting a poor match
between genotype and SNP control probes and samples
with a mismatch between methylation-predicted and
recorded sex were additionally excluded. This left a
total of 450,276 autosomal probes. In analyses
comparing blood and brain DNAm signatures, the last
blood measurement before death was used and models
were adjusted for the interval between the blood draw
and death (see Table S1; mean interval: 2.5 years,
SD: 1.5).

2.3.2 | Brain

Brains were removed at post mortem and cut into coro-
nal slices. Regions of interest were dissected, as detailed
previously (Samarasekera et al., 2013). Tissue samples
from cortical regions BA17, BA20–21, BA24, BA46 and
hippocampus were collected and snap frozen. From these
sections, �25 mg of tissue was processed for DNA extrac-
tion. DNA extraction was performed using a DNeasy kit
(Qiagen) and DNAm was profiled using Illumina
MethylationEPIC BeadChips at the Edinburgh Clinical
Research Facility. Samples were processed randomly.
Quality control steps were performed as follows: The
wateRmelon pfilter() function (Pidsley et al., 2013) was
used to remove samples in which >1% of probes had a
detection p value of >0.05, probes with a beadcount of
<3 in >5% of samples and probes in which >1% of sam-
ples had a detection p value of >0.05. Probes mapping to
polymorphic targets, cross-hybridising probes and probes
on the X and Y chromosomes were additionally removed.
The performance of 15 normalisation functions was
assessed, following the protocol described by Pidsley
et al. (Pidsley et al., 2013). The top-ranking method was
danet which equalises background from type 1 and type
2 probes, performs quantile normalisation of methylated
and un-methylated intensities simultaneously, and then
calculates normalised methylation β-values. The
normalised dataset comprised 69 samples (14 individuals,
5 regions, 1 missing hippocampal sample) and 807,163
probes.

2.4 | Derivation of DNA methylation
signatures

2.4.1 | Epigenetic age acceleration

Methylation-based epigenetic age acceleration estimates
were obtained from the online Horvath DNAm age
calculator (https://dnamage.genetics.ucla.edu/) (Horvath,
2013). Normalised DNAm data were uploaded to
the calculator using the ‘Advanced Analysis’ option.
This output provides four different age acceleration
measures: intrinsic epigenetic age acceleration (IEAA)
(Horvath, 2013); extrinsic epigenetic age acceleration
(EEAA) (Hannum et al., 2013); DNAm PhenoAge accel-
eration (AgeAccelPheno) (Levine et al., 2018); and DNAm
GrimAge acceleration (AgeAccelGrim) (Lu et al., 2019).
IEAA is defined as the residuals resulting from the
regression of estimated epigenetic age based on the
Horvath epigenetic clock on chronological age, fitting
estimated proportions of immune cells. IEAA is designed
to capture cell-intrinsic epigenetic ageing, independent of
age-related changes in blood cellular composition. EEAA
is estimated firstly by calculating a weighted average of
Hannum’s methylation age with three cell types—naïve
cytotoxic T cells, exhausted cytotoxic T cells and
plasmablasts. EEAA is defined as the residuals resulting
from the univariate regression of this weighted estimate
on chronological age and correlates with age-related
changes in the blood cellular composition. Though these
measures are most appropriate for use in the blood as
they account for blood cell proportions, the correlation
between these and the unadjusted measures are high
(0.78 for IEAA-HorvathAgeAccel and 0.97 for EEAA-
HannumAgeAccel), suggesting they are very similar.
Rather than aiming to predict chronological age, DNAm
PhenoAge was designed to capture an individual’s ‘phe-
notypic age’—a composite set of clinical measures associ-
ated with mortality. Regressing DNAm PhenoAge onto
chronological age provides the acceleration measure:
AgeAccelPheno. Similarly, DNAm GrimAge was designed
to predict mortality based on a linear combination of age,
sex, and DNAm-based surrogates for smoking and seven
plasma proteins. AgeAccelGrim provides the measure of
epigenetic age acceleration from this clock. In addition to
the epigenetic age acceleration measures, the online cal-
culator provides an estimate of the proportion of neurons
in each sample, derived using the cell epigenotype spe-
cific (CETS) algorithm (Guintivano et al., 2013).

Recently, an epigenetic clock (DNAmClockCortical)
was developed to optimally capture brain-specific epige-
netic ageing (Shireby et al., 2020). This clock was trained
on nine human cortex methylation datasets of tissue from
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individuals unaffected by Alzheimer’s disease (total
n = 1397, age range = 1–104 years). The model selected
347 DNAm sites, and the clock was then tested in an
external cohort, outperforming other epigenetic clocks
for age prediction within the brain. The sum of DNAm
levels at these sites weighted by their regression coeffi-
cients provided the cortical DNAmClockCortical age esti-
mate. The residuals resulting from regressing
DNAmClockCortical age on chronological age provided the
age acceleration measure for this epigenetic clock
(AgeAccelCortical).

2.4.2 | Inflammation signatures

DNAm scores for the acute-phase inflammatory mediator
C-reactive protein (CRP) and the pro-inflammatory cyto-
kine interleukin-6 (IL-6) were derived as described previ-
ously (Barker et al., 2018; Stevenson et al., 2020, 2021).
The DNAm CRP score was obtained using data from a
large epigenome-wide association study (EWAS) of CRP
(Ligthart et al., 2016). This EWAS identified seven CpG
sites with strong evidence of a functional association with
circulating CRP. One of these CpGs (cg06126421) was
not available on the EPIC array; therefore, the sum of
DNAm levels at the remaining six CpG sites weighted by
their regression coefficients from the EWAS provided the
DNAm CRP score (Barker et al., 2018) (Table S2). The
IL-6 score was derived from an elastic net penalised
regression model using the Wave 1 LBC1936 blood meth-
ylation and Olink® IL-6 data (Olink® inflammation
panel, Olink® Bioscience, Uppsala, Sweden) (Stevenson
et al., 2021). This approach identified 35 CpG sites that
optimally predicted circulating IL-6. In the current study,
the elastic net regression was re-run omitting individuals
providing post mortem brain samples (n = 863). This
model returned a set of 34 CpG sites (28 CpGs common
to both models, 0.91 correlation with original score). The
DNAm IL-6 score in both blood and brain were thus
derived from the sum of DNAm levels at these 34 CpG
sites weighted by their regression coefficients (Table S3).

2.4.3 | Immunohistochemistry, thresholding
and burden quantification

Tissue samples were resected from post mortem brains,
dehydrated with ethanol and processed for paraffin
embedding. Fixed tissue sections from cortical regions
BA17, BA20–21, BA24, BA46 and hippocampus were cut
using a microtome (4 μm) and processed for immunohis-
tochemistry. Paraffin-embedded sections were dewaxed
in xylene and rehydrated through graded ethanol

solutions. Immunohistochemistry was performed using
standard protocols, enhanced with the Novolink Polymer
Detection Kit. Briefly, antigen retrieval was performed in
citric acid in a pressure cooker. Sections were then
washed in dH20 (5 min), followed by a peroxidase block
(30 min), a Tris-buffered saline (TBS) wash (5 min), a pro-
tein block (15 min) and another TBS wash (5 min). CD68
antibody (mouse anti-human monoclonal primary anti-
body, Dako M0876, 1:100) was applied (30 min at room
temperature), followed by post primary block (30 min),
TBS wash (5 min), Novolink Polymer incubation (30 min)
and a final TBS wash (5 min). 3,30-Diaminobenzidine
(DAB) with 0.05% hydrogen peroxide as chromogen was
used for visualisation. Tissue was counterstained with
haematoxylin for 30 s to visualise cell nuclei. Finally,
sections were dehydrated through a series of ethanol
solutions and xylene, and coverslips were mounted.

Stains were visualised using a ZEISS Imager.Z2 stere-
ology microscope using MBF Biosciences Stereo Investi-
gator software. All six layers of cortical grey matter were
included in analysis. Cortical grey matter was outlined at
1.5� objective magnification, and tile scans were
acquired at 5� for quantification. Glia were quantified
using in-built software that captures immuno-positive
objects using an automated thresholding algorithm based
on colour and size. Objects smaller than 10 μm2 were not
considered true staining and were thus excluded in the
burden analysis. The threshold and exposure remained
consistent throughout all analysis. Neurolucida Explorer
was used to quantify the total area of the region of inter-
est and that of the outlined objects. A percentage burden
was then calculated by dividing the stained area by the
total tissue area.

2.5 | Statistical analyses

Spearman correlations were calculated between the
inflammation and epigenetic age acceleration measures
in the blood and the brain, and between the blood and
each brain region using the last available blood-based
measure prior to death. Linear mixed effects models were
used to investigate the regional heterogeneity in the epi-
genetic age acceleration variables and the DNAm inflam-
mation scores in the brain. BA17 was set as the reference
as this region is typically not affected until the latter
stages of neurodegenerative diseases that impact cogni-
tive functioning, such as Alzheimer’s disease. Models
were adjusted for age at death, post mortem interval, sex
and proportion of neurons, with participant ID fitted as a
random effect on the intercept. Linear mixed effects
models were additionally used to assess the association
between the DNAm signatures in both the blood and the
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brain and CD68+ microglial burdens. Here, an interac-
tion term between the brain region and DNAm score was
included to test if any effects were region dependent. The
same covariates and random effect as above were
included. Models assessing blood-based signatures were
additionally adjusted for the interval between their mea-
surement and death. In each regression analysis, continu-
ous variables were scaled to have a mean of zero and unit
variance. We considered a statistical significance thresh-
old of p < 0.05. We additionally discuss how results
change at a more conservative Bonferroni-corrected level
of significance (p < 0.05/41 = 0.001).

3 | RESULTS

3.1 | Cohort demographics

Post mortem details for each individual included in the
study are presented in Table S1. Summary statistics for
each of the variables included in analyses is presented in
Table 1. Age at death ranged from 77.6 to 82.9 years
(mean = 80.3, SD = 1.56). Five of the 14 (36%) individ-
uals were female.

3.2 | DNAm inflammation signatures

The Spearman correlation between the last blood DNAm
CRP score and the mean brain DNAm CRP score was
0.061. This blood–brain correlation varied by region,
ranging from �0.52 in BA17 to 0.46 in BA46 (Figure S1).

A boxplot of the DNAm CRP score in the five brain
regions is presented in Figure 1. No significant differ-
ences were identified in the analysis by region (Table S4),
indicating none of the assessed regions had a significantly
different DNAm CRP score compared with BA17 (refer-
ence region).

The correlation between the last blood DNAm IL-6
score and the mean brain DNAm IL-6 score was 0.045,
ranging from �0.33 in the hippocampus to 0.25 in BA24
(Figure S2).

A boxplot of the DNAm IL-6 score in the five brain
regions is presented in Figure 1. In the analysis by region,
the DNAm IL-6 score was found to be significantly
higher in BA24 (β = 0.46, SE = 0.20, p = 0.024) com-
pared with BA17 (reference region, Table S4).

3.3 | DNAm age acceleration

The correlations between the last blood DNAm age accel-
eration and the mean age acceleration in the brain were

�0.04 for IEAA, 0.48 for EEAA, 0.39 for AgeAccelGrim
and 0.30 AgeAccelPheno. Correlation plots between the
last blood DNAm age acceleration measure and the
DNAm age acceleration in the brain split by region are
presented in Figures S3–S6. The coefficients for
AgeAccelGrim, AgeAccelPheno and EEAA were all positive,
ranging from 0.09 between AgeAccelPheno in the blood
and in BA46 to 0.78 between the last blood EEAA and
EEAA in BA17. IEAA showed a negative correlation
between the last blood measurement and the measure in
BA20/21 (r = �0.27), BA24 (r = �0.14) and BA46
(r = �0.25) but a positive correlation in the hippocampus
(r = 0.30) and BA17 (r = 0.49). For EEAA, some of the
positive correlations appear largely driven by an
individual with a high last blood measure (38.2) which
corresponded with high measures in each of the brain
regions (Figure S4). This individual additionally had
consistently high last blood measures in each of the other
epigenetic age acceleration measures assessed (range:
6.6–25.4).

TABL E 1 Summary of the variables assessed in the 14 Lothian

birth cohort 1936 participants

Variable Mean SD

Sex (% female) 35.71 -

Age at death (years) 80.33 1.56

Age at last blood draw 77.88 1.67

Brain

DNAm CRP score �0.014 6.1 � 10�4

DNAm IL-6 score 0.016 0.0045

AgeAccelCortical �0.52 6.12

AgeAccelGrim �0.31 2.32

AgeAccelPheno 0.053 5.71

IEAA �0.049 3.97

EEAA �0.55 3.38

CD68 burden (%) 0.34 0.38

Blood

DNAm CRP score �0.014 1.2 � 10�3

DNAm IL-6 score 0.020 6.5 � 10�3

AgeAccelGrim 6.68 6.53

AgeAccelPheno 3.23 8.48

IEAA 1.23 5.62

EEAA 2.99 11.20

Note: The brain variables refer to the mean across all five regions.
Abbreviations: CD68, Cluster of Differentiation 68 (microglial burden); CRP,
C-reactive protein; DNAm, DNA methylation; EEAA, extrinsic epigenetic
age acceleration; IEAA, intrinsic epigenetic age acceleration; IL-6,

interleukin-6.
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Boxplots of the five different epigenetic age
acceleration measures in each of the five brain regions
are presented in Figure 2. The hippocampus displayed
the highest DNAm age acceleration compared with
BA17 (reference region) for each of the assessed
measures except for AgeAccelGrim which was highest
in BA24 (Table S5; AgeAccelCortical: β = 0.901,

SE = 0.19, p = 2.6 � 10�5; AgeAccelPheno: β = 1.14,
SE = 0.27, p = 1 � 10�4; IEAA: β = 0.83, SE = 0.34,
p = 0.02; EEAA: β = 0.99, SE = 0.24, p = 1 � 10�4).
The result for EEAA remained similar when the indi-
vidual with consistently high measures across all
regions was removed (β = 1.22, SE = 0.30,
p = 1.4 � 10�4).

F I GURE 1 The DNAm CRP and IL-6 score

in each of the five regions of the brain.

Abbreviations: BA, Brodmann area; CRP, C-

reactive protein; DNAm, DNA methylation; HC,

hippocampus; IL-6, interleukin-6

F I GURE 2 DNAm age acceleration

measures across the five brain regions. The

dashed grey lines represent where the mean

difference is zero. Abbreviations: BA,

Brodmann area; EEAA, extrinsic epigenetic

age acceleration; HC, hippocampus; IEAA,

intrinsic epigenetic age acceleration
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3.4 | Inter-tissue correlations

The Spearman correlations between the last blood
DNAm age acceleration and inflammation measures are
presented in Figure S7. Here, all but two of the coeffi-
cients (DNAm CRP score-AgeAccelGrim [r = �0.09] and
DNAm CRP score-IEAA [r = �0.14]) were positive,
suggesting the both the age acceleration measures and
inflammation scores are largely correlated within the
blood.

The Spearman correlations between the mean brain
DNAm age acceleration and inflammation measures are
presented in Figure S8. Discounting the DNAm CRP
score, and similarly to the blood, all but two of the coeffi-
cients (DNAm IL-6 score-IEAA [r = �0.02] and
AgeAccelGrim-IEAA [r = �0.18]) were positive. The
DNAm CRP score showed a consistent negative correla-
tion with all other measures excepting a small positive
correlation with AgeAccelGrim (r = 0.014).

3.5 | Microglial burdens

A boxplot of the CD68+ microglial burdens in each of the
five brain regions and a representative imaging of the
staining is presented in Figure 3 (exemplar images of the
staining in each of the brain regions analysed are pres-
ented in Figure S9). The microglial burden was found to
be significantly higher in the hippocampus compared
with BA17 (β = 1.32, SE = 0.4, p = 5 � 10�4), with the
plot suggesting large variance in this region compared
with the others.

The associations between both the DNAm age accel-
eration variables and the DNAm inflammation signatures
with microglial burdens are presented in Table S6. Here,
a higher mean AgeAccelPheno in the brain associated with
an increased microglial burden (β = 0.40, SE = 0.14,
p = 0.002). No other significant associations were identi-
fied (all p ≥ 0.1), and there were no significant interac-
tions found between any of the methylation scores and
brain region.

4 | DISCUSSION

In this study, we took advantage of blood and post mor-
tem brain tissue available in 14 individuals in LBC1936
to investigate the relationship between peripheral and
central inflammation- and age-related DNAm signatures
and how they relate to neuroinflammatory processes.
Due to the small sample size the results of this work are
preliminary; however, some potentially interesting pat-
terns were identified. We found heterogeneous correla-
tions between both the age acceleration, and
inflammation-related, methylation signatures in the
blood and the brain depending on the region assessed. Of
the inflammatory signatures, the DNAm CRP score did
not show significant variation across the brain regions,
while the DNAm IL-6 score was found to be higher in
BA24. Other than for AgeAccelGrim, epigenetic age accel-
eration was found to be significantly higher in the hippo-
campus than in BA17. Reactive microglial burdens,
identified through CD68 immunostaining, were addition-
ally found to be higher in the hippocampus, consistent
with previous findings in a smaller sample of the
LBC1936 cohort (Tzioras et al., 2017). However, the only
association identified between the DNAm signatures (age
acceleration or inflammation proxies) and microglial load
was a positive association with the mean brain-based
DNAm AgeAccelPheno.

It is recognised that DNAm patterns at individual
CpG sites in the blood and the brain are often disparate
(Hannon et al., 2015). We found that DNAm scores for
CRP and IL-6 comprising multiple CpG sites displayed
heterogeneous, region-specific correlations when com-
paring the blood- and brain-derived signatures. This sug-
gests that blood DNAm patterns may proxy methylation
in some areas of the brain better than others. Addition-
ally, it cautions against the use of a single sample of post
mortem brain tissue as representative of the brain in
aggregate, as it appears there is additional heterogeneity
in methylation patterns even within the same tissue
source. The DNAm age acceleration measures addition-
ally displayed discrepant blood–brain correlations

F I GURE 3 CD68+ microglial

burdens over the five brain regions and

representative staining (BA46).

Abbreviations: BA, Brodmann area; HC,

hippocampus. Scale bar = 150 μm
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dependant on region. However, all the assessed measures
showed positive blood–brain correlations in each region,
to a greater or lesser degree, excepting IEAA. IEAA is
based on the Horvath clock which is regarded as a pan-
tissue model (Horvath, 2013), whereas the other three
peripheral measures were derived solely on blood DNAm
data. Estimates from the Horvath clock have previously
been found to be consistent across tissue types, making it
surprising that IEAA showed the most inconsistent
blood–brain correlation. A recent study has, however,
suggested that the age prediction ability of the Horvath
clock begins to deteriorate in older age (>60 years), possi-
bly due to saturation of methylation levels at some loci
(El Khoury et al., 2019). This may have impacted our
results given both blood and brain tissue were gathered
from 70 years onwards. The blood–brain correlations
identified here suggest significant heterogeneity between
the tissues, contingent on region; however, it should be
noted that the mean interval between methylation
assessed in the blood and in the brain was 2.5 years
(range: 4 months–6 years) which reflects a period where
methylation alterations are possible (Zaimi et al., 2018).

Within the blood, the DNAm inflammation and age
acceleration measures were largely positively correlated,
with only a couple of small negative correlations identi-
fied. This was likewise true within the brain; however,
here the DNAm CRP score displayed a consistent nega-
tive association with each measure except AgeAccelGrim.
In the regional analyses of DNAm signatures in the
brain, no notable differences emerged in the assessment
of the DNAm CRP score. On the other hand, the DNAm
IL-6 score seemed to be higher in BA24 compared with
BA17, possibly suggesting a disparity in the DNAm
inflammation signatures across the brain. CRP itself does
not typically cross the blood–brain barrier (BBB)
although its pro-inflammatory effects may lead to an
increased paracellular permeability of the BBB (Elwood
et al., 2017). Conversely, IL-6 can cross the BBB through
the brain’s circumventricular organs and is additionally
expressed in the brain itself. However, the DNAm signa-
tures of CRP and IL-6 were both created in blood and
have not yet been validated in brain tissue. Work to
assess other blood-calibrated predictors within in brain
tissue is currently ongoing (Gadd et al., 2021). It seems
likely that brain tissue may exhibit different alterations
in methylation in response to inflammation that were not
captured by the two DNAm inflammatory marker proxies
utilised here. In contrast to the inflammatory results, a
higher DNAm age acceleration in the hippocampus was
found for each of the assessed measures apart from
AgeAccelGrim. This was true both for the cortex-specific
clock as well as for the measures developed in the blood
(AgeAccelPheno and EEAA) or in multiple tissues (IEAA).

This consistency implies that the hippocampus may rep-
resent a region more susceptible to biological ageing than
other areas of the neocortex. Age-related decline in hip-
pocampal volume is well established (Raz et al., 2005)
and it is one of the earliest, and most profoundly, affected
regions in Alzheimer’s disease, suffering insidious syn-
apse loss and neuronal cell death culminating in a sub-
stantial atrophy as the disease progresses (Braak
et al., 1993). While none of the individuals included in
this study had a diagnosis of Alzheimer’s disease prior to
their death, the hippocampus can suffer substantial dete-
rioration before clinical dementia becomes evident and
some of the participants did have evidence of amyloidosis
at post mortem. The accelerated epigenetic ageing noted
here is perhaps capturing the vulnerability of this region.

Equivalent to this finding, we identified a higher per-
centage burden of CD68+ microglia in the hippocampus
compared with BA17. CD68 is a marker of phagocytic
activity and is typically used to classify reactive microglia.
Microglia are important in the maintenance of integrity
and function within the central nervous system; however,
aged microglia have been shown to be more responsive
to pro-inflammatory stimuli compared with the naïve
cell-type. This altered phenotype can lead to exaggerated
neuro-inflammation in response to peripheral or central
immune challenges which can precipitate neuro-toxicity,
and thus, degeneration (Luo et al., 2010; Perry &
Holmes, 2014). The only association identified between
the DNAm signatures and microglial load was a positive
association with the mean brain AgeAccelPheno. However,
we did not find any significant interaction between the
DNAm signatures and region. The DNAm PhenoAge
clock was trained on a set of nine haematological and
biochemical measures that were found to optimally pre-
dict an individual’s ‘phenotypic age’ including four
immune cell profiles (lymphocyte percent, mean cell vol-
ume, red cell distribution width and white blood cell
count) alongside CRP and albumin (Levine et al., 2018).
Despite being developed on blood DNAm data, the pre-
dominantly inflammatory and immune composition of
this clock may mean that AgeAccelPheno is better able to
capture process associated with inflammation even in
other tissues. In this regard, it may have outperformed
the DNAm CRP and IL-6 score due to the inclusion of a
composite set of phenotypes, which may more accurately
index systemic inflammation compared with a single
inflammatory surrogate.

This study provides a rarely-available assessment of
data from blood, alongside post mortem brain tissue
methylation profiles and histology from the same individ-
uals. Alongside this, profiling DNAm in multiple regions
of the brain allowed us to investigate the heterogeneity of
methylation patterns within the same tissue type. This
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study is limited by the small number of individuals for
which data was available, leading to a lack of statistical
power and the potential for both type 1 and type 2 errors.
We considered p < 0.05 as the threshold for statistical sig-
nificance in the analyses. However, the following associa-
tions fail to pass a strict Bonferroni-corrected threshold
(p ≤ 0.001): the differences of the DNAm IL-6 score
across the brain regions, the IEAA measure being highest
in the hippocampus compared with BA17 and the associ-
ation of DNAm AgeAccelPheno with the CD68+ microglia
burden. This, again, highlights that the results presented
here should be taken as preliminary patterns until ana-
lyses can be repeated in larger sample sizes. Different
array platforms were utilised for the methylation profil-
ing of the blood and brain tissue, and, as such, the QC
pipelines were slightly different which may have
influenced downstream analysis. In regard to the micro-
glial burdening, we used only one antibody (CD68)
which limited definitive identification of labelled cells as
parenchymal microglia. CD68 stains the lysosomes of
ostensibly reactive microglia; however, the antibody can
additionally stain infiltrating macrophages. Capturing
both the microglia and macrophage burden still provides
a relevant read-out of the cellular inflammatory status;
however, further characterisation of the microglial phe-
notype, including generating a reactive:total ratio would
be desirable to glean a better understanding of their spe-
cific relationship to DNAm signatures. Further to this,
the burden metric used to quantify microglia could
reflect differences in sizes of the cells as well as in total
numbers. An additional aspect to bear in mind when
utilising post mortem tissue in methylation studies is the
stability of global DNAm following death and the biologi-
cal implications of this (Pidsley & Mill, 2011; Sjöholm
et al., 2018). We attempted to account for the potential
impact of this by adjusting analyses for post mortem
intervals; however as post mortem changes in DNAm are
not yet well characterised it cannot be ruled out that this
confounded results. Similarly, cause-of-death may have
impacted inflammatory profiles within the brain so we
cannot rule out this influenced results. Finally, post mor-
tem studies will always be retrospective in nature, ren-
dering it impossible to discern causal or consequential
events.

In summary, using a well-characterised cohort of
14 individuals, we identified divergent correlations
between the blood and brain in DNAm inflammation-
related and age acceleration measures depending on
region assessed. The hippocampus was found to display
the highest DNAm age acceleration in four out of five
assessed measures, potentially reflecting its inherent sus-
ceptibility to biological ageing and pathological processes
compared with other cortical regions. The hippocampus

additionally showed the highest burden of reactive
microglia. Whilst an accelerated DNAm PhenoAge asso-
ciated with an elevated microglial load across the brain,
no region-specific associations were identified. Our
results provide some initial indications of the blood–brain
relationships in DNAm patterns and how these relate to
central processes; however further work is needed to ver-
ify these results in larger sample sizes and to investigate
how these patterns associate with cognitive function and
neurodegenerative disease.
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