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Background. Aberrant DNA methylation patterns are of increasing interest in the study of psoriasis mechanisms. This study aims
to screen potential diagnostic indicators affected by DNA methylation for psoriasis based on bioinformatics using multiple
machine learning algorithms and to preliminarily explore its molecular mechanisms. Methods. GSE13355, GSE14905, and
GSE73894 were collected from the gene expression omnibus (GEO) database. Differentially expressed genes (DEGs) and
differentially methylated region- (DMR-) genes between psoriasis and control samples were combined to obtain differentially
expressed methylated genes. Subsequently, a protein-protein interaction (PPI) network was established to analyze the
interaction between differentially expressed methylated genes. Moreover, the hub genes of psoriasis were screened by the least
absolute shrinkage and selection operator (LASSO), Random Forest (RF), and Support Vector Machine (SVM), which were
further performed single-gene gene set enrichment analysis (GSEA) to clarify the pathogenesis of psoriasis. The druggable
genes were predicted using DGIdb. Finally, the expressions of hub genes in psoriasis lesions and healthy controls were detected
by immunohistochemistry (IHC) and quantitative real-time PCR (RT-qPCR). Results. In this study, a total of 767 DEGs and
896 DMR-genes were obtained. Functional enrichment showed that they were significantly associated with skin development,
skin barrier function, immune/inflammatory response, and cell cycle. The combined transcriptomic and DNA methylation
data resulted in 33 differentially expressed methylated genes, of which GJB2 was the final identified hub gene for psoriasis,
with robust diagnostic power. IHC and RT-qPCR showed that GJB2 was significantly higher in psoriasis samples than those in
healthy controls. Additionally, GJB2 may be involved in the development and progression of psoriasis by disrupting the body’s
immune system, mediating the cell cycle, and destroying the skin barrier, in addition to possibly inducing diseases related to
the skeletal aspects of psoriasis. Moreover, OCTANOL and CARBENOXOLONE were identified as promising compounds
through the DGIdb database. Conclusion. The abnormal expression of GJB2 might play a critical role in psoriasis development
and progression. The genes identified in our study might serve as a diagnostic indicator and therapeutic target in psoriasis.

1. Introduction

Psoriasis is a chronic recurrent inflammatory skin disease
induced by the interaction of heredity and environment;
with the typical clinical manifestation of scaly erythema or
plaque, which is localized or widely distributed [1]. The
incidence of psoriasis in developed countries is higher than
that in developing countries, and it is more common in
adults compared with children [2, 3]. In addition, the prev-

alence of psoriasis in gender is basically the same between
men and women, with an average age of about 33 years
[4]. The treatment and management of psoriasis have been
dramatically changed thanks for the emergence of biologics
[5], but there are still some defects in biologics. It has been
mentioned that biologics is unsuitable for patients with hep-
atitis B, tuberculosis, and allergies [6–8]. At present, psoria-
sis remains incurable, which shows a high recurrence rate
after drug withdrawal [9, 10]. The pathogenesis of psoriasis
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is not completely clear, but an increasing amount of evi-
dence shows that the abnormal DNA methylation pattern
is one of the most critical pathogenic factors, including dif-
ferential methylation sites and differential methylation
regions [11–13].

DNA methylation, an epigenetic regulatory mechanism,
plays an essential role in gene expression, differentiation, cell
proliferation, development, and genomic imprinting [14, 15].
It is mediated by DNA methyltransferase, which occurs on
cytosine phosphate guanine (CPG) island and transfers the
methyl of S-adenosylmethionine to the 5th carbon atom of
cytosine ring [16]. DNA methylation is generally negatively
correlated with gene expression [17]. Several studies have
demonstrated that DNA methylation was closely related to
the pathogenesis, severity, and treatment of psoriasis. The
down-regulation of secreted frizzled-related protein 4
(SFRP4) caused by hypermethylation [18] or the up-
regulation of B-cell receptor-associated protein 31 (BACP31)
caused by hypomethylation [19] might lead to excessive pro-
liferation and abnormal apoptosis of psoriasis keratinocytes.
The results of genome-wide methylated DNA immunopre-
cipitation sequencing (MeDIP-Seq) on lesions and healthy
skins of psoriasis patients showed that differential methyl-
ated regions (DMR) covered almost all genomes, and the
methylation levels of tissue inhibitor of metalloproteinase
2(TIMP2) and programmed cell death 5(PDCD5) were pos-
itively correlated with the score of psoriatic area and severity
index (PASI) [20]. Human leukocyte antigen (HLA) gene
region also acts a significant role in the pathogenesis and
development of psoriasis. Additionally, the methylation level
of HLA-C promoter region in psoriasis patients was signifi-
cantly higher than that in healthy controls. Further studies
suggested that the hypermethylation of HLA-C could be
involved in the pathogenesis of psoriasis by not affecting
the expression of HLA-C [21]. The methylation degree of
HLA-DRB1 in psoriasis lesions was remarkably lower than
that of nonlesion tissues, which was negatively correlated
with PASI score [22]. Furthermore, a DNA methylation
spectrum analysis was performed on the genomes of 12
lesions of psoriasis patients pre and postultraviolet radiation
B (UVB) treatment. The results demonstrated that the meth-
ylation status of 3665 methylation variable positions (MVP)
in psoriasis samples had changed and the patient’s condition
had improved. It indicated that DNA methylation could be
dynamically reversed in the treatment of psoriasis [23].
Therefore, the explorations of key genes related to DNA
methylation and their biological function were extremely
crucial to reveal the molecular mechanism of psoriasis and
develop new therapeutic targets.

In this study, bioinformatics methods were utilized to
analyze the transcriptome data and methylation data of pso-
riatic lesions and healthy controls from GEO database. Next,
multiple machine learning algorithms were performed to
screen the key genes related to DNA methylation. Finally,
the accuracy and expression of key gene models were veri-
fied by ROC curves and molecular biological experiments.
In conclusion, this study identified key diagnostic indicators
and therapeutic targets of psoriasis by combined multiomics
analysis.

2. Materials and Methods

2.1. Data Source. The psoriasis-related data utilized for this
study were obtained from the GEO database. Gene expres-
sion profiling array GSE13355 (https://www.ncbi.nlm.nih
.gov/geo/query/acc.cgi?acc=GSE13355) [24–26] provided
mRNA expression data from 122 skin biopsy samples with
58 psoriasis lesions and 64 healthy control skin. Additionally,
the gene expression profiling of 33 psoriasis lesions and 21
healthy control skin were obtained from GSE14905 (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14905) [27].
Both datasets were generated by the platformGPL570 (Affyme-
trix Human Genome U133 Plus 2.0 Array).

The DNA methylation MBD-seq data were obtained
under accession number GEO: GSE73894 (GPL13534 plat-
form; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE73894) [28, 29], which includes 114 psoriasis lesions
and 64 healthy control skin samples.

2.2. Differentially Expressed Genes Analysis. R package
limma [30] was used in the screening of differentially
expressed gene (DEG) between psoriasis lesions and control
skin samples, with the screening criteria of absolute value of
log2 fold change ðFCÞ > 1 and P < 0:05.

2.3. Analysis of Differentially Methylated Regions. The Bum-
phunter function of the R package ChAMP was used for the
differentially methylated region (DMR) analysis. The
parameter setting was as follows: a minimum number of
probes in the methylation region (minProbes)≥7, adjusted
(adj.) P < 0:05. The methylation level of the gene was repre-
sented by the average beta value of CpG in different regions
of the gene. The beta value matrix was analyzed by the R
package limma to screen differentially methylated genes
(DMR-genes), and the jΔβj > 0:1 was set as the threshold.
The distribution of genes in different gene regions was visu-
alized by the R package named “Upset” [31]. Finally, DMR-
genes were overlapped with DEGs, and the intersected genes
represented differentially expressed methylated genes.

2.4. Functional Enrichment Analysis. Gene ontology (GO)
[32] and Kyoto Encyclopedia of Genes and Genomes
(KEGG) [33] pathway enrichment analyses were performed
to the differentially expressed methylated genes by the R
package clusterProfiler [34]. The results satisfied P < 0:05
and count > 2 were considered as statistically significant.

2.5. Protein-Protein Interaction (PPI) Network Analysis. To
explore the interaction between differentially expressed
methylated genes, these genes were uploaded to the STRING
database (https://string-db.org) with the cutoff value set as
0.15 to receive the interaction relationship information
between genes. Then, the interactive information was visual-
ized into a imported into a PPI network by Cytoscape [35].
The top 10 genes with the highest connectivity (degree) in
the PPI network were identified as key genes for subsequent
analysis.

2.6. Integrating Multiple Machine Learning Algorithms to
Identify Hub Genes. Three machine learning algorithms
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were implemented to filter feature genes, including least
absolute shrinkage and selection operator (LASSO), Ran-
dom Forest classifier (RF), and support vector machine
recursive feature elimination (SVM-RFE), using a 10-fold
cross-validation approach.

LASSO [36] was employed by R package glmnet with the
parameters set as famil = binomial and type.measure = class.
In the RF [37], the importance and importance ranking of
each gene were obtained using the RFE method, and the
error rate and accuracy rate of the combination in each iter-
ation were obtained, which was employed by R package
Random Forest. The characteristic genes were the corre-
sponding genes in the best combination with the lowest
error rate. Meanwhile, SVM-RFE [38] was performed by R
package e1071, and the 10-fold cross-validation algorithm
was applied as the resampling method for SVM-RFE. The
final importance of features was based on the average impor-
tance of each feature in each iteration.

Afterward, the genes within the intersection of three sub-
sets were selected as hub genes for subsequent analyses.

2.7. The Receiver Operating Characteristic (ROC) Curve
Analysis. The receiver operating characteristic (ROC) curve
analysis was used to evaluate the discrimination ability of
the hub gene in the GSE13355 dataset; the discrimination
ability of each model was quantified by the area under the
ROC curve (AUC). The reliability of these gene predictions
would be verified in the independent GSE14905 dataset.
The ROC analysis was achieved through the R package
pROC [39].

2.8. Single-Gene Gene Set Enrichment Analysis (GSEA)
Analysis. Single-gene GSEA was conducted based on the
gene list sorted by Spearman correlation coefficient between
every gene and the specified hub gene to predict the signifi-
cant biological processes and pathways associated with the
hub gene. The background gene sets for GO and KEGG were
obtained from the MSigDB database (https://www.gsea-
msigdb.org/gsea/msigdb/). The Normalized Enrichment
Score ðNESÞj>1, P < 0:05, and q < 0:2 were considered sig-
nificant thresholds.

2.9. Drug and Hub Gene Interaction Analysis. The drug-gene
interaction database (DGIdb; https://www.dgidb.org/) was
used to investigate potential diagnosis-related gene therapy
targets for hub genes [40].

2.10. Immunohistochemical Staining. 8 psoriasis lesions
and 11 healthy skin tissues were made into paraffin blocks,
which were then cut into sections at a thickness of 5μm
by a slicer (Leica Co., Ltd., Shanghai, China), followed
by baking at 50°C. The sections were dewaxed twice using
xylene (5min each), and then dehydrated by graded etha-
nol with certain concentration separately (3min each). The
endogenous peroxidase in the tissue sections was blocked
with methanol containing 0.3% H2O2. The sections were
then incubated with the anti-connexin 26 (Cx26) antibody
(1 : 100,Ab65969,Abcam, Cambridge, UK) as primary anti-
bodies at 4°C by the streptavidinbiotin peroxidase (SP)
coupling two-step method and standard SP kit. Pathologi-

cal changes were observed under an optical microscope
(DMM-300D, Shanghai Caikon Optical Instrument Co.,
Ltd., Shanghai, China) (×200) and photographed.

2.11. RNA Isolation and Quantification. The total RNA from
8 psoriasis lesions and 11 healthy skin tissues were extracted
based on the Trizol method (Cat:9109, Takara, Dalian,
China). Total RNA was reversely transcribed into cDNA
using a reverse transcription kit (Cat:KR118-02, TianGen,
Beijing, China), after which quantitative PCR (qPCR) ampli-
fication analysis was conducted. Primers of GJB2 and
GAPDH were designed and then synthesized by Sangon
company (Sangon Biotech, Shanghai, China) (Table 1).
The qPCR was subsequently conducted using the dNTP
mixture (Cat:FP205-02, TianGen, Beijing, China) on the
7500 Real-Time PCR Systems (Applied Biosystems, Thermo
Fisher Scientific, Foster city, California). GAPDH was
regarded as the internal reference. 2−ΔCt was employed to
determine the expression ratio of the target gene in the pso-
riasis group to that of the healthy group using the following
formula: ΔCt = Ct (GJB2)–Ct (GAPDH). The experiment
was independently repeated three times.

2.12. Statistical Analysis. The R software packages were used
in the statistical analysis. All network plots were visualized
by Cytoscape software. The R package (ggplot2, Pheatmap,
GOplot, UpSetR, VennDiagram, ggpubr) was used for visu-
alization (volcano plot, heat map, GO/KEGG enrichment
plot, upset plot, Venn diagram, box line plot). The difference
in hub genes between normal and psoriasis samples was
detected by the Wilcoxon rank-sum test. P < 0:05 was set
as the threshold of significance if not otherwise stated.

3. Results

3.1. Analysis of the Psoriasis-Related DEGs in the GSE13355
Dataset. After background correction and Robust Multichip
Average (RAM) normalization of gene expression profiles
from skin samples of 58 psoriasis patients and 64 healthy
subjects in the GSE13355 dataset using the R package affy
(V 1.70.0), PCA showed that the same type of samples in this
dataset had aggregation properties (Supplementary Figure 1).
Then, a total of 767 DEGs were identified, of which 448
genes were expressed upregulated and 319 genes were down-
regulated in psoriasis samples (Figure 1(a); Supplementary
Table 1). The heat map demonstrated the differential expres-
sion patterns of top 100 upregulated and downregulated
genes between the two groups (Figure 1(b)).

Furthermore, GO enrichment analysis of DEGs
(Figure 1(c); Supplementary Table 2) revealed that in the

Table 1: Primer sequence of GJB2 and GAPDH.

Gene name Primer sequence

GJB2
F: ATCCTGGGGGGTGTGAAC
R: GCATGGAGAAGCCGTCGT

GAPDH
F: CCCATCACCATCTTCCAGG
R: CATCACGCCACAGTTTCCC
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BP category, DEGs were significantly associated with skin
development, viral/bacterial response, immune/inflammatory
response, and cell cycle, such as epidermis development, pos-
itive regulation of epidermal growth factor-activated receptor
activity, response to virus, defense response to fungus, type 2
immune response, response to chemokine, and organelle fis-
sion. Furthermore, these genes were inextricably linked to pos-
itive regulation of wound healing, establishment of skin
barrier, regulation of response to wounding, and several phys-
iological processes such as differentiation, migration, and che-
motaxis of various immune cells (e.g., leukocytes, neutrophils,
T cells, macrophages). In the CC category, cornified envelope,
collagen-containing extracellular matrix, condensed chromo-
some, centromeric region, clathrin-coated vesicle membrane,
and condensed chromosome kinetochore were the five most
significantly enriched terms (Supplementary Table 2). More-
over, the MF category indicated that these genes were remark-
ably relevant to chemokines, cytokines, and growth factors
such as chemokine activity, CCR chemokine receptor binding,
cytokine activity, and epidermal growth factor receptor bind-
ing (Supplementary Table 2). In addition, KEGG analysis
illustrated that these genes were involved in a total of 9

pathways, including those associated with viral infection
(‘Influenza A’ and ‘Hepatitis C’), inflammatory responses
(‘Viral protein interaction with cytokine and cytokine
receptor,’ ‘IL-17 signaling pathway,’ ‘Cytokine-cytokine
receptor interaction,’ and ‘Chemokine signaling pathway’),
and cancer (‘PPAR signaling pathway’ and ‘Prostate cancer’).
Moreover, the Pyrimidine metabolism pathway was also
significantly enriched (Figure 1(d); Supplementary Table 3).

3.2. DNA Methylation Profiling of Human Psoriasis in the
GSE73894 Dataset. DNA methylation is a highly stable epi-
genetic mark associated with disease pathogenesis [13].
DNA methylation has been reported to be one of the impor-
tant factors in the differentiation of keratin-forming cells
[16, 41], which prompted us to speculate that DNA methyl-
ation is essential for the development of psoriasis. To char-
acterize aberrant DNA methylation in psoriasis, the overall
DNA methylation levels in 64 healthy control skins and
114 lesioned skins of psoriasis patients from the GSE73894
dataset were evaluated, and the result indicated methylation
levels in lesioned skins of psoriasis were relatively high com-
pared to healthy control skins (Figure 2(a)). Subsequently,

Pyrimidine metabolism

Prostate cancer

IL−17 signaling pathway

Hepatitis C

PPAR signaling pathway

Chemokine signaling pathway

Influenza A

Viral protein interaction with cytokine and
cytokine receptor

Cytokine−cytokine receptor interaction

0.04 0.06 0.08

Gene ratio

Count
10
15

20

25

30

0.04

0.03

0.02

0.01

p.adjust

(d)

Figure 1: Analysis of DEGs between psoriasis lesions and healthy controls in GSE13355. (a) Volcano map of DEGs in GSE13355. (b) Heat
map of top 100 DEGs between psoriasis and healthy samples in GSE13355. (c) Top 10 enriched GO terms by 767 DEGs in each category. (d)
Top 10 enriched KEGG pathways by 767 DEGs.
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the methylation data were quality-controlled and normal-
ized by the R package ChAMP. A total of 73107 low-
quality probes were filtered out from 485577 probes. PCA
(Supplementary Figure 2A) and methylation distribution
density (Supplementary Figure 2B) analyses based on the
beta value of the methylation sites demonstrated the reli-
ability of the data. Further, we performed DMR analysis
using the Bumphunter method of the R package ChAMP
and identified a total of 961 DMRs, which were classified
into hyper-MRs and hypo-MRs based onjvaluej > 0:1
(Figure 2(b)). Subsequently, 896 corresponding genes in
the DMRs were identified. The hyper-MRs contained a total
of 480 genes (hyper-MR-genes; Supplementary Table 4) and
the hypo-MRs included 436 genes (hypo-MR-genes; Supple-
mentary Table 5), of which 20 genes were hypermethylated
and hypomethylated in different regions. We then mapped
DMRs to the entire genome by creating an Upset map and
found that both hyper- (Figure 2(c)) and hypo- (Figure 2(d))
MR-genes were mainly concentrated in TSS200, TSS1500, and
body.

To investigate the potential regulatory mechanisms of
aberrant DNA methylation in psoriasis more closely, a
functional enrichment analysis was performed on the

hyper-MR- and hypo-MR-genes, respectively. GO analysis
showed that the hyper-MR-genes were mainly enriched
in the skeletal system (‘embryonic skeletal system develop-
ment’, ‘embryonic skeletal system morphogenesis’, and
‘skeletal system morphogenesis’; BP), ‘pancreatic juice
secretion’ (BP), ‘body fluid secretion’ (BP), and MHC-
related terms [‘MHC class II protein complex’ (CC), ‘MHC
protein complex’ (CC), and ‘MHC class II receptor activity’
(MF)] (Figure 3(a); Supplementary Table 6). GO analysis of
hypo-MR-genes (Figure 3(c); Supplementary Table 7) indi-
cated that in the BP category, these genes were tightly cor-
related with tissue/organ development, immune response,
immune cell biological processes, cell cycle, and apoptosis,
including embryonic organ development, positive regula-
tion of immune effector process, T cell activation, cell
cycle G1/S phase transition, regulation of apoptotic signal-
ing pathway, etc. In the CC category, MHC protein com-
plex, MHC class II protein complex, and lumenal side of
the membrane were the three most enriched terms. More-
over, a total of four MF terms, peptide antigen binding,
DNA-binding transcription activator activity, DNA-
binding transcription activator activity, RNA polymerase
II-specific, and MHC class II protein complex-binding
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Figure 2: DNA methylation profiling of healthy controls and psoriasis lesions in GSE73894. (a) DNA methylation levels in healthy controls
and psoriasis lesions. (b) Chromosome distribution of DMRs. The number of dots represents the distribution of DMR across different
chromosomes. (c and d) Genomic distribution of the hyper-DMRs and hypo-DMRs. Pie charts represent the proportion of DMRs in
different genomic contexts. Upset graphs represent the number of DMRs distributed in single or combined genomic regions.
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were enriched. KEGG analysis demonstrated that hyper-MR-
genes enriched only 1 pathway, which was Cell adhesion
molecules (Figure 3(b); Supplementary Table 8); whereas
hypo-MR-genes enriched a total of 35 KEGG pathways,
including multiple diseases, viral infections, inflammatory
responses, immune cells, and apoptosis, which contained
Type I diabetes mellitus, Epstein-Barr virus infection, Allo-
graft rejection, Th1 and Th2 cell differentiation, Apoptosis,
etc. (Figure 3(d); Supplementary Table 9).

3.3. Identification and Analysis of Key Differentially
Expressed Methylation Genes. To obtain differentially
expressed methylated genes, we performed an overlap anal-
ysis of 767 psoriasis-related DEGs and 896 DMR-genes
obtained above (Figures 4(a) and 4(b)). Thirteen common
genes were identified in the list of downregulated DEGs
and hyper-DMR-genes (Figure 4(a)), namely, TRIM2,
HOXB3, TNXB, C1QTNF7, ESR1, CFL2, CCND1, DIXDC1,
HLA-DQB2, PRLR, MACROD2, RORA, and ZSCAN18,
which were termed as hyperdownregulated genes; while
there were 20 common genes in the list of upregulated DEGs
and hypo-DMR-genes (Figure 4(b)), namely, TAP1, S100A9,

EPSTI1, GJB2, GRHL3, TTC22, SOX7, WNT5A, XAF1,
GJB6, LAD1, POLR3G, KPNA2, E2F8, MX1, LTF, EPHX3,
LGALS3BP, NUSAP1, and ESRP2, defined as hypoupregu-
lated genes. The acquired genes above were collectively
labeled as differentially expressed methylation genes.

Subsequently, a PPI network was constructed for the
33 differentially expressed methylated genes by STRING
online analysis tool. After removing discrete nodes
(confidence = 0:15), a PPI network was obtained, which
contained 30 genes (Figure 4(c)), and 61 edges. Further-
more, the top 10 genes with the highest degree were iden-
tified as key genes, namely, CCND1 (degree = 11), ESR1
(degree = 10), MX1 (degree = 9), WNT5A (degree = 8),
LGALS3BP (degree = 8), GRHL3 (degree = 6), NUSAP1
(degree = 5), GJB2 (degree = 5), KPNA2 (degree = 5), and
EPSTI (degree = 5), and the complex interactions between
them were displayed in Figure 4(d).

3.4. GJB2 Was a Diagnostic Indicator for Psoriasis. To obtain
reliable and robust biomarkers and to reduce the possibility
of overfitting, we employed three machine learning methods
in the GSE13355 dataset, including LASSO regression, RF,
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Figure 3: Functional enrichment analysis of the hyper-MR- and hypo-MR-genes. (a) GO enrichment result of hyper-MR-genes. (b)
Enriched KEGG pathway of hyper-MR-genes. (c) GO enrichment result of hypo-MR genes. (d) Enriched KEGG pathways of hypo-MR
genes.
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and SVM-RFE for three-pass authentication. The optimal
value of λ was set at 0.3958 based on the minimum criterion
for LASSO regression, at which point one predictive feature
(GJB2) with a non-zero coefficient was identified among the
10 key genes (Figure 5(a)). The importance of each feature in
the RF model was illustrated in Figure 5(b), and after calcu-
lating the accuracy of the model under different features
using 10-fold cross-validation, it was determined that the
model was the most accurate when GJB2 was selected. In
SVM-RFE, the accuracy of each combination of iterations
was calculated by 10-fold cross-validation, which revealed
that the SVM model appeared to have the best prediction
performance when the first three genetic features (GJB2,
WNT5A, and KPNA2) were included (Figure 5(c)). Then,
GJB2 was the only overlapped gene among the three
machine learning methods, which was identified as the hub
gene for psoriasis (Figure 5(d)).

The Wilcoxon rank-sum test results of GJB2 illustrated
that GJB2 was significantly overexpressed in psoriatic
lesioned skin samples compared to healthy control skin sam-
ples (all P < 0:0001) (Figures 6(a) and (b)). Moreover, we
assessed the DNA methylation levels of GJB2 between the
normal and psoriasis groups in GSE73894, and the results
showed that the DNA methylation levels of GJB2 were sig-
nificantly lower in the psoriasis group (Figure 6(c)). Further,
ROC curves indicated that GJB2 was able to effectively dif-
ferentiate between psoriatic samples and healthy control
samples both in the GSE13355 dataset and in the
GSE14905 dataset, with an AUC of 1 in the GSE13355 data-
set (Figure 6(d)) and an AUC of 0.965 in the GSE14905
dataset (Figure 6(e)). This evidence suggested that GJB2
was a potential diagnostic marker for psoriasis.

3.5. Single-Gene GSEA of GJB2. To further explore the
potential molecular mechanisms of hub gene involvement
in the psoriasis process, we performed a single-gene GSEA

of GJB2. The top 10 enriched terms from GO analysis were
demonstrated in Figure 7(a), all of which were in the BP cat-
egory and closely associated with immune response, antigen
processing, such as activation of immune response, antigen
processing and presentation, antigen receptor mediated sig-
naling pathway, and anaphase promoting complex depen-
dent catabolic process. Besides, GJB2 was also notably
linked to cell cycle, tissue/organ growth and development,
and inflammatory response, including cell cycle g2 m phase
transition, DNA replication, kidney epithelium develop-
ment, skeletal system morphogenesis, and positive regula-
tion of cell-cell adhesion. More importantly, some terms
related to skin development were also significantly enriched,
such as regulation of cysteine type endopeptidase activity,
keratinocyte differentiation, keratinization, epidermis devel-
opment, and regulation of morphogenesis of an epithelium
(Supplementary Table 10). KEGG analysis showed that
GJB2 was significantly associated with a variety of diseases
(Alzheimers disease, huntingtons disease, parkinsons dis-
ease, etc.), cell biological processes (cell cycle, DNA replica-
tion, p53 signaling pathway, TGF beta signaling pathway,
JAK stat signaling pathway, etc.), and immune/inflamma-
tory response (antigen processing and presentation, allograft
rejection, primary immunodeficiency, cytokine cytokine
receptor interaction, etc.) related pathways (Figure 7(b);
Supplementary Table 11). This evidence suggested that
GJB2 may be involved in the development and progression
of psoriasis by disrupting the body’s immune system,
mediating the cell cycle, and destroying the skin barrier, in
addition to possibly inducing diseases related to the
skeletal aspects of psoriasis, such as arthritic psoriasis, or
being critical in the process of skeletal aberrations in
patients with psoriasis treated with hormonal therapy.

3.6. Prediction of Potential Drugs Targeting GJB2. GO-BP
enrichment analysis revealed that GJB2 was inextricably
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Figure 4: Identification and analysis of key differentially expressed methylation genes. (a) Venn diagram of hyperdownregulated genes
identification. (b) Venn diagram of hypoupregulated genes identification. (c) A PPI network for 30 differentially expressed methylated
genes. (C) Identification of 10 key genes.
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linked to pteridine-containing compound metabolic pro-
cess, pteridine-containing compound biosynthetic process,
and tetrahydrofolate metabolic process (Supplementary
Table 10). Drugs commonly used in psoriasis, such as
methotrexate, have been reported to restore the normal
methylation state by interfering with the methyl transfer
function of folic acid [42]. Inspired by this, we believed
that GJB2 was most likely a hopeful therapeutic target to
be developed for psoriasis. Through the DGIdb database,
the interaction of GJB2 with molecular drugs was pre-
dicted, and a total of 2 compounds were put forward as
inhibitors of GJB2, namely OCTANOL and CARBENOX-
OLONE (Table 2). These drugs could be the potential
effective antipsoriasis drugs in the future.

3.7. Relatively High Expression of GJB2 in Psoriasis. To fur-
ther investigate the expression of GJB2 in psoriasis, we per-
formed IHC staining and real-time qPCR using 8 psoriasis
lesions and 11 healthy skin tissues. Just as we expected,
IHC staining suggested that the protein level of connexin
26 (Cx26) was markedly higher in psoriasis lesions than in
healthy controls (Figures 8(a), 8(b) and 8(d)). Moreover, it
can be found from the real-time qPCR result that the mRNA
expression of IGF2BP3 in psoriasis lesions are upregulated
compared to healthy controls (Figure 8(c)).

4. Discussion

Identifying molecular targets and regulatory mechanisms
related to DNA methylation would contribute to the diagno-
sis and treatment of psoriasis. In this study, we identified 767
psoriasis-related DEGs and 896 DMR-genes in various GEO
databases. 30 hyperdownregulated genes and 20 hypoupre-
gulated genes were screened by overlap analysis. Through
the construction of the PPI network, 10 key genes were
selected, and GJB2 was finally identified as the hub gene fil-
tered by multiple machine learning algorithms. At the same
time, we conducted a single-gene GSEA on GJB2, and the
result suggested that it might be involved in the development
and progression of psoriasis by disrupting the body’s
immune system, mediating the cell cycle, and destroying
the skin barrier. Finally, the expression and methylation
level of GJB2 in psoriasis were verified by the external data-
set and qRCR [43].

Gap junction beta 2 (GJB2) gene is located in 13q11-
12 region, with a total length of 5.5 kb, encoding gap junc-
tion protein connexin 26 (Cx26) [44]. Gap junction chan-
nels allow the exchange of ions, second messengers, and
metabolites less than 1 kDa between adjacent cells, which
acts a significant role in regulating homeostasis and tissue
differentiation [45]. Screening gene mutation of GJB2
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Figure 6: Evaluation of diagnostic value of GJB2 by Wilcoxon rank-sum test and ROC curves. (a) The expression of GJB2 between healthy
controls and psoriasis lesions in GSE13355. (b) The expression of GJB2 between healthy controls and psoriasis lesions in GSE14905. (c) The
DNA methylation levels of GJB2 between healthy controls and psoriasis lesions in GSE73894. (d) Evaluation of GJB2 AUC in GSE13355. (e)
Evaluation of GJB2 AUC in GSE14905.
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could contribute to gene diagnosis and genetic counseling
in families with Non-Syndromic Hearing Loss (NSHL)
[46]. Connexin 26 missense mutation can cause palmo-

plantar keratoderma associated with sensorineural hearing
loss [47] and temporal bones with cochlear otosclerosis
[48]. The above diseases are largely caused by the thicken-
ing of the skin epidermis, which reveals a critical pattern
for Cx26 in maintaining the balance between proliferation
and differentiation of the epidermis.

Previous studies have found that the polymorphism of
GJB2 gene and the high expression of Cx26 are strongly cor-
related with the pathogenesis of psoriasis. Consistent with
the experimental results of our study, the expression of

Table 2: The inhibitory drugs of GJB2.

Gene Drug Interaction types

GJB2 OCTANOL Inhibitor (inhibitory)

GJB2 CARBENOXOLONE Inhibitor (inhibitory)
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Figure 7: Single-gene GSEA of GJB2. (a) The top 10 enriched GO terms. (b) The top 10 enriched KEGG pathways.
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Cx26 in psoriatic plaque was significantly upregulated.
Moreover, the high expression of Cx26 would destroy the
skin barrier [44] and activate the skin inflammatory
response [49]. Our single-gene GSEA also suggested that
GJB2 may be involved in the development and progression
of psoriasis by regulating immune microenvironment of skin
and destroying the skin barrier, which is consistent with the
previous finding. Rs72474224 [50] and Rs3751385 [51] in
GJB2 were preferentially associated with psoriasis suscepti-
bility of the Chinese Han population.

Octanol and carbenone were predicted to be used as two
new GJB2 inhibitors through DGIdb database. Octanol is a
kind of saturated fatty alcohol, which also act as a T-type cal-
cium channels (T-channels) inhibitor [52]. At present, there
is no report on the application of octanol in the field of bio-
medicine, but the therapeutic value of carbenoxolone has
been proved in various diseases. Carbenoxolone could
restrain the growth of colon cancer by blocking the gap junc-
tion channel and reducing the transport of glucose [53]. In

angiotensin II dependent hypertension, the combination of
carbenoxolone and ramipril could significantly inhibit the
proliferation and migration of VSMCs [54]. In addition, car-
benoxolone would also exert an antiepileptic effect in vivo
and vitro by regulating gap junctions between astrocytes
[55]. However, the application of carbenoxolone in psoriasis
needs to be further studied.

In conclusion, this study indicated that GJB2 could be a
key target for the diagnosis and treatment of psoriasis
through combined multiomics, and single-gene GSEA
revealed that GJB2 might induce psoriasis by regulating
body immunity and destroying skin barrier. In addition,
reversing the hypomethylation of GJB2 might be a new strat-
egy for the treatment of psoriasis in the future. However,
there are still some limitations in this study. For example,
samples in GEO database only generally divided into psori-
asis or health, which lacks subdivision of disease subtypes
and severity, and there is a certain heterogeneity between
patients.
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Figure 8: GJB2 expression in healthy controls and psoriasis lesions. (a) Immunohistochemical staining of GJB2 protein in psoriasis lesions.
(b) Immunohistochemical staining of GJB2 protein in healthy controls. (c) Quantitative analysis of GJB2 mRNA in healthy controls and
psoriasis lesions by qPCR.
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