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A synchronized multimodal 
neuroimaging dataset for studying 
brain language processing
Shaonan Wang   1,2 ✉, Xiaohan Zhang1,2, Jiajun Zhang1,2 & Chengqing Zong1,2

We present a synchronized multimodal neuroimaging dataset for studying brain language 
processing (SMN4Lang) that contains functional magnetic resonance imaging (fMRI) and 
magnetoencephalography (MEG) data on the same 12 healthy volunteers while the volunteers listened 
to 6 hours of naturalistic stories, as well as high-resolution structural (T1, T2), diffusion MRI and resting-
state fMRI data for each participant. We also provide rich linguistic annotations for the stimuli, including 
word frequencies, syntactic tree structures, time-aligned characters and words, and various types 
of word and character embeddings. Quality assessment indicators verify that this is a high-quality 
neuroimaging dataset. Such synchronized data is separately collected by the same group of participants 
first listening to story materials in fMRI and then in MEG which are well suited to studying the dynamic 
processing of language comprehension, such as the time and location of different linguistic features 
encoded in the brain. In addition, this dataset, comprising a large vocabulary from stories with various 
topics, can serve as a brain benchmark to evaluate and improve computational language models.

Background & Summary
Scientists have spent decades studying human language processing. Evidence has accumulated that the 
language-related cortex includes Broca’s area in the inferior frontal gyrus (IFG) and Wernicke’s area in the supe-
rior temporal gyrus (STG) as well as parts of the middle temporal gyrus (MTG) and the inferior parietal and 
angular gyrus (AG) in the parietal lobe1. Moreover, different language components maybe processed at different 
times2. However, language is a complex and dynamic system that makes it difficult to decompose natural lan-
guage with traditional tightly controlled experimental designs. Moreover, the fragmented conclusions drawn by 
breaking apart language components are believed to be difficult to integrate to form a whole picture of human 
language processing.

In addition, there is a growing consensus that analyzing neuroimaging data collected by naturalistic stimuli 
may provide another perspective on human language processing. Compared to traditional factorial designs with 
highly controlled features, natural language as a stimulus is better suited to everyday use and involves dynamic 
changes, making it more suitable for studying dynamic language processing in the brain. This approach may 
provide an opportunity to study the human brain as a whole. The key to this approach is large-scale, high-quality 
neuroimaging data collected using natural language stimuli.

Fortunately, we are beginning to see a proliferation of public neuroimaging datasets acquired using rich, nat-
uralistic experimental paradigms, among which most collected brain imaging data use audiovisual movie stim-
uli3–6. Few datasets are language oriented, which is optimal for studying brain language processing7,8. However, 
these studies only collected functional magnetic resonance imaging (fMRI) data, which is not sufficient for 
language studies because language comprehension is immediate and rapid. Multimodal neuroimaging data 
with higher spatiotemporal resolution are needed to examine the intricate and subject-dependent patterns of 
brain structural connectivity, functional connectivity, and physiological organization. Two previous works col-
lected both fMRI and electroencephalogram (EEG)9 or magnetoencephalography (MEG)10 data. However, the 
two-modality data in the former study9 were collected from different participants, which makes it impossible 
to study both the time and location of language processing for a single participant. Moreover, the stimuli in the 
latter study10 included designed normal or scrambled sentences instead of natural language stories.
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The dataset11 proposed here aims to address some of the issues mentioned above. This dataset contains neu-
roimaging data with both high time-resolution MEG and high space-resolution fMRI measurements, which 
were collected for a total of 12 participants listening to 6 hours of stories. An additional question-answering 
test after each story ensured that the participants listened carefully and understood the meaning of the text 
during recording. Both the raw and preprocessed fMRI and MEG results are provided, where the preprocessed 
fMRI data include both surface-based and volume-based results. To facilitate further language comprehension 
research, the syntactic tree structures of all story texts are annotated by human experts, and word and sentence 
boundaries and part-of-speech (POS) tags are provided. The audio and transcripts are automatically aligned 
temporally. We also provide character and word embeddings from various computational models. Furthermore, 
additional neuroimaging T1, T2, resting, and diffusion MRI data for each participant were acquired and 
included, which could represent a data foundation for studying fine-grained structural and functional language 
in individual brains.

Such high-quality neuroimaging data with rich annotations are very useful for studying a variety of research 
questions involving brain language processing, including semantic representation, syntactic processing, and 
attention and memory mechanisms when comprehending language. Moreover, given that the dataset contains a 
variety of topics and a broad vocabulary, it can also be seen as a human benchmark for evaluating computational 
models. For instance, these data could be used to assess whether the attention and memory variables calculated 
by computational models are similar to those of humans. Furthermore, this dataset could be used to improve 
a computational model, either by adding the data into the model training process or by building a new model 
architecture inspired by the findings of the relation between the model and the human brain.

Methods
Participants.  All 12 participants were recruited from universities in Beijing; they had also engaged in our 
previous experiments and exhibited habits that yielded good quality data, such as having only slight head move-
ment in the scanner, concentrating on the experiments, and having high accuracy on the questionnaires after 
scanning. The participants completed both fMRI and MEG visits (first fMRI and then the MEG experiments, 
with a gap of at least 1 month). The study participants included 4 females and 8 males, with an age range of 23–30 
years (see the details in Table 1). All participants were right-handed adults with Mandarin Chinese as their native 
language who reported having normal hearing and no history of neurological disorders. Participants were paid 
and provided written informed consent. The study was conducted under the approval of the Institutional Review 
Board of Peking University.

Experimental procedures.  Before each scanning, participants first completed a simple informational sur-
vey form and an informed consent form. During both fMRI and MEG scanning, participants were instructed to 
listen and pay attention to the story (stimulus), remain still, and answer questions on the screen after the com-
pletion of each audio component. Stimulus presentation was implemented using Psychtoolbox-3. Specifically, at 
the beginning of each run, the instruction “Waiting for scanning” appeared on the screen, followed by a blank 
screen for 8 seconds. Then, as shown in Fig. 1a, the following instructions were provided: “The audio is about to 
start, please listen carefully”. This information appeared and lasted for 2.65 seconds before the audio started. As 
the audio played, a centrally located fixation marker was presented on the screen. Finally, two questions about 
the story were presented, each with four answers to choose from, and the time for answering was controlled by 
the participants. The Auditory story stimuli were delivered via S14 insert earphones for fMRI studies (with head-
phones or foam padding placed over the earphones to reduce scanner noise), whereas Elekta matching insert 
earphones were used for the MEG studies.

At each visit, a volume check was performed to ensure that participants could comfortably hear the auditory 
stimulus prior to data collection. The MRI recording was split into 7 visits, each lasting 1.5 hours, in which T1, 
T2, and resting MRI data were collected at the first visit, fMRI data obtained during listening were collected at 
visits 1 to 6, and diffusion MRI data were collected at the last visit. As shown in Fig. 1b, during MRI scanning, 
including T1, T2, diffusion and resting stages, participants were instructed to lie relaxed and still in the machine. 
The MEG recording was split into 6 visits, each lasting 1.5 hours. The stimuli materials are presented in the same 
order between participants but in a different order for MEG and fMRI visits.

Stimuli.  Stimuli included the audio of 60 stories that are 4 to 7 minutes long and comprise various topics, such 
as education and culture. All audio was downloaded from the Renmin Daily Review website and was read by 
the same male broadcaster at https://www.ximalaya.com/toutiao/30917322/. All stimuli were normalized using 
Adobe Audition software and played at 16 kHz. The corresponding text was also downloaded from the Renmin 
Daily Review website, and errors were manually corrected to ensure that the audio and text were aligned. As 

Participant ID 01 02 03 04 05 06 07 08 09 10 11 12

Age 26 30 26 28 26 25 26 23 24 25 23 24

Sex M F M M M M F M F M F M

fMRI-acc (%) 94.17 89.17 92.50 82.50 85.00 89.17 93.33 94.17 95.00 95.83 89.17 94.17

MEG-acc (%) 95.00 90.00 92.50 87.50 90.00 87.5 95.00 90.83 96.67 93.33 88.33 95.00

Table 1.  Details of the participants, including ID, age, sex (M: male, F: female), and behavior results (fMRI-acc: 
the quiz accuracy in the fMRI experiments, MEG-acc: the quiz accuracy in the MEG experiments).
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shown in Fig. 2, the durations of the 60 stories range from 240 to 406 seconds. In general, there are 52,269 words 
in all the stories, and each story includes 608 to 1,076 words, forming a vocabulary of 9,153 words.

Data acquisition.  Structural T1 and T2.  All MRI data were collected at the Center for MRI Research, Peking 
University using a Siemens Prisma 3 T scanner with a 64-channel receiver coil. High-resolution T1-weighted 
MRI data were acquired using a 3D MPRAGE sequence with 0.8-mm isotropic resolution (TR = 2.4 s, TI = 1 s, 
TE = 2.22 ms, flip angle = 8°, 224 axial slices with thickness = 0.8 mm, axial FOV = 256 × 256 mm, and data 
matrix = 320 × 320). T2-weighted MRI data were acquired using the Siemens SPACE sequence12 with 0.8-mm 
isotropic resolution with the same matrix, FOV, and number of slices as used for the T1w images (TR = 3.2 s, and 
TE = 563 ms).

Diffusion MRI.  The diffusion MRI images were acquired using a 2D spin-echo single-shot multib-
and echo-planar imaging (EPI) sequence with a multiband factor of 3 and a monopolar gradient pulse 
(TR = 3500 ms, TE = 86 ms, flip angle = 90°, FOV = 210 × 210 mm, 100 axial slices with thickness = 1.5 mm, and 
acquisition matrix = 140 × 140). A full session included 2 runs with 2 different gradient tables (as in the Human 
Connectome Project) collected in opposite (anterior-to-posterior and posterior-to-anterior) phase-encoding 
polarities with 98 and 99 diffusion-weighted directions respectively.

Functional and Resting MRI.  BOLD-sensitive functional and resting state images were obtained using a 
multi-shot T2-weighted GE-EPI sequence (TR = 710 ms, TE = 30 ms, matrix size = 106 × 106, flip angle = 54°, 
FOV = 212 × 212 mm2, 72 2-mm-thick axial slices, and 634 volumes). The resting data included 2 runs with 2 

Fig. 1  Schematic overview of the study procedure. (a) The participants followed the instructions on the screen 
and listened to stories while their brain activity was recorded by fMRI and MEG. (b) Participants lied in the 
MRI machine while structural and resting-state MRI data were recorded.

Fig. 2  Details of the 60 stories. (a) The duration and number of sentences in each story. The number in the 
picture denotes the story number. (b) The duration and number of words of each story (duplicate words were 
also counted).
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different gradient tables collected in opposite (anterior-to-posterior and posterior-to-anterior) phase-encoding 
polarities.

MEG.  The continuous MEG signal was recorded using a 306-channel, whole-head MEG system 
(Elekta-Neuromag TRIUX, Helsinki, Finland) at Peking University. Before each block started, the head position 
of each participant was determined by four head-position indicator (HPI) coils. Two electrooculogram (EOG) 
electrodes were applied to monitor the vertical and horizontal eye movements and blinks, which were attached 
inferior to the left eye and superior to the right eye. During recording, the MEG data were acquired with a sam-
pling frequency of 1,000 Hz and filtered online between 0.1 Hz and 330 Hz.

Preprocessing.  MRI.  For the MRI data, we used minimal preprocessing pipelines (HCP) at https://www.
humanconnectome.org/software/hcp-mr-pipelines to preprocess the structural, functional, resting and diffu-
sion images. This is performed on a local server cluster with native installation version scripts on Centos 7.8 
operating system including 20 computing nodes (17 CPU nodes and 3 GPU nodes). Specifically, preprocessing 
was performed separately for each stimulus with the following steps: (1) HCP PreFreeSurfer, FreeSurfer and 
PostFreeSurfer pipelines were successively conducted on the T1 and T2 images. This process included correct-
ing the gradient distortion, aligning repeated runs, removing the skull from the image, removing readout dis-
tortion, performing bias field correction, registering the image to the standard Montreal Neurological Institute 
space, and producing tissue maps and surface files for pia and white matter for each participant, followed by 
down-sampling and registering surface files. (2) After the structural preprocessing was complete, HCP fMRIVol-
ume and fMRISurface pipelines were used on the functional and resting images. This process included removing 
spatial distortions, realigning volumes to compensate for participant motion, registering the fMRI data to the 
structural information, reducing the bias field, normalizing the 4D image to a global mean, masking the data, 
and transferring the time series from the volume into the CIFTI standard space. (3) HCP diffusion preprocessing 
pipelines also depend on the outputs generated by structural preprocessing, and the HCP pipelines performed the 
following steps: normalizing the b0 image intensity across runs; removing EPI distortions, eddy-current-induced 
distortions, and participant motion; correcting for gradient nonlinearities; registering the diffusion data with the 
structure; bringing the data into the 1.25 mm structural space; and masking the data with the final brain mask13.

Overall, this pipeline can generate high-quality cortical surfaces, segmentations and myelin maps; generate 
precise within- and cross-participant registration; and provide data in CIFTI format.

MEG.  The raw data were first preprocessed off-line using the temporal signal space separation (tSSS) method 
implemented in Maxfilter software (Elekta-Neuromag) for magnetic artifact suppression. Then, the bad channels 
automatically identified by Maxfilter (3–11 channels per participant) with default threshold value were excluded 
by the interpolating method. The independent component analysis (ICA) method was applied to remove ocu-
lar artifacts using MNE software at http://www.martinos.org/mne/. This is performed on a local server with 
native installation version scripts on Ubuntu 16.04.7 LTS operating system including 2 CPU computing nodes. 
Specifically, as shown in Fig. 3, the ICA components with the highest correlation to the EOG (blinks, ICA003), 
EKG (heart beats, ICA017) and saccade (eye movement, ICA020) signals were selected and rejected. Then, a 

Fig. 3  ICA component examples of the first participant on (a) the interpolated sensor topography and (b) the 
interpolated sensor space.

https://doi.org/10.1038/s41597-022-01708-5
https://www.humanconnectome.org/software/hcp-mr-pipelines
https://www.humanconnectome.org/software/hcp-mr-pipelines
http://www.martinos.org/mne/


5Scientific Data |           (2022) 9:590  | https://doi.org/10.1038/s41597-022-01708-5

www.nature.com/scientificdatawww.nature.com/scientificdata/

bandpass filter (0.1 to 40 Hz) was applied to the denoised data. The delay between the event timing and the actual 
timing of the auditory presentation to the participant was a stable 39.5 ms detected with a sound sensor.

Annotations.  As shown in Fig. 4, in addition to the neuroimaging datasets, we provide rich annotations of 
the audio and text, including the following:

•	 Speech-to-text alignment (Fig. 4a) The character and word boundaries in the audio were identified and 
aligned to the transcripts using a pretrained GMM-HMM model14 in the Kaldi tools, where the model was 
trained with AISHELL-2 data and open-source scripts at https://github.com/kaldi-asr/kaldi/tree/master/egs/
aishell2/s5. This process provided the onset and offset time of each character and word in the audio. The onset 
and offset time were increased by 10.65 seconds to align with the time of the fMRI images because the fMRI 
scan started 10.65 seconds before playing the audio. The corresponding pinyin and tone of each Chinese char-
acter were also generated using Kaldi tools.

•	 Frequency (Fig. 4b,c) The character and word frequencies were calculated from the Xinhua news corpus at 
http://www.xinhuanet.com/whxw.htm and then log-transformed.

•	 Textual embeddings (Fig. 4b,c) The static embeddings that are not sensitive to context were calculated by 
the Word2Vec model from https://code.google.com/archive/p/word2vec/. Specifically, the character-level and 
word-level models were trained separately on the same Xinhua news corpus (19.7 GB of text) with the same 
model parameters (i.e., CBOW architecture, 10 training iterations, window size of 10, embedding dimensions 
of 100 and 300). The dynamic character and word embeddings that are sensitive to context were calculated by 
using the BERT and GPT2 models. We included the 768-dimensional embeddings from all 12 layers of BERT 
from https://huggingface.co/bert-base-chinese and the 1024-dimensional embeddings from all 25 layers of 
GPT2 (the Chinese GPT2 model was trained using the corpus (250 GB of text) from https://github.com/
CLUEbenchmark/CLUE and the model from https://github.com/NVIDIA/Megatron-LM).

•	 Part of speech (Fig. 4d) The POS tag of each word was annotated by experts following the criteria of PKU 
Chinese Treebank.

•	 Syntactic tree (Fig. 4e,f) The constituent tree structure was manually annotated by linguistic students fol-
lowing the PKU Chinese Treebank criteria with TreeEditor tools, and all results were double checked by 
different experts. Specifically, the texts were first split into sentences, and the sentences were segmented into 
words. Then, the part-of-speech tag of each word in the sentence was identified, and finally, the tree structures 
were annotated. The dependency tree structure was transformed from the constituent tree using Stanford 
CoreNLP tools at https://nlp.stanford.edu/software/stanford-dependencies.html, and no error was generated 
because the two tree structures had a one-to-one correspondence.

Data Records
The data collection using the BIDS data representation is available on the OpenNeuro platform at https://open-
neuro.org/datasets/ds004078 database11. All facial features have been removed from the structural images. As 
shown in Fig. 5a, our data include data description files, the raw fMRI and MEG data collected for each par-
ticipant in the “sub-*“ folders, the stimuli audio in the “stimuli” folder, the code for the preprocessing and the 

12.1 12.41 12.65 12.88 13.07 13.23 13.42 13.59 14.12 (s)

Jiao_4 yv_4 guan_1  xi_0 qian_1  jia_1 wan_4         hu_4

Character Onset Offset LogFreq Story Word2Vec BERT(12 layers) GPT(25 layers)

Word Onset Offset LogFreq Story Word2Vec BERT(12 layers) GPT(25 layers)

a

b

c

e

f

nsubj dobj

d

NN VV NN

NP

NN VP

VV NN

Fig. 4  An example of annotation information for the stimuli. (a) Speech-to-text alignment. (b) Linguistic 
annotations of characters. (c) Linguistic annotations of words. (d) Part-of-speech tag annotations.  
(e) Constituency tree annotations. (f) Dependency tree annotations.
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technical validation of fMRI and MEG in the “code” folder, the preprocessed fMRI and MEG data and the anno-
tations of the stimuli in the “derivatives” folder. More details about these folders are provided below.

Participant folder.  Each participant folder contains four subfolders (Fig. 5b), named “anat”, “dwi”, “func”, 
and “meg”. The “anat” folder contains the T1 and T2 MRI data. The “dwi” folder contains diffusion MRI data. The 
“func” folder contains functional MRI data, including 60 runs for the language understanding task and 4 runs 
for resting state measurements. The “meg” folder contains the MEG data for the 60 language understanding task 
runs. The json files contain information about the acquisition parameters.

Stimuli folder.  The story audio are provided in the “stimuli” folder (Fig. 5c). The story IDs are consistent with 
the run IDs in Fig. 5b.
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Fig. 5  Organization of the data collection. (a) General overview of the directory structure. (b) Content of 
participant-specific directories. (c) Content of stimuli and participant-specific preprocessed data directories. 
(d) Content of the annotations directory, including scripts, aligned word and character times, and frequencies 
of words and characters. (e) Content of the annotations directory, including quizzes, syntactic annotations and 
GPT2 word embeddings. (f) Content of the annotations directory, including word embeddings and character 
embeddings of Word2Vec and BERT.
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Derivatives folder.  The “derivatives” folder contains the preprocessed fMRI and MEG data for each partici-
pant in the “preprocessed_data” subfolder (Fig. 5c), as well as the annotations of stimuli in the “annotations” folder. 
The preprocessed fMRI data include the 60 language understanding task runs and 4 resting state runs in both 
the CIFTI and MNI spaces. The preprocessed MEG data contain the 60 language understanding task runs at the 
sensor level. The annotations of stimuli include the scripts of stories and the quiz questions used in the fMRI and 
MEG data collection. In addition to this basic information, we provide rich annotations about the language stim-
uli, including the onsets and offsets of characters and words (Fig. 5d, “time_align” folder), the frequencies of char-
acters and words (Fig. 5d), syntactic annotations (Fig. 5e), and static and dynamic word embeddings (Fig. 5e,f).

Code folder.  The “code” folder contains the code for MRI and MEG preprocessing and technical validation.

c d e

Fig. 6  Results of fMRI technical validation. (a) Group-level mean FD values for each run and each participant. 
(b) Percentage of each run in which FD > 0.2 mm. (c) Group-level mean tSNR in the CIFTI space. (d) Group-
level mean ISC in the CIFTI space. (e) Group-level mean encoding results in the CIFTI space. (f) Group-level 
mean tSNR in the MNI space (glass brain). (g) Group-level mean tSNR in the MNI space (axial direction). 
(h) Group-level mean ISC in the MNI space (glass brain). (i) Group-level mean ISC in the MNI space (axial 
direction). (j) Group-level mean encoding results in the MNI space (glass brain). (k) Group-level mean 
encoding results in the MNI space (axial direction).
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Technical Validation
To verify the quality of the two types of neuroimaging data, first, the accuracy of the quiz responses after each 
story was calculated to ensure adequate comprehension by the participants. Then, for the MRI data, we checked 
the head movement for each individual participant and calculated the temporal signal-to-noise ratio (tSNR) and 
intersubject correlation (ISC). To ensure that the fMRI data encoded language understanding information, we 
also computed the voxel’s predictability with respect to language information using the neural encoding method. 
For the MEG data, we used two quality assessment indicators (i.e., ISC and neural entrainment to speech) to 
evaluate the data quality.

Behavior results.  After the scanning during each story, participants were asked to choose the answers to 
four-choice comprehension questions (120 questions for fMRI and 120 different questions for MEG) according 
to the audio they just heard. Participants performed well, with mean accuracy values of 91.18% (SD = 4.21%) and 
91.81% (SD = 3.21%) for the fMRI and MEG experiments, respectively (more details are shown in Table 1). An 
example of a comprehension question is provided below:

“鲸落”是指什么? (what does “Whale fall” mean?)

	 1.	 鲸鱼的种群聚落 (Population settlements of whales)
	 2.	 鲸鱼死后缓缓沉入海底不断被分解消耗 (After death, the whale slowly sank to the bottom of the sea and 

was continuously decomposed and consumed)
	 3.	 鲸鱼呼吸的水汽四散渐落 (The water vapor from the whale’s breath is scattered and gradually falls)
	 4.	 鲸鱼从海面跃起跌落 (Whales jumped and fell in the sea)

Correct answer: 2

Analysis of motion.  Framewise displacement (FD) measures the frame-to-frame head movement of par-
ticipants during fMRI scans. The HCP preprocessing pipeline generates three translation parameters and three 
rotation parameters that represent instantaneous head motion in six directions. Based on these six motion param-
eters, we calculated the FD of each run by summing the absolute displacements in all six directions between 
adjacent frames15.

As shown in Fig. 6a, the mean FD values of all participants and all runs are less than 0.2 mm, which indicates 
that most of the participants had minimal head motion during all runs. Because FD values greater than 0.2 mm 
are conventionally considered high motion15, we also computed the proportion of frames with FD > 0.2 mm in 
each run. As shown in Fig. 6b, only participants 06 and 07 had more than 20% of frames with FD values greater 
than 0.2 mm in a few runs. The average percentage of frames in which FD > 0.2 mm within one run across all 
participants is 3.11%. These results are comparable to or better than those of existing fMRI datasets16.

tSNR.  To measure the signal strength at the voxel level, we computed the tSNR for each voxel as the mean 
of the signal intensity over time divided by its standard deviation. The tSNR was computed for preprocessed 
functional runs in both the MNI space and CIFTI space. For the MNI space, we applied a gray matter mask with 
most white matter and ventricle voxels removed. After calculating the tSNR for each individual participant, we 
generated group tSNR maps by averaging the tSNR values across all the participants. The results are shown in 
Fig. 6c,f,g. As shown, most brain regions have high tSNR values.

ISC for fMRI.  ISC analysis is often used to evaluate the consistency of the brain response to stimuli across 
multiple participants. A high ISC indicates the good quality of the brain data. Specifically, for each voxel in each 
functional run, we computed the correlation between the time series of one participant and the average time 
series of all the remaining participants. Similar to computing the tSNR, the preprocessed data in both the MNI 
space and the CIFTI space were computed. The group-level mean ISC is shown in Fig. 6d,h,i. The brain regions 
with high ISC values are located in the temporal lobe and the frontal lobe, which are typically associated with 
language processing.

Neural encoding.  Neural encoding calculates the correlation between brain activation and word embed-
dings to verify whether and where semantic information is encoded17–19. To perform neural encoding, we first 
computed the stimulus representations for each fMRI image using the word embeddings generated by deep lan-
guage models. According to previous work20–22, the middle layers of deep language models better encode multi-
ple language information. Therefore, we chose BERT layer 7 for the word embeddings, convolved the data with 
a canonical HRF function, and then down-sampled the data to the sampling rate of fMRI. Then, we trained 
voxel-wise ridge regression models for each participant to predict brain activity based on the stimulus representa-
tions. The Pearson correlation between the predicted and actual fMRI signals was computed to evaluate the 
encoding performance.

Figure  6e,j,k show the encoding results averaged across all participants. The encoding results in 
language-related brain regions, including the temporal lobe, the parietal lobe, and the frontal lobe, are substan-
tially greater than those of other brain regions, indicating the high quality of our fMRI data.

ISC for MEG.  To validate whether our MEG data have a high ISC and whether preprocessing changes the 
ISC, we calculated the ISC value of the MEG data before and after preprocessing23. Specifically, we correlated the 
amplitude envelopes of bandpass-filtered MEG signals that were correlated between participants in a sensor space 
in four frequency bands of interest (delta: 1–4 Hz, theta: 4–8 Hz, alpha: 8–13 Hz, beta: 13–30 Hz). First, the MEG 
signal was filtered for each band. Second, the absolute envelope amplitude of each band was calculated via the 
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Hilbert transform and down-sampled to 1 Hz. Third, for each frequency band, a leave-one participant-out ISC 
was calculated for the participant left out as the temporal correlation between the envelope amplitude from the 
participant and the average of the other participants. Finally, the mean ISC was calculated by averaging the ISC 
across all 12 participants. As shown in Fig. 7a, consistent with previous work, a higher ISC occurred in the delta 
and theta bands, with a mean and maximum value of (delta: 0.014, 0.431), (theta: 0.009, 0.456), (alpha: 0.007, 
0.507), (beta: 0.006, 0.491) respectively over all participants and sensors. Moreover, the ISC in the orbital frontal 
area, which is related to eye blink or movement, was reduced after preprocessing. In summary, the dataset demon-
strated good validity in detecting the ISC, and preprocessing was effective in removing eye movement artifacts.

Neural entrainment.  The phenomenon of the brain activity elicited by listening to speech being time-locked 
to speech sounds is called neural entrainment, which is an indicator of speech processing. Existing work has 
found that the less noise there is in the brain data and the more closely the participant pays attention to under-
standing the speech, the greater the neural entrainment score24. Therefore, this score could be used to evaluate 
the quality of our MEG data. Specifically, we first extracted the temporal envelope from the audio signals and 
down-sampled them to 50 HZ. Similarly, we down-sampled the preprocessed MEG data to 50 Hz. Then, we used 
the STRF model25 to train an encoder on the speech temporal envelope to predict MEG data filtered into four dif-
ferent frequency bands (delta: 1–4 Hz, theta: 4–8 Hz, alpha: 8–13 Hz, beta: 13–30 Hz) separately. Finally, we esti-
mated the pairwise linear correlation between the predicted and real MEG data. This correlation is often referred 
to as the predictive power of the STRF model, and it provides a global measure of speech brain tracking. As shown 
in Fig. 7b, the high predictive power occurred in the lower frequency delta band (with a maximum value of 0.251 
and an average value of 0.109 over 12 participants and 306 sensors). Moreover, the sensors with higher predictive 
power are mainly located in the temporal lobe near the auditory cortices. These findings are consistent with pre-
vious studies and verify the quality of our MEG data.

Code availability
The scripts for preprocessing the MRI and MEG data as well as those used in the technical validation section are 
available at https://openneuro.org/datasets/ds004078.
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