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A transcriptional metastatic signature
predicts survival in clear cell renal cell
carcinoma
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Clear cell renal cell carcinoma (ccRCC) is the most common type of kidney
cancer in adults. When ccRCC is localized to the kidney, surgical resection or
ablation of the tumor is often curative. However, in the metastatic setting,
ccRCC remains a highly lethal disease. Here we use fresh patient samples that
include treatment-naive primary tumor tissue, matched adjacent normal kid-
ney tissue, as well as tumor samples collected from patients with bone
metastases. Single-cell transcriptomic analysis of tumor cells from the primary
tumors reveals a distinct transcriptional signature that is predictive of meta-
static potential and patient survival. Analysis of supporting stromal cells within
the tumor environment demonstrates vascular remodeling within the endo-
thelial cells. An in silico cell-to-cell interaction analysis highlights the CXCL9/
CXCL10-CXCR3 axis and the CD70-CD27 axis as potential therapeutic targets.
Our findings provide biological insights into the interplay between tumor cells
and the ccRCC microenvironment.

Renal cell carcinoma is the most common renal tumor in adults, and
the clear cell subtype (ccRCC) accounts for 75-85% of all cases’. While
the localized disease can often be cured with surgical resection or
thermal ablation, there is evidence of metastatic disease in approxi-
mately one-quarter of patients at the time of diagnosis®. Tumor cells
that arise initially as a clonal expansion of transformed cells then
propagate in the ecosystem of the tumor microenvironment (TME)
where distinct cell populations engage in complex interactions that
promote tumor growth and metastatic spread.

The TME is composed of stromal cells, including immune cells,
endothelial cells (EC), fibroblasts, smooth muscle cells, and
pericytes*. Biological processes within the TME, such as inflamma-
tion, hypoxia, angiogenesis, and epithelial-to-mesenchymal transi-
tion (EMT), contribute to tumor complexity and evolution and may
play a critical role in promoting distant metastasis’. Specific com-
ponents of the TME are well established as therapeutic targets. One
treatment strategy in ccRCC is to inhibit the VEGF signaling that is
commonly dysregulated following VHL gene inactivation within RCC
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tumor cells and would otherwise stimulate endothelial cell growth
and angiogenesis®. Immune checkpoint blockade (ICB) targets T cells
within the immune TME and has improved outcomes in patients with
ccRCC both as monotherapy and in combination with other
agents®®. However, resistance to treatment is common and may
partly be attributed to other tumor-protective roles of the
microenvironment’. Improving therapies for metastatic RCC will
require a deep understanding of how the tumor cells are specifically
interacting with their microenvironment.

Comprehensive genomic studies in ccRCC have provided insights
into the somatic alterations that affect tumor progression®® and
response to immune checkpoint blockade. Single-cell RNA-seq
(scRNA-seq) studies on human RCC have provided immune cell atlases
based on tumor samples from treatment-naive and treated patients.
This has improved our understanding of the cell composition and
cellular states of tumor-infiltrating immune cells that may contribute
to the response to immunotherapy'>”. These studies highlight the
proportion of exhausted CD8 + T cells and the function of immuno-
suppressive M2-like macrophages in advanced RCC™. While the infil-
tration of cytotoxic CD8 + T (CTLs) cells has been associated with an
improved prognosis in other solid tumor types, it has been correlated
with a worse prognosis in ccRCC™. ICB treatment in RCC can remodel
the microenvironment and can modify the interplay between cancer
cells and immune populations such as CD8 + T cells and macrophages,
but patient responses to immune checkpoint blockade are still far
from universal'®. These studies have expanded our understanding of
the immune components of the microenvironment though the com-
position of stromal cell populations and their interactions with tumor
cells remain unclear. Elucidating the specific relationship between
stromal cells and tumor cells within the TME will advance our under-
standing of carcinogenesis and cancer progression.

In this study, we profiled human ccRCC tumors and their matched
normal control kidney tissue from treatment-naive patients, in addi-
tion to primary tumors from patients presented with bone metastases
at diagnosis. This single-cell transcriptomic analysis led to the follow-
ing observations: (1) tumor cells are transcriptionally similar to a sub-
set of proximal tubule cells which may be an indication of the tumor
cell of origin”, (2) the synchronous comparison of primary tumor and
bone-metastatic tumor tissues from two patients who presented with
de novo metastases revealed a specific metastatic signature associated
with poor prognosis, (3) the stromal cells within RCC tumors show the
highest transcriptional difference of analyzed cell types when com-
pared to adjacent normal kidney, and (4) building on other scRNA-seq
studies of human RCC'*"*""%, we identify additional components of the
TME including a cellular map of the stromal cell compartment, and of
cell-to-cell interactions within the tumor that might be vulnerable to
therapeutic targeting. This careful dissection of the cellular and
molecular landscape of ccRCC is intended to facilitate avenues of
therapeutic intervention and, ultimately, better treatments for
patients suffering from ccRCC.

Results

Primary human ccRCC show consistent microenvironmental
changes as compared to matched normal kidney tissue

To provide an overview of the molecular and cellular landscape of
patient-matched normal kidney and ccRCC tissue, we performed
scRNA-seq profiling (10x Chromium) from freshly resected primary
ccRCC tumors (16) and adjacent normal samples from 10 patients
(Fig. 1a). Nine patients were diagnosed with ccRCC and 1 patient with
papillary RCC, pRCC (pRCC was excluded from analysis). Two patients
(RCC-BMI-PT and RCC-BM2-PT1,2) had clinical metastases at multiple
sites at the time of diagnosis (Supplementary Fig. 1a, Supplementary
Data 1). Tumor tissues and adjacent normal kidney tissue collected
from the same patient (from two patients, tumors in a different loca-
tion on the kidney were profiled) permitted a matched comparison

and helped to control for inter-individual variation. After quality con-
trol (Methods), we obtained 157,881 cells (ccRCC: 122,054 cells +
normal kidney: 35,827 cells), and samples were integrated using joint
analysis of the heterogenous samples (Fig. 1b and Supplemen-
tary Fig. 1b).

Unsupervised clustering identified 21 distinct clusters, including
normal kidney cell populations, tumor cells, and immune and non-
immune stromal populations (Fig. 1b). The stromal cells included
pericytes (expressing RGS5 and MYH11), endothelial cells (RAMP2 and
CD34) and fibroblasts (DCN and LUM). Lymphoid cells included T cells
(CD3D and CD3E), NK cells (KLRDI and XCLI), and B cells (CD79 and
CD19). The myeloid compartment consisted of macrophages (CD68,
CIQA, C1QB, and CIQC), monocytes (FCNI and SI00A9), and myeloid
dendritic cells (CLEC9A and CDIC) (Fig. 1c).

The patient-matched adjacent kidney samples (normal, tumor
uninvolved) allowed us to identify tumor-specific changes. Cell frac-
tion differences were performed using cell density analysis on the joint
UMAP embedding and direct comparison of cell proportions. At
the global level, this analysis revealed an enrichment of pericytes in the
RCC as compared to their adjacent normal kidney tissues, an increase
in the CTLs and proliferating T cells, as well as macrophages (Fig. 1d, e
and Supplementary Fig. 1c, d). As proportional changes of one subtype
could potentially skew the representation of other subtypes, we con-
firmed findings via a Compositional Data Analysis technique to esti-
mate compositional changes” (Fig. 1f, Supplementary Fig. 1d).

In addition to the changes in the proportion of cell populations,
we examined transcriptional state differences between tumor and
adjacent normal kidney tissues using an expression distance mea-
surement based on the Pearson linear correlation. The stromal com-
partment, including fibroblasts, endothelial cells, and pericytes,
demonstrated the largest transcriptional differences between tumor
and adjacent normal (Fig. 1g). Specifically, there was upregulation of
genes associated with cell motility and angiogenesis (blood vessel
morphogenesis) (Supplementary Fig. 1e, f). This suggests cancer-
specific alterations in the stromal microenvironment during tumor
progression. Expression distances were further projected using mul-
tidimensional scaling (MDS) (Fig. 1h), resulting in consistent separation
of normal kidney tissue (circular) from primary RCC (triangular).

ccRCC tumors establish an immunosuppressive tumor
microenvironment

Several types of cancer, including RCC, are heavily infiltrated by
immune cells even when localized>”. Subcluster analysis of myeloid
cells identified three subpopulations of myeloid dendritic cells (mDC),
three populations of monocytes (Mono-1, 2, 3), and three populations
of macrophages (Macro-1, 2, 3) (Fig. 2a). In the mDCs group, CDIC"
mDC (CDIC, FCERIA, and CLECIOA) (Supplementary Fig. 2a) were
reduced in the tumor compartment compared to the adjacent kid-
ney (Fig. 2b).

We identified an increasing population of proliferating myeloid
clusters expressing both mDC and macrophage signatures (MKI67,
KIAAO101, CDIC, and CIQA) (Supplementary Fig. 2¢c, d). Focused sub-
cluster analysis of these cells revealed two clusters: proliferating
macrophage (CIQA and APOCI) and proliferating mDC (CLECIOA and
CDIC); the proliferating macrophages showed a similar cell phenotype
to Macro-1/2 expressing CD163, TREM2, and SPP1 (Supplementary
Fig. 2a, b).

The three macrophage subpopulations showed a distinct gene
signature (Macro-1: SEPP1, PDK4, and FCGRIA; Macro-2: SPP1, CXCL9,
CXCL10, and CD68; Macro-3: PLAUR, IL1B, and CXCL2) (Supplementary
Fig. 2b). Macro-1 and Macro-2 showed a significantly increased M2
macrophage signature score compared to Macro-3 (Fig. 2c) and
expressed typical M2 marker genes (CD68, TGFBI, CD163, TGFB2,
CCL18, MMP14, CTSD, MARCO?, and CSFIR) (Supplementary Fig. 2a)
suggesting that these macrophages are suppressive of the immune
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Fig. 1| Single-cell landscape of the ecosystem in primary ccRCC and adjacent
normal tissue. a Experimental design created with Biorender.com and Adobe
Illustrator. b Integrative analysis of scRNA-seq samples from 26 RCC samples,
visualized using a common UMAP embedding for adj-normal (left) and tumor
kidney tissue (right). ¢ Heatmap showing expression of markers for major cell
populations. d Changes in the composition of all compartments combining all
sample fractions and is visualized as cell density on the joint embedding.
e Statistical assessment of the cell density differences comparing tumor with
adjacent normal. A two-side Wilcoxon test was used, visualized as a Z score. Red
indicates increased cell abundance in tumor, blue indicates decreased cell
abundance in tumor. f Change in cell composition evaluated by Compositional
Data Analysis. The x-axis indicates the separating coefficient for each cell type,
with the positive values corresponding to increased abundance in tumor, and
negative to decreased abundance. The boxplots and individual data points show
uncertainty based on bootstrap resampling of samples and cells (see Methods).
Boxplot includes center line: median; box limits: upper and lower quartiles;

whiskers extend at most 1.5x interquartile range past upper and lower quartiles.
g The boxplots showing the magnitude of transcriptional change between pri-
mary RCC and normal kidney tissue in major cell populations. The magnitude is
assessed based on a Pearson linear correlation coefficient, normalized by the
medium variation within primary RCC and normal kidney tissue (see Methods).
Statistics significance within each cell type is measured with permutation test in
sample group (Pericytes **p = 0.003; Endothelial **p = 0.003; Fibroblast

**p =0.003; Erythroid **p = 0.005; Macro **p = 0.004; Proliferation T cell *p = 0.01;
Treg **p =0.009). Boxplot includes center line: median; box limits: upper and
lower quartiles; whiskers extend at most 1.5x interquartile range past upper and
lower quartiles. h MDS embedding of different samples, based on their overall
expression distance. The similarity measure measures the magnitude of expres-
sion change for each subpopulation, using size-weighted average to combine
them into an overall expression distance that controls the compositional differ-
ences. Shape indicates different sample fractions. Source data are provided as a

Source Data file.
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Fig. 2 | An immunosuppressive environment in ccRCC. a UMAP embedding
demonstrating myeloid subpopulations. b Boxplots showing the proportions of
myeloid subsets divided by the total myeloid cell number (macro-2 ***p =1.2e-05;
mDC_CDIC **p=0.0024), based on two-side Wilcoxon rank-sum test (tumor

n =14 samples, normal adjacent kidney, n =10 samples). ¢ Average expression of
the M1 and M2 macrophage signature gene panel across different monocyte
populations shown as boxplot. Statistics are accessed using two-side Wilcoxon
rank-sum test (M1: macro-1 vs. macro-3 **p = 3.4e-05; macro-2 vs. macro-3
**p=0.0019. M2: macro-1 vs. macro-3 ***p = 4.2e-06; macro-2 vs. macro-3

*p =0.046). d UMAP embedding showing T-cell subpopulations. e Changes in the
composition of the myeloid compartment between tumor and normal is visua-
lized as cell density on the joint embedding. f Boxplot presenting the exhaustion
score of the T-cell population comparing the adjacent normal kidney samples
(turquoise) with tumor samples (red). Statistics are accessed using two-side
Wilcoxon rank-sum test. IQR range similar to panel b. Single-cell samples, tumor

Exhaustion score in CTL-1

n=14 samples, normal, n =10 samples. CTL-1 *p = 0.013; CTL-2 p = ns. g Boxplots
illustrate significant increase of Treg activity in the primary ccRCC. Statistics are
accessed using two-side Wilcoxon rank-sum test. Treg ***p = 0.00065. Boxplots in
b, c)and f, g include center line, median; box limits, upper and lower quartiles;
whiskers are highest and lowest values no greater than 1.5x IQR. h Correlation of
proliferation T cells abundance and CTL-1 abundance is shown as scatter plot.
Pearson linear correlation estimate, and p-values are shown. The error band
indicates 95% confidence interval. i Correlation of exhaustion signature score in
CTL-1 and Treg activity score in Tregs is shown as scatter plot. Pearson linear
correlation estimate, and p-values are shown. The error band indicates 95%
confidence interval. j RNA velocity analysis of the transitions of CTL-1, CTL-2, and
proliferating T cells. k Visualization of exhaustion score shown on T-cell UMAP
embedding. 1 Expression trends of the top 200 genes whose expression corre-
lates with velocity pseudotime in panel j. Source data are provided as a Source
Data file.
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response and likely supporting tumor growth”. Macro-3 showed a
significantly higher M1 signature score compared to Macro-1 and
Macro-2 (Fig. 2c) and expressed high levels of ILIA and IL1B* (Sup-
plementary Fig. 2a), indicative of a pro-inflammatory state. Macro-2
was separated from the other macrophage clusters by overexpressing
TREM?2 and SPP1 (Supplementary Fig. 2a, b), two genes that have been
associated with tumor angiogenesis and immune checkpoint therapy?.
The expression of SPPI" tumor-associated macrophages has previously
been identified in eight other tumor types, including colorectal cancer
and breast cancer?. The overexpression of TREM2* in macrophages in
tumors has been linked to resistance to immune checkpoint therapy?.
Consistent with this, SPP1 and TREM2 expression were significantly
increased in the tumor fraction compared to the adjacent normal
kidney tissue (Supplementary Fig. 2e). TREM2 is exclusively expressed
in the macrophage population (Supplementary Fig. 2f), and further
analysis of bulk RNA-seq data®* shows that TREM2-high tumors are
associated with poor survival outcomes (Supplementary Fig. 2j, k),
suggesting that TREM2+ M2 macrophages play an important role in
ccRCC progression. Furthermore, we validated the increased
TREM2 + macrophage in tumors using flow cytometric analysis (Sup-
plementary Fig. 2g, i) and found infiltrated TREM2 + cells within the
ccRCC tumor microenvironment by utilizing the public ccRCC spatial
transcriptomic data® (Supplementary Fig. 2h).

Subcluster analysis of the T lymphocytes revealed the anticipated
T-cell subpopulations, including CD8' cytotoxic T lymphocytes (CTLs)
(CD8A and IFNG), Tregs (IL2RA, CTLA-4, and FOXP3), CD4" naive T cells
(CCR?), T helper cells (Th) (RORC and IL17A), and subgroups of NK cells
(NKG7 and NCRI) (Fig. 2d; Supplementary Fig. 3a). We observed pro-
liferating T cells (MKI67, CD8A, and TOP2A), and two different CTL
populations: CTL-1 (HAVCR2 and PDCDI) and CTL-2 (CD8A and KLRGI)
(Fig. 2d; Supplementary Fig. 3a). In comparison to the adjacent kidney,
the proportion of CTL-1 and proliferating T cells were significantly
increased in the tumor fraction (Fig. 2e; Supplementary Fig. 3b). Fur-
ther, CTL-1 expressed known immune-inhibitory molecules such as
PDCDI, TOX, HAVCR2, LAG3, and CTLA-4 indicating that the CTL-1 cells
are suppressed in RCC" (Fig. 2f; Supplementary Fig. 3a-d). The CTL-1
exhaustion score” was significantly higher in tumor tissue compared
to adjacent kidneys (Fig. 2f), suggesting that the tumor-associated
CTL-1 might have diminished function. In parallel, we observed an
increased T,eg activity signature score in the tumor fraction (Fig. 2g),
with an association with CTL-1 exhaustion (Fig. 2i; Supplemen-
tary Fig. 3f).

Within the tumor fraction, CTL-1 abundance was significantly
correlated with the proliferating T-cell cluster (Fig. 2h). RNA velocity
analysis can be used to infer precursor progeny cell dynamics”, and we
identified a directional flow suggesting that the proliferating T cells
give rise to the CTL-1 population (Fig. 2j-1; Supplementary Fig. 3e).

The presence of NK cells in RCC may represent a critical compo-
nent of the antitumor response, and NK cell infiltration in patient
tumors has been associated with an improved clinical prognosis®.
Comparing the adjacent normal kidney tissue and the tumor, we
detected two subpopulations: NK-1 and NK-2 (Fig. 2d), which were
further annotated as CD56%™ NK-1 cells (CD44, XCLI, XCL2, and KLRCI)
and CD56°&" NK-2 cells (FGFBP2, CX3CR1, and GZMB)* (Supplemen-
tary Fig. 3a, h, i). Using a cytotoxicity score to confirm that they were
functionally distinct (Supplementary Data 5), we demonstrated that
the CD56"™ subset of NK cells has a significantly greater cytotoxic
phenotype (Supplementary Fig. 3i) with an expression of cytotoxic
genes (PRFI, GZMA, GZMB, GZMH, and GZMM)* (Supplementary
Fig. 3b; h, i).

A distinct metastatic tumor cell cluster correlates with a poor
prognosis

It is believed that primary ccRCC develops in the proximal part of the
nephron®’, and we focused on the adjacent normal kidney tissue,

where we identified four distinct subpopulations in the nephron
proximal tubule (PT), PT1-4 (Supplementary Fig. 4a, b). The PT1 tran-
scriptional signature was characterized by metabolism-associated
genes (FABPI and PRODH2)* and the PT4 signature of kidney fibrosis
(MMP7** and ITGB6) (Supplementary Fig. 4b). Interestingly, in PT2 the
transcriptional signature was one of inflammation and regeneration
gene expression (SOX9, IL32, and VCAMI) (Supplementary Fig. 4b),
which has been related to carcinogenesis and cancer progression®**,
Neighboring the proximal tubule cells was a small subpopulation of
glomerular podocytes (SEMA3G, CLDNS, and CRI)* found in the Bow-
man'’s capsule, where they wrap around capillaries of the glomerulus
(Supplementary Fig. 4a, b).

To relate the malignant cells to normal kidney anatomy, we
compared the transcriptional states of tumor cells and normal
nephron cell subsets from the adjacent normal kidneys. Tumor cells
and proximal tube cells showed a similar transcriptional profile, and
the malignant population clustered most closely with PT2 in the joint
integration (Fig. 3a, b), pointing to PT2 as a possible tumor cell of
origin. Young et al.” found a subset of PT cells (VCAMI+, SLCI7A3+, and
SLC7A13-) could be the origin of ccRCC, aligned with our annotated
proximal tubule 2 (PT2) and PT1 (Supplementary Fig. 4c). We further
utilize bulk RNA-seq data and found a significant upregulation of SOX9,
IL32, and SLC22A6 (PT2), and downregulation of SLC22A6/ SLC22A8
(PT1) in tumor compared to adjacent normal tissue (Supplementary
Fig. 4d), confirming our cell origin hypothesis on PT2 cells.

Comparing the normal PT cells, we investigated differentially
expressed genes with a focus on transcriptional programs known to
underlie tumorigenesis in ccRCC. Upregulated genes included VEGFA,
NDUFA4L2, NNMT2, and PLIN2, all previously shown to be involved in
tumor development and progression (Fig. 3c, Supplementary
Fig. 4c, d)***.

We next inferred large-scale chromosomal copy number varia-
tions (CNVs) based on transcriptomic data using inferCNV*, Our
findings are in line with previous descriptions of frequent aberrations
in ccRCC, including the loss on chr3p, chrl4, and gains on 5q (Fig. 3d;
Supplementary Fig. 5a)’*°. One papillary RCC sample (PR6) displayed a
markedly different CNV profile (gain of chr3p, chr7, and chr17) and was
therefore removed from subsequent analysis.

Recent studies have revealed recurrent CNVs in patients with
kidney cancer (TRACERx Renal and TCGA KIRC cohorts)'**°. To ana-
lyze tumor cell heterogeneity, we performed hierarchical clustering of
inferred CNV profiles with a comparison to publicly available single-
cell resolution datasets from advanced ccRCC patients™”. Clustering
of CNV profiles revealed four major tumor clusters that were shared by
different patients (Fig. 3d; Supplementary Fig. 5c). C1 and C2 were
found mainly in primary RCC patients without metastatic disease,
defined by loss of chromosome 3p (Fig. 3d, e), driven by genes asso-
ciated with catabolic and metabolic processes (Supplementary Fig. 5c).
C3 was characterized by losses on chr3p, chrép, chri4, and showed high
expression of APOE, APOCI, ACSM2A, and ACSM2B (Supplementary
Fig. 5d). C4 had the most abundant copy number aberrations and was
notably enriched in the patients with multiple metastatic sites of dis-
ease (Fig. 3d-e). C4 also had a distinct transcriptional profile with
upregulation of SAA2, SAA1, APOL1, and MET (Supplementary Fig. 5d),
exclusive when compared to other cell types (Supplementary Fig. 5e).
MET is a tyrosine kinase receptor involved in cell proliferation, survival,
and migration®; it is among the therapeutic targets of cabozantinib*.
We further perform DE gene analysis and defined a metastatic sig-
nature gene set (SAAI, SAA2, APOL1, and MET, Methods). Notably, we
observed that the metastatic signature was significantly associated
with poor prognosis in two independent RCC cohorts (Fig. 3g). Even
the gene expression of the individual genes APOLI and SAAI (Fig. 3f, h)
correlated with the disease stage. In addition, we also validated the
metastatic signature gene expression in tumor cells from bone
metastasis sites using an independent study of the bone marrow renal
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Fig. 3 | Intratumoral heterogeneity reveals distinctive malignant cell sub-
clones. a Joint alignment of nephron anatomy cells from normal kidney tissue and
tumor cells from primary ccRCC tissue in UMAP embedding, colored by cell
annotation. b Expression distance of different cell subpopulations is shown as a
dendrogram. c Violin plot showing representative marker gene expression of
tumor cells. d Inferred CNV profile of tumor cells with normal nephron anatomy
cells as normal reference. e Summary of tumor cell subclones, number of tumor
cells (Top), clinic pathological features (middle), cell abundance of tumor sub-
clones (bottom) in each sample. f Violin plot showing metastatic signature gene
expression in patient tumor cells from primary ccRCC, local kidney metastasis and
bone metastasis. g Overall survival (OS) analysis for TCGA KIRC (n =533) and

CheckMate (n=250) bulk RNA-seq data. Patients were stratified into two groups
based on the average expression (binary: top 25% versus bottom 25%) of metastatic
signatures as annotated by key marker genes in panel f. Statistics are accessed by
two-side log-rank test. Bootstrap resampling was performed on signature genes
and p-value was calculated using the 95% reproducibility power p-value (see
Methods). h Expression of APOLI and SAAI are shown as boxplot, stratifying
patients by disease stage (TCGA KIRC) with a two-side Wilcoxon rank-sum test
(APOLI: stage i-iii ***p =0.00016; stage i-iv ***p =1.9e-05. Sample size: stage
i=267; stage ii = 58, stage iii = 123; stage iv = 82). Boxplots: center line: median; box
limits: upper and lower quartiles; whiskers extend at most 1.5x interquartile range
past upper and lower quartiles. Source data are provided as a Source Data file.
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cell carcinoma (RCC) metastasis (GSE202813). Our analysis of 7 RCC
metastasis cases shows the upregulation of metastatic signature
compared to primary tumor cells, further demonstrating the reliability
of tumor metastatic signature. Taken together, we identified a distinct
tumor cell cluster with a transcriptomic program associated with
metastatic potential and poor survival®,

ccRCC are highly enriched with vascular remodeling and EMT
switch

Clear cell RCC are highly vascularized tumors with disorganized vas-
culature, endothelial cells, and pericytes**. Subcluster analysis of the
stromal compartment revealed two pericytes (RGS5, ACTA2, and

TAGLN), two fibroblasts (DCN and LUM), and five endothelial (CD34 and
VWF) subpopulations (Fig. 4a, Supplementary Fig. 6a, b). A notable
proportion of the pericytes, and some of the endothelial and fibroblast
cells, were only detected in the tumor fraction (Fig. 4a, b), suggesting a
tumor-induced remodeling of the stroma.

Pericyte-1 was enriched in the tumor fraction (Fig. 4e) and char-
acterized by higher expression of genes related to a pro-inflammatory
capillary phenotype (RGSS, KCNJ8, AXL, ABCC9, PDGFRB, and THYI)
(Supplementary Fig. 6c). Capillary pericytes, named because they are
wrapped around capillaries, favor vessel sprouting through the pro-
motion of endothelial tip cell formation, stimulating tumor angio-
genesis and possible hematogenous spread of tumor cells”. The
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Fig. 4 | ccRCC is driven by vascular remodeling through angiogenic and EMT
switch in stromal cells. a UMAP embedding of stromal cells, color-coded by the
cell subtypes. b Changes in the composition of stromal cell is visualized as cell
density on UMAP embedding. ¢ Dot plots showing representative marker gene
expression across different stromal subsets. The color represents scaled average
expression of marker genes in each cell type, and the size indicates the proportion
of cells expressing marker genes. d Boxplot plot illustrate EMT and angiogenesis
signature score across different stromal cell subpopulations of normal kidney tis-
sue and primary RCC. Statistics significances are accessed using a two-side Wil-
coxon rank-sum test (Angiogenesis: endo-1 ***p =1.9e-05; endo-2 **p = 0.0059;
endo-3 **p = 4.0e-04; endo-4 *p =0.002; endo-5 **p =1.00e-04; peri-1
***p=0,00067; peri-2 *** p=1.0E-06. EMT: endo-1 ***p = 1.0e-06; endo-2

***p =1.0e-06; endo-3 **p = 0.0016; endo-5 *p = 0.002; peri-1 ***p = 3.1e-05; peri-2
****p=4.1e-06. tumor n =14 samples, normal adjacent kidney, n =10 samples).

e Boxplots showing the proportions of pericytes subsets divided by the total
pericytes cell number. Peri-1 ***p =1.9e-05; peri-2 ***p =1.9e-05. f Boxplots

showing the proportions of endothelial subsets divided by the total endothelial cell
number. Statistics significances are accessed using a two-side Wilcoxon rank-sum
test (Endo-1 ***p = 3.1e-05; endo-3 ***p = 2.0e-06; endo-4 ****p = 4.7e-05). Boxplots
in d-finclude center line, median; box limits, upper and lower quartiles; and
whiskers are highest and lowest values no greater than 1.5x interquartile range.

g The enriched GO BP terms of top 200 upregulated genes for each stromal cell
subtype comparing to adjacent normal. The statistical analysis was performed by
over-representation test. h Violin plots showing cancer-associated fibroblast (CAF)
signature gene expression in tumor and adjacent normal fibroblast. i Similar with
Fig. 3g, showing ccRCC samples with higher CAF signature gene expression have
worse overall survival in TCGA KIRC (top, n = 533) and CheckMate (bottom, n = 250)
data. Statistics are accessed by two-side log-rank test. Bootstrap resampling was
performed on signature genes and p-value was calculated using the 95% reprodu-
cibility power p-value (see Methods). j INSR and CD36 expression in UMAP
embedding separately for tumor and adjacent normal tissue. Source data are
provided as a Source Data file.

Pericyte-2 cluster exhibited a vascular smooth muscle cell (VSMC)
phenotype (ACTA2, CNN1, RERGL MYH]I1, TAGLN, and PLN)*® (Supple-
mentary Fig. 6¢), and the proportion of cells was significantly reduced
in the tumor compartment (Fig. 4e). To validate this, we analyze spatial
transcriptomic data and found Pericyte-2 markers are less present in
tumor infiltrated region compared to Pericyte-1 (Supplementary
Fig. 7a-c). VSMCs are thought to maintain the structural integrity of
the blood vessels through their contractile properties and by inhibiting
ECM degradation that would result from processes including vessel
sprouting*®. These pericyte changes may indicate that the vascular
remodeling during ccRCC progression favors the pro-inflammatory
and pro-invasive pericyte populations over the VSMCs.

The fibroblast cluster was annotated based on the expression of
marker genes such as DCN and LUM (Fig. 4c; Supplementary Fig. 6a).
Compared to adjacent normal tissue, we found cancer-associated
fibroblast (CAF) signature genes*’” (FAP, FNI, LRRC1S, THY1, and TGFBI)
were increased in the tumor (Fig. 4h; Supplementary Fig. 6e) and
associated with poor prognosis in two independent ccRCC cohorts
(Fig. 4i). Interestingly, we detected a distinct stromal subcluster with a
proliferating phenotype (MK167), which was enriched in the tumor
compartment (Fig. 4a-c, Supplementary Fig. 5e). However, the data
are limited to make further conclusions of this population.

The endothelial population appears to be significantly
decreased in the tumor compared to adjacent normal kidney tissue
(Supplementary Figs. 1c and 7d). Within the endothelial cells,
endothelial-1 (Endo-1) was the most abundant and enriched in the
tumor (Fig. 4a, b, ), and characterized by an upregulation of tumor-
associated genes (PVLAP, CA2, SPARC, INSR, and IGFBP7)** (Fig. 4c,
Supplementary Fig. 6b, d). This gene signature is consistent with a
tumor-associated endothelial cell (TEC) phenotype, which has been
previously described and characterized by upregulated expression of
pro-angiogenic factors®. Interestingly, a subcluster of Endo-1 was
found almost exclusively in the tumor compartment (Fig. 4b), pre-
ferentially expressing known endothelial tip cell genes (KCNE3, DLL4,
EDNRB, ANGPT2, and SERPINEI) (Supplementary Fig. 6b, f). These
endothelial tip cells coordinate the sprouting of capillaries from pre-
existent vessels and create access points for tumor cells in the blood
stream®®. In a spatial context, we also observed high expression of
PLVAP and CA2 within the tumor infiltrated region (Supplementary
Fig. 7b, c).

Endothelial-2 (Endo-2) cells expressed genes of the vascular
endothelium (DARC, VCAMI1, and VWF) (Fig. 4c) and preferentially
expressed venous EC genes (GPM6A, CYPIB1, and MMRNI) (Supple-
mentary Fig. 6b, d)*®. Moreover, upregulation of genes CLU, NNMT, and
S$100A46, which are known to promote RCC cell proliferation and
metastasis, were found exclusively in the tumor compartment of Endo-
2 (Supplementary Fig. 6b, d) and could indicate a supportive role of
these cells to RCC progression®*",

Endothelial-3 (Endo-3) was characterized by high expression of
EHD3 (Fig. 4c), which is known to be expressed exclusively by kidney
glomerular ECs (GECs)*. Interestingly, Endo-3 cells were abundant in
normal adjacent tissue but significantly decreased in the tumor
(Fig. 4f) and showed an increased angiogenesis score (Fig. 4d). GECs
are crucial to the integrity of the glomerulus, and damage to these cells
contributes to the progression of chronic kidney disease®. This cluster
showed high expression of the angiogenesis-related endothelial
hematopoietic gene EMCN and MEG3 (Fig. 4c), which has been shown
to inhibit cell inflammation in RCC*.

The endothelial-4 (Endo-4) cluster was characterized by the
expression of hematopoietic stem cell-supporting factors (CXCL12 and
CD44). The endothelial-5 (Endo-5) cluster showed a tumor-associated
EC phenotype (IGFBP3, ENPP2, SEMA3G, TM4SF1, and TIMP3) (Fig. 4c;
Supplementary Fig. 6b, d), high angiogenesis score (Fig. 4d) as well as
similar upregulation of pathways related to blood vessel and circula-
tory development (Fig. 4g)*.

Ligand-receptor cell interaction analysis reveals potential ther-
apeutic targets in human ccRCC

Although renal tumors are highly infiltrated with immune cells, RCC
often successfully evades immune recognition by poorly understood
mechanisms®. We interrogated ligand-receptor interactions with the
goal of identifying potential prognostic biomarkers and therapeutic
targets (Fig. 5a). Several ligands were specifically upregulated in the
tumor cell population when compared to adjacent kidney, including
SPP1 and CD70 (Fig. 5b).

SPP1, also known as Osteopontin (OPN), promotes cancer pro-
gression and metastasis through activation of NFkB signaling, which
regulates extracellular matrix interactions™. Elevated levels of SPPI in
ccRCC are correlated with larger tumor size, advanced stage, higher Ki-
67 proliferation index, and decreased overall survival®*. SPPI binds
immune cells, including macrophages, NK cells, and T cells, and exerts
immunomodulatory actions®. The SPPI receptor ITGBI was upregu-
lated in tumor-derived NK cells, while another SPPI receptor ITGA4 was
upregulated in tumor-derived CTL-1 cells. This suggests that SPP1
produced by tumor cells exerts tumor-mediated immunoregulation
through NK cells and T cells (Fig. 5b).

The ligand CD70 induces apoptosis in B and T lymphocyte
populations in ¢ccRCC and has been associated with immune
suppression®, We found that CD70-CD27 signaling was upregulated
in tumor tissue compared to adjacent kidneys (Fig. 5c, e; Supple-
mentary Fig. 8b, d-g). CD70-CD27 expression correlated with T-cell
exhaustion (Fig. 5f). The CD27 receptor was overexpressed in tumor-
associated CTL-1 (Fig. 5b-d, g; Supplementary Fig. 8a, ¢), and cor-
related with CTL-1 exhaustion (Supplementary Fig. 9a, b). Both the
ligand, CD70, and its receptor, CD27, are independently expressed in
tumor tissue (Fig. Sh; Supplementary Fig. 9¢). Our data suggests that
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Fig. 5 | Cell-cell interaction analysis reveals potential therapeutic targets in
ccRCC. a Overview of potential ligand-receptor interactions of cell subpopulations.
b Bubble heatmap showing expression of ligand (tumor cells and stromal cell
subsets) and receptor (immune cell subsets) pairs in different stromal and immune
subsets. Dot size indicates expression ratio, color represents average gene
expression. Significance of ligand-receptor pair is determined by permutation test,
gene differential expression analysis and specific cellular expression (Methods).

¢ The predicted interactions between CD70 and CD27. d Violin plot showing CD27
expression in CTL-1 and Tregs. e CD27 and CD70 expression in TCGA KIRC data are
shown as boxplot. Statistics are accessed with a two-side Wilcoxon rank-sum test
(CD27 ****p < 2e-16; CD70 ***p < 2e-16. Sample size: Tumor n =533, Normal n =53).
Boxplots include center line, median; box limits, upper and lower quartiles; and
whiskers are highest and lowest values no greater than 1.5x interquartile range.

f Correlation of CD70-CD27 (tumor cells-CTL-1) average expression and CTL-1
exhaustion score is shown as scatter plot. Pearson linear correlation estimate, and
p-values are shown. The error band indicates 95% confidence interval. g Flow
cytometric analysis of CD27 expression on PDCDI1+ CD8+T cells from Tumor and
paired adjacent normal tissue. (n = 4 per group). Statistics are accessed with paired
two-side t-test (**p=0.0031). h Spatial feature plots showing CA9, CD70, and CD27
expression in ccRCC patient. Tumor spots are marked by CA9 expression. i CXCL9
and CXCL10 expression in TCGA KIRC data are shown as boxplot. Statistics are
accessed with a two-side Wilcoxon rank-sum test (CXCL9 ****p < 2e-16; CXCLIO ****
p <2e-16. Sample size: Tumor n =533, Normal n =53). Boxplots include center line,
median; box limits, upper and lower quartiles; and whiskers are highest and lowest
values no greater than 1.5x interquartile range. Source data are provided as a
Source Data file.
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CD70 is immunosuppressive and that its receptor CD27 merits
exploration as a therapeutic target in ccRCC”".

The chemokines CXCL9 and CXCLIO and their receptor CXCR3
(expressed on monocytes, T, and NK cells) appear to be involved in
angiogenesis®®. High expression of CXCR3 and CXCL9/10 has been
associated with a poor prognosis, tumor growth, and increased risk of
metastasis. Our analysis suggested that CXCL9-expressing mDC_LAMP3
cells, as well as CXCL10-expressing Macro cells, interact with CXCR3-
expressing proliferative T cells. In addition, CXCL9- and CXCL10-
expressing Macro-2 tumor cells interact with CXCR3-expressing pro-
liferating T cells, Tregs, and CTL-1 cells in the tumor (Fig. 5i; Supple-
mentary Figs. 8h and 9d, g). We demonstrated overexpression of
CXCL9 in mDC_LAMP3 and Macro-2 cells, and overexpression of
CXCL10 in proliferating macrophages (Pro Macro) and Macro-2 cells in
the tumor (Supplementary Figs. 8h and 9e). We observed that CXCL9
and CXCL10 are correlated with CTL infiltration and PDCDI expression
in multiple clinic cohorts from TIDE* (Supplementary Fig. 9g). We,
therefore, hypothesize that CXCL9/10 signaling via CXCR3 may impact
the microenvironment and potentially promote tumor progression
through deregulation of inflammatory pathways.

Discussion

Our study used coordinated surgical and research teams to bring fresh
patient samples from the operating room to the laboratory. This
enabled the single-cell characterization of treatment-naive ccRCC
primary tumors and adjacent normal kidney tissue with a focus on the
tumor microenvironment. We uncovered intratumor heterogeneity, as
well as a highly heterogenous tumor microenvironment, and multiple
immunosuppressive cell-cell interactions. Further investigation of
these cell-cell interactions in the tumor ecosystem highlighted
potential therapeutic targets.

Clear cell RCC tumor cells almost universally display the loss of
function of the von Hippel-Lindau (VHL) gene. Consistent with this, we
observed that malignant cells have recurrent deletions of chr3p (where
VHL is located) and upregulation of VEGFA and VIM. The cellular origin
of ccRCC has been suggested to be from proximal tubule epithelium?®.
Indeed, malignant cells show similar transcription profiles with the PT2
cluster (Fig. 3a), pointing towards the PT2 subset as the ccRCC cell of
origin. Intratumor heterogeneity has been widely reported®®®', and we
identified four subsets of malignant cells. Notably, malignant cell
cluster 4 was associated with poor overall survival and was enriched in
patients with metastases. Cluster 4 was characterized by the expres-
sion of SAAI, SAA2, and APOL1, genes that are upregulated in high-
grade ccRCC tumors. Indeed, high SAAI protein expression has been
negatively correlated with patient survival*’, We suggest that Cluster 4
cells exhibit a distinct transcriptional signature that portends meta-
static potential, and a specific focus on this cluster may highlight
potential therapeutic targets to prevent or treat metastatic spread.

Within the complex immune microenvironment, we identified
exhausted T cells (CTL-1) and immunosuppressive cell populations,
including T..gs and Macro-2. During cancer progression, CTLs can
exhibit loss of function as they become exhausted due to immune-
related tolerance and immunosuppression. Cancer-associated fibro-
blasts (CAFs), M2 macrophages, and T,.gs may counteract the CD8" T
and NK cell-mediated antitumor immune responses®. Studies in mel-
anoma have shown that increased expression of PD-L1, IDO, and FoxP3
protein in T, of the TME is driven by infiltration of CD8" T cells,
further supporting the idea that these are part of an immune negative
feedback loop?. Immunotherapies that uncouple these pathways may
be the most effective on tumors showing T-cell infiltrated phenotypes.
In RCC, T-cell infiltration into the TME has been demonstrated", and
anti-CTLA-4, and anti-PD-1 antibodies are approved treatment strate-
gies in patients with advanced disease®’. Both PD-1 and CTLA-4 recep-
tors are upregulated in T,egs and contribute to the immunosuppressive
function of Tregs®*. T-cell immunoglobulin mucin-3 (TIM-3/HAVCR2) is

another immune checkpoint surface receptor present on T,egs that
tends to suppress the immune responses and therefore resist radiation
therapy®. This particular immunosuppressive cell population of Tegs
may represent another potential therapeutic target in ccRCC.

Regarding myeloid cells within the TME, blocking the polarization
to M2 macrophages results in increased recruitment of CTLs and an
antitumor immune attack®®. Conversely, the induction of M2 macro-
phages impairs the response of CTLs in the TME®®. We show that this
phenomenon also exists in ccRCC, as illustrated by the increased
Macro-2 (Fig. 2b) and the increased exhaustion score of the CTL-1
(Fig. 2f). The Macro-2 population expressed high levels of TREM2in the
tumor fractions and expression of TREM2 has been shown to be ele-
vated in malignant tumors, including RCC®’. TREM2”" mice are more
responsive to immune checkpoint blockade and less susceptible to
cancer progression”. TREM2 inhibition of the tumor-infiltrating mac-
rophages suppressed tumor growth and enhanced checkpoint block-
ing therapy in preclinical studies. Here, we show that TREM2 is elevated
in the TME myeloid cells (Supplementary Fig. 2g-i), pointing to the
potential as a prognostic marker in ccRCC and as a biomarker that
could identify patients that would benefit from checkpoint blockade
immunotherapy. Our interactome analysis suggests that the immu-
nosuppressive role of TREM2 macrophages (Macro-2) affects T-cell
exhaustion through C-X-C motif chemokine ligand 9/10 (CXCLY/
CXCLI10) and C-X-C-chemokine receptor 3 (CXCR3) signaling®.

In terms of cell-cell interactions, we identified the CD70-CD27
relationship as potentially important, hypothesizing that upregulated
CD70-CD27 signaling in the tumor may result in CTL exhaustion. Here,
the tumor cells expressed the ligands CD70 and CD80-CD86 that bind
to their respective CD27 and CD28 receptors expressed on CD8" T cells.
The receptor-ligand interactions represent the first step for CD8" T-cell
priming®®. When activated, naive CD4" and CD8" T cells upregulate
CD27, resulting in increased circulating soluble CD27, a diagnostic
marker of T-cell activation®®. CD70, the ligand of CD27, is exclusively
expressed after immune activation and is also found in both CD8"
T cells and Tegs®. The ligand CD70 is frequently overexpressed in
several solid cancers, most prominently renal cancer (87%) but also
including lung cancer (10%), glioblastoma (42%), and ovarian cancer
(15%). Given that its receptor CD27 is predominantly found on
exhausted T cells (CTL-1) (Fig. 5g; Supplementary Figs. 8e-g and 9a, b,
¢), CD70-CD27 interactions may contribute to immune evasion by the
tumor. If so, these interactions would represent a potential therapeutic
target’®.

In conclusion, our study provides several important biological
insights about ccRCC: (1) We identify a distinct metastatic signature
that predicts survival outcome, (2) we characterized a proximal tubule
cell population that may represent the ccRCC cell of origin, and (3) we
dissect the immunosuppressive environment and the stromal altera-
tions in treatment-naive patients. We highlight potential therapeutic
targets to be further evaluated in preclinical models. We hope that our
study will provide a valuable resource for further explorations into
critical cellular relationships and signaling axes that remodel the
tumor microenvironment resulting in a tumor-suppressive environ-
ment. Ultimately, validating these relationships may lead to alternative
approaches to address the clinical problem of relapsed and
metastatic ccRCC.

Methods

Experimental model and subject details

All human-subjects tissue collection was carried out with institutional
review board (IRB) approval (Dana Farber/Harvard Cancer Center
protocol 13-416 and Partners protocol 2017P000635/PHS).

Tumor specimens. In the cases, each patient was diagnosed with
primary ccRCC. They underwent nephrectomy, and the patients gave
consent for the use of their tissue for research purposes. At the same
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time as the tumor was resected surgeon was also able to obtain a tissue
adjacent to the tumor that is considered healthy normal kidney tissue
for control. Specimens were submitted to pathology as standard
confirmation of the diagnosis of clear cell renal cell carcinoma. The
total number of patients in this analysis consists of 10 patients diag-
nosed with a primary ccRCC from whom we obtained the tumor
material and their matched adjacent normal kidney tissue. In total 15
primary ccRCC tumors, 1 pRCC, and 10 adjacent normal kidney tissue
samples were collected.

Sample preparation

Dissociation of tissues into single cells. All samples were collected in
Media 199 supplemented with 2% (v/v) FBS. Single-cell suspensions of
the tumors were obtained by cutting the tumor into small pieces
(Imm?) in a 70 mm filter cap, followed by enzymatic dissociation for
45min at 37°C with shaking at 120 rpm using Collagenase I, Col-
lagenase I, Collagenase 1lI, Collagenase IV (all at a concentration of
1mg/ml) and Dispase (2 mg/ml) in the presence of RNase inhibitors
(RNasin (Promega) and RNase OUT (Invitrogen). Erythrocytes were
subsequently removed by ACK Lysing buffer (Quality Biological), and
cells resuspended in Media 199 supplemented with 2% (v/v) FBS for
further analysis.

FACS sorting of human samples for single-cell RNA-sequencing.
Single cells from the tumor and the normal adjacent kidney samples
subjected to RBC lysis were surfaces stained with anti-CD235-PE (Bio-
legend) for 30 min at 4 °C. Cells were washed once with 2% FBS-PBS (v/
v) followed by DAPI staining (1 ug/ml). Flow sorting for live and non-
erythroid cells (DAPI-neg/CD235-neg) was performed on a BD FACS
Aria Il equipped with a 100 um nozzle (BD Biosciences, San Jose, CA)
instrument. All flow cytometry data were analyzed using FlowJo soft-
ware (Treestar, San Carlos, CA).

Massively parallel single-cell RNA-sequencing. Single cells were
encapsulated into emulsion droplets using Chromium Controller (10x
Genomics). scRNA-seq libraries were constructed using Chromium
Single Cell 3’ v2 Reagent Kit according to the manufacturer’s protocol.
Briefly, post-sorting sample volume was decreased, and cells were
examined under a microscope and counted with a hemocytometer.
Cells were then loaded in each channel with a target output of ~6000
cells. Reverse transcription and library preparation was done on
C1000 Touch

Thermal cycler with 96-Deep Well Reaction Module (Bio-Rad).
Amplified ¢cDNA and final libraries were evaluated on an Agilent
BioAnalyzer using a High Sensitivity DNA Kit (Agilent Technologies).
Individual libraries were diluted to 4 nM and pooled for sequencing.
Pools were sequenced with 75 cycle run kits (26 bp Readl, 8 bp Indexl1,
and 55 bp Read2) on the NextSeq 500 Sequencing System (Illumina) to
~70-80% saturation level.

Flow cytometric validation. ccRCC samples and their adjacent normal
kidney tissue were thawed and prepared for flow cytometry according
to the pre-decided stroma, macrophage, and T-cell panels given in
Supplementary Table 8. Samples were projected to FC-block, further
labeled, and fixed with a live/dead assay. For stroma, we selected
populations negative for CD45 from live cells, and for the immune
populations, we selected CD45 positive population from live cells to
proceed with the analysis. Flow cytometric and statistical analyses
were made in FlowJO (version 10.8.1, Java 9.0.1+11) and GraphPad
Prism9 (v.9.3.1 (350)).

scRNA-seq data preprocessing and quality control

Fastq files were obtained using bcl2fastq (v2.20.0.422). The sequenced
10X libraries were then mapped to GRCh38 human genome using Cell
Ranger software (version 3.0.1) with default parameters. In total, we

sequenced 175,485 cells. To remove low-quality and doublets cells, we
excluded cells with fewer than 700 total UMI. The obtained read count
matrices were further analyzed with scrublet” for doublets identifica-
tion. We remove cells with Scrublet scores above 0.4. After quality
control, 157,881 cells from 26 samples were obtained. Detailed sample
and single-cell information were listed in Supplementary Table 2 and
Supplementary Table 3.

scRNA-seq data integration and batch effect correction

We used Conos’” (v1.4.1) (k=15, k.self = 5, matching.method =‘mNN’,
metric = ‘angular’, space=‘PCA’) to integrate multiple scRNA-seq
datasets together. Principal component analysis was performed on
2000 genes with the most variable expression selected by conos.
Leiden clustering was used to build to determine joint cell clusters
across the entire dataset collection. UMAP embedding was estimated
using embedGraph function in Conos with default parameter
settings.

To identify myeloid, stroma, and T-cell subpopulations, we
extracted all myeloid and all T-cell populations and realigned them
separately using Conos. Leiden community detection method (as
implemented in Conos) was used to determine refined joint clusters,
providing higher resolution than the initial analysis.

Determination of major cell types and cell states

To identify major cell types in both tumor sample datasets and healthy
sample datasets, we used sets of well-established marker genes for
each of those cell types and annotated each cell type based on highly
expressed genes. We used previous single-cell atlas studies datasets for
the annotation of all cell populations'®* 7>, The detailed gene list can be
found in Supplementary Data 4. For subtype assessment within the
major cell types, we re-analyzed cell subsets separately with Conos. We
separately extracted all myeloid cells (T cells/stromal cells) and used
Conos to identify subclusters with the default settings. Each sample
requires at least 40 cells, and pRCC patient was excluded from the
analysis.

Calculation of gene set signature scores

To assess cell states in different cell subsets and conditions, we use
a gene set signature score to measure the relative difference of cell
states. The signature scores were calculated as average expression
values of the genes in a given set. Specifically, we first calculated the
signature score for each cell as an average normalized (for cell size)
gene expression magnitudes, then the signature score for each
sample was computed as the mean across all cells. All signature
gene modules were listed in the Supplementary Data 5. The statis-
tical significance was assessed using a two-side Wilcoxon rank-
sum test.

Differentially expressed genes

For differential expression analysis between cell types, a two-side
Wilcoxon rank-sum test, implemented by the getDifferentialGenes()
function from Conos R was used to identify marker genes of each cell
cluster. The genes were considered differentially expressed if the
p-value determined Z score was greater than 3. For differential
expression analysis between sample fractions (for example Tumor
Treg vs. adj-Normal Treg), getPerCellTypeDE () function in Conos was
utilized. As described previously, it first forms “mini-bulk” (or meta-
cell) RNA-seq measurements by combining all molecules measured for
each gene in each subpopulation in each sample. This results in a
collection of bulk-like RNA-seq samples, and the downstream differ-
ential gene expression analysis was performed using DESeq2”
(v 1.32.0) with default settings. A minimal number of 10 cells (of the
selected cell type) were required for a sample to be included in the
comparison. Differential expression gene lists for stroma cell subsets
could be found Supplementary Data 6.
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Estimation of differential cell density

We use estimateDiffCellDensity function from cacoa (https://github.
com/kharchenkolab/cacoa v0.3.0) to estimate differential cell density.
To estimate differential cell density between tumor and adjacent
normal on joint UMAP embedding, we first compute kernel density in
joint embedding space for each sample using ks R package (bin = 400).
Obtained density matrix was normalized by quantile normalization.
The average density of each sample group was shown in Fig. 1d. To
impute the differential cell density between sample groups, we per-
formed t-test between sample groups in each girded bin. To avoid
noise from the background, we filter bins with at least 1 cell, and the Z
score is visualized as a heatmap.

Compositional analyses

Statistical significance of proportion differences (Supplementary
Fig. 1d) was evaluated using a two-side Wilcoxon rank-sum test. To
avoid the potentially skew representation of other subtypes. We also
performed compositional analyses (CoDA) to calculate robust esti-
mates of compositional changes using estimate CellLoadings from
cacao. In short, isometric log-ratio transformations were applied to cell
type fractions, followed by canonical discriminant analyses using the
candisc package to obtain weighted contrasts between cell types in
tumor and normal samples. Furthermore, to account for inter-patient
variability, we perform random cells to evaluate the robustness and
statistical significance of the separating coefficients. In total,
1000 subsampling were performed each time evaluating 1000 ran-
domly sampled cells from both groups. The separating coefficients are
plotted (Fig. 1g).

Expression distance analysis

Expression differences analyses were done using functions from cacao.
Expression differences between matching subpopulations were
determined by first estimating “mini-bulk” (or meta-cell) RNA-seq
measurements for each subpopulation in each sample. Briefly, in each
dataset, the molecules from all cells belonging to a given subpopula-
tion were summed for each gene (i.e., forgetting cellular barcodes).
The distance between the resulting high-coverage RNA- seq vectors
was calculated using Pearson’s linear correlation on log-transformed
values. To attenuate the impact of the differences in the number of
cells, a total of 100 sampling rounds were performed. To obtain final
normalized distance estimates (Fig. 1h), the expression distances of
sample pairs between the conditions (tumor and adjacent normal)
were normalized by the median expression distance of pairs within the
tumor and normal conditions. To access the significance of expression
distance for given cell types, we perform permutations of randomized
sample groups (Tumor vs adj-Normal) labels and generated a null
distribution for expression distance. Overall expression distances
between samples were determined as a normalized weighted sum of
correlation distances across all cell subpopulations contained in both
samples, with the weight equal to the subpopulation proportion
(measured as a minimal proportion that the given cell subpopulation
represents among the two samples being compared). Expression dis-
tances between samples are then projected to 2D space using MSD
using plotExpressionDistanceEmbedding function in cacao (Fig. 1f).

Malignant cells subclusters

To identify the malignant cells, we performed differential expression
gene analysis comparing putative tumor cells with normal kidney
nephron cells. Next, we inferred large-scale chromosomal copy num-
ber variations (CNVs) with inferCNV (v1.3.3), which use a moving
averaged expression profile across chromosomal intervals’>’® com-
pared to the normal reference. Here we perform inferCNV on putative
tumor cells using the normal kidney nephron cells as the reference
“normal” cells. To avoid potential biases from some samples, we take
normal nephron cells from multiple patients as a reference control. We

examine CNVs profile of tumor cells and define tumor subclusters
using hierarchical clustering. Inferred CNV profiles of malignant cells
and subclusters were shown in Fig. 3d.

Metastatic signature identification

To identify the metastatic signature genes, we run multiple round
differential expression analyses. Firstly, we performed different
expression analyses of different tumor cell subclusters (C1-C4),
requiring genes are highly expressed in C4. Genes are ranked by p-
value determined Z score (top 100 genes). Next, we run differential
expressed genes comparing C4 with all other cell populations (stroma,
myeloid, and T cells), requiring genes specifically expressed in tumor
cells (top 100 genes). Lastly, we collected tumor cells from ccRCC
bone metastasis (GSE202813) sites and manfully evaluated the gene
expression in primary tumor cells, and local metastatic tumor cells.
After that, we define four metastatic gene signatures from tumor cells.

RNA velocity-based cell fate tracing

To perform the RNA velocity analysis, the spliced reads and unspliced
reads were recounted by the velocyto (v0.17) python package’” based
on previously aligned bam files of scRNA-seq data. The calculation of
RNA velocity on low diminutions UMAP embedding was done by fol-
lowing the scvelo python pipeline”. scVelo (v0.2.3) was applied to both
merged datasets and individual sample fractions. we use the dynamical
model to learn the full transcriptional dynamics of splicing kinetic with
the default setting. Different samples are analyzed under the same
parameters, and there is no artificial adjustment of DEG.

Regressing cell-cycle genes

We use Seurat (v4.0.6)"® to regress out cell-cycle genes in join analysis
of proliferating T cells and CTLs. First, we assigned each cell a score,
based on its expression of G2/M and S phase markers with the Cell-
CycleScoring function. Then we applied the ScaleData function to
regress out cell-cycle genes. The scaled residuals of this model repre-
sent a ‘corrected’ expression matrix, that can be used downstream for
dimensionality reduction. UMAP embedding was used to visualize CTL
subpopulations.

Spatial transcriptome data analysis

10X Visium Spatial Transcriptomics (ST) data were downloaded from
GSE175540. The gene-spot matrices generated after ST data proces-
sing from ST and Visium samples were analyzed with the Seurat
package. Normalization across spots was performed with the LogVMR
function. Dimensionality reduction and clustering were performed
with independent component analysis (PCA) using the top 30 PCs.
Spatial feature expression plots were generated with the SpatialFea-
turePlot function in Seurat. We use CA9 expression to separate tumor
cells in infiltrated and non-infiltrated regions. R ks package was used to
distinguish cells within or outside of tumor cells infiltrated region.

Ligand and receptor analysis

Ligand-receptor interactions were inferred using a similar approach as
previously described””. We collected 1263 well-annotated ligand and
receptor pairs from cellDBphone. We first screened each of the ligands
and receptors based on their expression within each cell type,
requiring that the gene is expressed in more than 10% of the cells. Next,
we calculated the average expression of ligand and receptor pairs
across cell type pairs in normalized scRNA-seq data. The product of
average ligand expression in cell type A and the average receptor
expression in cell type B was used to measure LR pair expression. To
evaluate the robustness and statistical significance of LR pairs, we
calculated a null distribution for average ligand-receptor by shuffling
cell identities in the aggregated data and recalculating ligand-receptor
average pair expression across 1000 permutations of randomized cell
identities. The P-value was the number of randomized pairs exceeding
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the observed data. Benjamini-Hochberg (BH) method was used to
adjust the p-value (<0.05). To prioritize functional ligand-receptor
interaction pairs, we measured both ligand and receptor expression
levels across cell types, requiring both ligand and receptor highly
expressed in corresponding cell types taking other cell types as
background. The LR pairs were filtered by the p-value determined Z
score 3. We further performed a differential gene expression analysis
between sample fractions (for example, Tumor Treg vs. Normal Treg),
requiring both ligand or receptor are upregulated in the tumor frac-
tion (log2Foldchange > 0). The detailed LR list can be found in Sup-
plementary Data 7.

Survival analysis

To test if a given signature predicts survival, we first computed the
average gene expression level of the signature in each tumor based on
the bulk RNA-sequencing data. The samples were grouped into high
(top 25%) and low (bottom 25%) groups based on the average signature
gene expression. Next, we used two-side log-rank test to compute the
significance of the association between the signature expression value
and prognosis. To evaluate the stability of the signature genes list, we
resample the signature genes and repeat the analysis with 100 boot-
strap resampling rounds. Statistical significance was then assessed by
p-values at the 95% reproducibility power (i.e., reporting 0.95th
quantile of the sampled p-values).

Gene ontology

To test for enriched GO Biological Processes or KEGG Pathways in
gene sets, the GOstat (v.4.2) R package®® was used, with default
parameters. To determine the enriched Biological Processes GO
Terms, we used the approach above on the top 200 upregulated
genes called by getDifferentialGenes() and getPerCellTypeDE()
function in Conos.

Statistical analysis

P-values < 0.05 were considered significant. A two-side Wilcoxon rank-
sum test was used to assess significance in bulk seq and scRNA-seq
analyses unless otherwise stated.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Raw single-cell RNA-sequencing data and processed data are publicly
available and can be accessed from the NCBI Gene Expression Omni-
bus database under accession code GSE178481. GRCh38 human
reference genome was download from 10X genomics [https://support.
10xgenomics.com/single-cell-gene-expression/software/downloads/].
For the joint alignment analysis with public ccRCC scRNA-seq data,
we downloaded raw count matrix and cell annotation from
European Genome-phenome Archive under controlled access:
EGAS00001002171, EGAS00001002486, EGAS00001002325, and
Single Cell Portal [https://singlecell.broadinstitute.org/single_cell/
study/SCP1288/]"5, 10X Visium Spatial Transcriptomics (ST) data
were download from GSE175540%. For bulk RNA-seq data, TCGA clear
cell renal cell carcinoma (KIRC) cohort were downloaded from the
cBioPortal [https://www.cbioportal.org/study/clinicalData?id=kirc_
tcgal. The Checkmate 025 cohort data were obtained from the sup-
plementary table of published results" (https:/doi.org/10.1038/
$41591-020-0839-y). Source data are provided with this paper.

Code availability

The codes generated during this study are available at Github reposi-
tory [https://github.com/shenglinmei/ccRCC.analysis/] and Zenodo
[https://zenodo.org/record/7061983]%.
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