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Abstract 

Background:  Early evaluations of the effectiveness of non-pharmaceutical intervention (NPI) mandates were 
constrained by the lack of empirical data, thereby also limiting model sophistication (e.g., models did not take into 
account the endogeneity of key variables).

Methods:  Observational analysis using a behavioral four-equation structural model that accounts for the endogene-
ity of many variables and correlated unobservable country characteristics. The dataset includes information from 132 
countries from February 15, 2020, to April 14, 2021, with data on confirmed cases and deaths, mobility, vaccination 
and testing rates, and NPI stringency. The main outcomes of interest are the growth rates of confirmed cases and 
deaths.

Results:  There were strongly decreasing returns to more stringent NPI mandates. No additional impact was found 
for NPI mandates beyond a Stringency Index range of 51–60 for cases and 41–50 for deaths. A nonrestrictive policy of 
extensive and open testing constituted 51% [27% to 76%] of the impact on pandemic dynamics of the optimal NPIs. 
Reductions in mobility were found to increase, not decrease, both case (−0.0417, [−0.0578,−0.0256], p < 0.001) and 
death growth rates (−0.0162, [−0.03,−0.002], p = 0.025) . More stringent restrictions on gatherings and international 
movement were found to be effective. Governments conditioned policy choices on recent pandemic dynamics, and 
were found to be more hesitant in de-escalating NPIs than they were in imposing them.

Conclusion:  At least 90% of the maximum effectiveness of NPI mandates is attainable with interventions associated 
with a Stringency Index in the range of 31–40, which impose minimal negative social externalities. This was signifi-
cantly less than the average stringency level of implemented policies around the world during the same time period.

Keywords:  SARS-CoV-2, Non-pharmaceutical interventions, Case growth rate, Death growth rates, Simultaneous 
structural equations, Contact tracing, Vaccination
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Background
The ancient Greek dictum pan metron ariston—every-
thing in moderation—implies that extreme measures on 
either end of a spectrum are unlikely to be the best pol-
icy. During the COVID-19 pandemic, one extreme—no 
intervention—was ruled out by most governments early 
on. The other extreme, however—severe restrictions 

and even complete lockdowns—remained on the table: 
Severe lockdowns were imposed during the first wave 
of the pandemic, when uncertainty regarding the trans-
mission and mortality of COVID-19 was high. This 
approach can be justified as a maxmin reaction in the 
face of uncertain events, minimizing the worst possible 
outcome. As we learn more about COVID-19 and uncer-
tainty is reduced, better estimates of both the probability 
distribution and magnitude of possible outcomes can be 
inferred, allowing for a more nuanced approach aligned 
with an expected value calculation of costs and benefits. 
Nevertheless, severe non-pharmaceutical interventions 
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(NPIs) remained in place in many countries despite the 
fact that governments and scientists were increasingly 
better informed. This can be seen in the evolution of the 
stringency of government-imposed NPIs (measured on 
the Stringency Index, SI, on a scale from 0 to 100) plot-
ted in Figure 1, which includes the median SI value across 
countries and the 10th and 90th percentiles. Median SI 
peaked during the first wave in April 2020, reaching a 
maximum of 84. It then trended slowly downwards and 
leveled off to a range of 55–60, slowly trending up again 
as subsequent waves led to a resurgence of the pandemic. 
As of April 2021, while NPIs had not reached the peak 
levels of the first wave, the median SI across countries at 
the last datapoint (April 14, 2021) was still relatively high 
at 64 (10th perc.: 31; 90th: 81). Another important obser-
vation is that after the peak in April 2020, governments 
have followed increasingly heterogeneous NPIs, with the 
difference in the 10th and 90th percentiles increasing 
from roughly 30 SI points to around 50 SI points since 
late 2020.

The aim of this study is to exploit this divergence in 
government responses in order to more clearly identify 
the effects of the strictness of NPIs on the dynamics of 
the pandemic. Here I extend earlier work based on lim-
ited data from the first wave [1–4] and address certain 
econometric issues with prior analyses. Did the accumu-
lated data from over a year support the continued impo-
sition of stringent NPIs well into the second year of the 
pandemic? I test the whole spectrum of COVID policies 

in terms of varying degrees of severity to determine 
whether moderation is indeed the best approach. If so, it 
is crucial to be able to identify optimally moderate meas-
ures within the spectrum of policy responses because 
restrictions and lockdowns have an immense effect on 
economic and psychological well being that eventually 
translate into negative health outcomes [5–7]. Because 
these effects are complex and difficult to quantify, there 
is a general propensity to focus solely on the positive, 
immediate effects of NPIs. However, trade-offs are ubiq-
uitous and we ignore them at our peril.

It should be noted that it may not always be possible to 
differentiate between the effects of announced NPI man-
dates and how effective NPIs could potentially be in an 
ideal world. That is, there may exist unobservable effects 
due to heterogeneous enforcement by governments or 
behavioral change by citizens across countries. Regard-
ing stay-at-home mandates and other similar NPIs that 
aim to restrict the mobility of citizens, the inclusion of 
observable mobility data in the model will ameliorate this 
problem. In other cases where no observable behavioral 
variables are available, such effects are absorbed by coun-
try-dependent latent variables in the econometric model. 
A conservative reading of the findings, however, should 
consider that better enforcement of NPIs may have led 
to a more significant impact than estimated. On the 
other hand, it is possible that better enforcement (e.g., 
through extensive policing) may not be possible or desir-
able. In this case, the findings would coincide with the 

Fig. 1  The time evolution of the Stringency Index across countries
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best possible achievable effects of NPI mandates, which 
is what should drive government policy from a practical 
perspective.

Trade-offs in COVID-19 research. Trade-offs also exist 
in the choice of pandemic research methodologies, both 
in terms of the type of model and the data it is estimated 
on. For example, models may be estimated on data at the 
national or subnational level. Working at the subnational 
level has the benefits of better controlling for country 
infection dynamics and avoiding possible issues aris-
ing from differences in pandemic accounting standards 
across countries [8]. However, since data at the national 
level is broader than subnational data in terms of country 
coverage, analyses at the national level may carry more 
external validity and are less likely to fall prey to over-
fitting due to small sample noise. Finally, the trade-off 
between aggregated (assuming homogeneity or pooled) 
or disaggregated (per country) modeling depends 
strongly on the amount and quality of the data.

The impact of policy interventions can be examined 
under the prism of three types of models, each with their 
own set of trade-offs: detailed models of epidemiological 
processes such as susceptible-infectious-removed (SIR)-
based models) [9–11], agent-based modeling of trans-
mission in a population (e.g., [12]), and reduced-form 
models that abstract away from epidemiological pro-
cesses and agent interactions at the micro level by using 
simple econometric models that capture the effects of 
variables without inference of complex epidemiologi-
cal parameters. Epidemiological models can be desirable 
because they directly model the underlying mechanisms, 
but they are prone to overfitting in the presence of scant 
or low-quality, noisy data. This leads to nonrobustness 
(see [13, 14]) since they require estimates of key param-
eters that are highly uncertain, and whose impact may 
reverberate significantly in highly nonlinear exponential 
growth models. No single approach dominates the rest, 
especially at the current stage of our understanding of the 
pandemic. Different approaches must be simultaneously 
pursued whilst acknowledging the limitations and advan-
tages of each in an attempt to consolidate the findings.

As the literature on COVID-19 is sizable, I briefly 
survey the most similar studies to this manuscript, pri-
marily those employing reduced-form equations. Early 
discourse was heavily influenced by the epidemiological 
modeling of the Imperial College COVID-19 Response 
Team [15], which concluded that lockdowns were a cru-
cial and necessary strategy. A study using subnational 
data from six countries revealed that while not all NPIs 
have a significant impact, overall they significantly reduce 
infections [16]. However, it did not explicitly account for 
the stringency of individual NPIs. Dichotomizing the 
range of NPIs into less restrictive (e.g., social distancing, 

discouraging international and domestic travel, and ban-
ning large gatherings) and more restrictive (e.g., stay-
home and business closure orders) reveals no evidence of 
additional gains associated with more restrictive NPIs in 
10 countries at the subnational level [17]. Similarly, strin-
gent lockdowns in 24 European countries in the first five 
months of 2020 did not significantly improve pandemic 
dynamics compared to less stringent lockdowns [18]. A 
similar finding emerged in a study using data from 108 
countries [19]. This implies that NPIs may have a sig-
nalling effect that leads citizens to voluntarily change 
their behavior and that less stringent NPIs already signal 
strongly enough so that there is no room for improve-
ment by implementing more stringent NPIs. The impor-
tance of voluntary behavior change is exemplified by 
the significant changes in mobility that occured before 
mandatory restrictions on movement came into effect 
[20, 21], and by the fact that mobility did not return to 
previous levels after lockdown restrictions were eased 
[22, 23]. The authors of a review of empirical studies [24] 
including some of the studies above concluded that the 
most effective interventions were (from most to least 
effective): school closings, workplace closings, business 
and venue closings, and public event bans. However, it 
should be noted that they often found conflicting results 
across studies, and that for many individual NPIs roughly 
only half the studies would find a statistically significant 
impact whereas the other half would not. For example, 
58% of the studies found a significant impact of school 
closing on cases, 50% for public event bans and 57% for 
business and venue closing; however, 86% found that 
workplace closing was effective.

I seek to combine the advantages of reduced-form 
approaches whilst alleviating some of the drawbacks in 
their implementations to date. Specifically, earlier studies 
eschewed behavioral components and agents’ incentives, 
estimated a single regression disavowing variable endo-
geneity, and were estimated on datasets from the first few 
months of the pandemic without the benefit of data cov-
ering more recent developments (e.g., newer variants).

The importance of behavioral models. Models can be 
classified according to whether they are behavioral or 
not—that is, whether the behavioral responses of citizens 
and governments are allowed to vary endogenously or are 
assumed to be fixed. Agent-based models are behavio-
ral, whereas standard SIR models are not. Reduced-form 
models typically estimate single-equation regressions of 
effects of NPI variables on either the confirmed case (and/
or death) growth rate or mobility data, thereby implic-
itly assuming that these variables are exogenous. How-
ever, it reasonable to believe that mobility is dependent 
on the severity of the NPIs in place: The level of severity 
may mediate the impact of NPIs on COVID-19 dynamics. 
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Furthermore, NPI stringency may also be endogenous if 
governments base their policy decisions on recent epide-
miological data and trends (e.g., infection growth). Con-
sequently, agents’ adaptive reactions to the situation also 
merit attention—both those of citizens [25] (e.g., mobility 
and precautionary and voluntary measures) and those of 
governments (e.g., the choice and timing of policies).

Behavioral components can be introduced into both 
epidemiological and reduced-form models. The former is 
significantly more common than the latter, which I pursue 
in this study. Incorporating behavioral components in SIR 
models leads to very different long-run predictions than 
those made by models based on standard nonbehavio-
ral SIRs [26]. A common finding is that the system tends 
to an equilibrium reproduction rate of 1 [27], sometimes 
with oscillations if behavioral components operate with 
lags [28, 29]. These studies highlight that it is important 
to model the evolution of behavioral responses, as they 
can lead to important qualitative, not just quantitative, 
changes in pandemic dynamics. The canonical behavio-
ral response depends on the perceived risk of infection 
and severity; for instance, consumers changed their shop-
ping habits predominantly of their own volition, not due 
to legal restrictions [30]. Behavioral incentives can have a 
stabilizing effect on the infection growth rate; the higher 
the infection growth rate, the more likely citizens are to 
adjust their behavior to decrease the chance of infection. 
However, it is important to bear in mind that individual 
behavior may become more reckless as risks are mitigated 
(see the literature on risk compensation [31]). For example, 
as the pandemic starts to wane, citizens may adopt more 
risky practices, thereby slowing the decrease in the infec-
tion rate. Similarly, extensive testing and vaccinations may 
elicit adverse behavioral responses if citizens believe they 
are less likely to contract COVID-19 and infect others.

The importance of beliefs and expectations. Unobserv-
able variables such as culture [32] may jointly influence 
key variables that are typically assumed to be exogenously 
determined. For example, low social capital and trust in 
government may affect case growth rates both directly 
and indirectly. Suppose that low-trust countries also tend 
to have inadequate public health systems. This will have a 
direct impact on case and death growth rates due to inad-
equate health care, but it may also have an indirect effect: 
Governments of these countries, knowing that the health 
care system is weak and intensive care units are scarce, may 
impose more stringent NPIs compared to countries with 
better health systems in a attempt to prevent intensive care 
units from filling to capacity. Citizens’ and governments’ 
expectations and beliefs can introduce further endogeneity. 
Citizens’ beliefs about the quality of governance may shape 
their behavior and impact the effectiveness of NPIs [33]. 
Low trust between citizens and government institutions 

may lead citizens to view their government’s portrayal of 
the situation with skepticism, and may encourage govern-
ments to impose stricter restrictions in anticipation of its 
citizens exhibiting a weaker behavioral response.

Simultaneously modeling endogeneity and unobservable 
variables, behavioral incentives, and beliefs. Acknowledg-
ing that confirmed case and death growth rates, mobil-
ity, and government policies are endogenous requires 
a system of four equations to fully model these interac-
tions and avoid biases resulting from simpler regressions 
that implicitly impose exogeneity. I complement the lit-
erature by employing econometric procedures, namely 
structural multi-equation modeling including latent vari-
ables capturing the effects of unobservable determinants, 
to improve upon the external validity of prior analyses. 
This system of equations can be viewed through the lens 
of game theory—that is, modeling agents who react to 
each other’s strategies and their expectations thereof. I 
propose an admittedly rudimentary model of the adap-
tive interactions of three agents: the SARS-CoV-2 virus, 
citizens, and governments.1 My approach complements 
existing studies by investigating a large number of coun-
tries. This approach has the advantage of pooling esti-
mates for robustness, but also disadvantages such as the 
assumption of homogeneity across countries and the 
need to focus on aggregated measures of key endoge-
nous variables—rather than their individual components 
[1]—in order to avoid a computationally intractable and 
unidentifiable system of equations. A central issue is to 
examine whether there are decreasing returns as NPIs 
increase in severity, and, if so, to estimate the optimal 
level of severity of government policies. This is critical 
not only for future COVID-19 variants and other pan-
demics, but also currently, since less strict NPIs may also 
be valuable during the vaccination phase [34].

Methods
National-level data from 132 countries covering the 
period from February 15, 2020, to April 14, 2021, was 
compiled, extending previous analyses to data including 
the appearance and spread of the B.1.1.7 and B.1.351 var-
iants detected in late 2020, and more recently discovered 
variants such as P.1. Confirmed case and death counts, 
vaccinations, and tests, were download from the COVID-
19 Data Hub [35, 36], which also included the implemen-
tation of NPIs as measured by the composite SI sourced 
originally from the Oxford COVID-19 Government 
Response Tracker [37]. Mobility data from the Google 
Community Mobility Report [38] was merged with the 
data file from the COVID-19 Data Hub.

1  Unfortunately, a more rigorous game-theoretic analysis would require sig-
nificantly more data to effectively infer or observe expectations of agents and 
the multitude of ways to react to said information.
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The growth rate of confirmed cases (deaths) was 
calculated as the log difference in the cumulative 
confirmed cases (deaths) for two consecutive days mul-
tiplied by 100 (i.e., they can be interpreted as approxi-
mate percentage growth rates). The summary statistics 
for growth in confirmed cases are: number of obser-
vations = 53,279, mean = 2.74%, stdev. = 8.87%; the 
summary statistics for growth in confirmed deaths are: 
number of observations = 49,366, mean = 1.997%, 
stdev. = 6.84%. To allow for a nonlinear relationship 
between the SI and case/death growth rate, a semipa-
rametric approach was implemented by subdividing the 
SI (ranging continuously from 0 to 100) into a baseline 
of no restrictions (0) and the deciles (1–10, 11–20, ..., 
91–100). The set of nonrestrictive policies examined 
are: the testing policy (TP), which takes on levels (l) of 
0 (no testing) through 3 (open testing); the contact trac-
ing (CT) policy, which takes on levels of 0 through 2; 
the proportion of the population tested per day (TPop); 
and the cumulative percentage of the number of vacci-
nations compared to the country’s population (V)—this 
can be greater than 100% because some vaccines require 
more than one dose.

I address the issues regarding the previous modeling 
as identified above by simultaneously estimating four 
generalized structural equations to model the com-
plex inter-relationships between variables (see Figure 2 
for a graphical representation of the causal structure 
and Eqs.  1–4, which define the econometric model). 
The dependent variables for each equation are: (Eq. 1) 
the growth rate of confirmed cases ( ˙C ), (Eq.  2) the 
growth rate of confirmed deaths ( ˙D ), (Eq. 3) the seven-
day moving average of mobility ( Mi,t ), and (Eq.  4) 
p SIi,t = l  is the probability that the SI level belongs to 
the lth decile; note that Λ is the logistic function. Below 
I describe the two variables Mi,t and Sli,t (growth rates 
of confirmed cases and deaths are self-explanatory).
Mi,t denotes the seven-day moving average of the per-

centage change in mobility (compared to the pre-COVID 
baseline for each country)—this was constructed by an 
equal weighting of three individual variables separately 
measuring mobility towards transit stations, workplaces, 
and groceries and pharmacies. Since this variable is nor-
malized at a different baseline per country, additional 
random effects at the national level were not imple-
mented in Eq. 3, in contrast to the other equations.
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Note that in Eq.  4, SIi,t is an ordered variable of the 
SI ranging in levels from 0 to 10, whereas in Eq.  1, SIli,t 
enters as a set of l dummy variables. If δ1 > 0 then gov-
ernments respond to higher (lagged) case growth rates 
(

˙Ci,t−7

)

 by increasing the SI of their mandated NPIs. An 
indicator function I

[

˙Ci,t−7 −
˙Ci,t−14

]

 captures govern-
ment hysteresis or path dependence, which is equal to 
1 if the case growth rate has been declining or zero if it 
has been increasing. The hypothesis is that governments 
are slower at scaling back stringent NPIs as the pandemic 
threat recedes than they are in implementing them dur-
ing outbreaks. If the estimated coefficient δ2 > 0 , for the 

same level of case growth, governments will on average 
be more likely to impose more stringent NPIs if the case 
growth trend is negative than if it is positive.

National-level unobservable characteristics were mod-
eled using unique random effects denoted by �ei  (latent 
variables) where e indexes the Eqs. (1, 2, or 4), allowing for 
covariance between all the random effects to capture the 
joint impact of unobservable country characteristics. Fixed 
effects for the impact of the day of the week on case and 
death growth rates are denoted by Wl

t .
Relationships between the case (and death) growth 

rates and other variables incorporated lags to capture the 

Fig. 2  A four-equation structural model of COVID-19 dynamics
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approximate delays in symptom onset and case confir-
mation and the timing of exposure to the virus [39]. The 
lags for the growth rate in deaths are 14 days longer than 
those for cases to reflect the fact that on average deaths 
occur at a much later time after infection (e.g., after 
lengthy hospitalizations). The exact determination of the 
lags is not critical, as there is a high degree of autocorre-
lation of the key lagged variables. To simplify the model, 
all lags and moving averages were multiples of seven 
days to remove the effects of systematic daily variations. 
Cluster-robust standard errors were employed to account 
for heteroskedasticity and within-panel dependence of 
errors.

The initial date used in the estimation varied by coun-
try as it was to set to the first day with a confirmed case. 
Any missing datapoints for the confirmed cases and 
deaths, number of tests, and number of vaccinations at 
time t were set equal to the value at time t − 1; this was 
done on the raw data of these variables, which were 
coded as cumulative sums until time t.

Several robustness tests were performed by estimat-
ing the same four structural equations under alternative 
assumptions. The first implicit assumption in Eqs.  1–4 
tested for robustness is that the system’s coefficients 
are constant across the different COVID-19 infection 
waves and independent of the emergence of different 
SARS-CoV-2 variants. We follow a proposed classifi-
cation of the first three COVID-19 waves [40], where 
the first wave began approximately in March 2020, the 
second wave in July 2020, and the third wave in January 
2021. The model was estimated again with data includ-
ing only: a) the first wave with a cutoff of June 30 (see 
Supplementary Table  7 for the estimation results) and 
b) the first and second waves with a cutoff of December 
31, 2020 (see Supplementary Table  8). These roughly 
correspond to the following variants: the first wave 
mostly captures the Beta variant, the combination of 
the first and second waves capture the Beta and Alpha 
variants, whereas the complete dataset (reported in the 
main text) includes the Beta, Alpha and Gamma vari-
ants. The classification into these three waves (and the 
predominance of the corresponding variants) should be 
viewed as a necessary approximation to aid the model-
ling, as the exact dates vary across countries. Although 
this rudimentary classification is sufficient for the pur-
poses of robustness tests, the results should not be 
viewed as decisive in assessing the possible differential 
impact of SARS-CoV-2 variants. Finally, the robustness 
of the decision to employ semi-parametric estimation 
by binning the SI into deciles was tested by estimating 
the model with the SI binned into quintiles instead (0, 
1–20, 21–40, 41–60, 61–80, 81–100); the estimation 
results can be found in Supplementary Table 6. Across 

all the robustness tests, the main qualitative findings 
regarding the effectiveness of NPIs matched those of the 
model presented below in the main text (namely that 
the effectiveness of NPIs plateaued at moderate levels of 
stringency), and the variation in the magnitude of the 
impact across the robustness tests, was of one order 
of magnitude smaller than the impact reported for the 
main estimation.

The usual disclaimers hold regarding the use of 
observational data and the causal assumptions embed-
ded in the chosen structural equations and variable 
relationships.

Results
Detailed regression results can be found in Table  1 and 
Supplementary Table  2; Figures  3, 4 and 5 present the 
main estimates graphically.

Highly correlated unobservable variables influence 
both government policy and confirmed case and death 
growth rates The estimated covariances (and associ-
ated correlations) between the national-level latent 
variables in Eqs. 1, 2, and 4 were all positive and signifi-
cantly different from zero at the 0.001% level: ρ�,12=0.98 
[95% CI: 0.95,1.00], ρ�,14=0.66 [0.54,0.79], ρ�,24=0.68 
[0.56,0.80]. This validates the hypothesis that significant 
unobservable variables may simultaneously influence 
case and death growth rates and the severity of govern-
ment policies. Ignoring these relationships by estimat-
ing a single regression of case or death growth rates, as 
is commonly done in the literature, would have led to 
biased estimates.

Adaptive expectations of the risk of infection impact 
nonresidential mobility Citizens reacted to increases in 
the seven-day lag in growth rates of confirmed cases by 
reducing mobility. This is consistent with a theory of citi-
zens forming adaptive expectations about the severity of 
the pandemic at any point in time and the risk of contrac-
tion based on the data. The impact of the daily growth in 
confirmed cases is γ̂2 = −0.214 [-0.255,-0.174]. Putting 
the effect size into perspective, an increase in the case 
rate of 1 percentage point would result on average in a 
relatively weak reduction in mobility of 0.21 percentage 
points compared to the baseline.

The indirect links between NPIs and confirmed case/
death growth rates The indirect links between NPI man-
dates and confirmed case/death growth rates consist of 
two components: for cases, ( SI → M) and ( M →

˙C) , 
and for deaths, ( SI → M) and ( M →

˙D) . Below, I will 
present evidence that nonresidential mobility mediated 
the relationship between NPI stringency and case/death 
growth rates. I begin by reporting the evidence regard-
ing the SI → M component, which is common to both 
instances.
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Table 1  Generalized structural equation model of ˙Ci,t , ˙Di,t ,Mi,t , and SIi,t

σ�,12 = 3.429∗∗∗ [2.683, 4.176], σ�,14 = 2.478∗∗∗ [1.798, 3.158], σ�,24 = 2.070∗∗∗[1.479, 2.661]

[95%CI], ∗ p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001  

˙Ci,t ˙Di,t Mi,t SIi,t

Mi,t−7 -0.0417*** Mi,t−21 -0.0162*

[-0.0578,-0.0256] [-0.0304,-0.00199]

SIi,t−14 SIi,t−28 SIi,t−7

1–10  -4.522 -7.336*** 1–10  -3.346

[-10.40,1.350] [-10.97,-3.701] [-7.675,0.983]

11–20 -5.681* -7.938***  11–20  -3.264

[-10.01,-1.352] [-10.85,-5.022] [-10.44,3.910]

21–30 -10.44*** -12.45***  21–30 -6.421*

[-14.73,-6.153] [-15.16,-9.734] [-12.29,-0.550]

31–40 -13.45*** -14.96***  31–40  -12.21***

[-17.42,-9.487] [-17.71,-12.22] [-15.98,-8.438]

41–50 -14.13*** -15.46*** 41–50 -13.90***

[-18.04,-10.22] [-18.14,-12.79] [-17.54,-10.26]

51–60  -14.81***  -15.80***  51–60  -15.68***

[-18.70,-10.92] [-18.45,-13.14] [-19.40,-11.96]

61–70 -15.25*** -16.10*** 61–70  -19.84***

[-19.18,-11.33] [-18.80,-13.40] [-23.80,-15.88]

71–80 -15.28***  -15.91***  71–80  -28.68***

[-19.19,-11.36] [-18.59,-13.22] [-32.76,-24.59]

81–90  -15.10***  -15.83***  81–90  -34.90***

[-19.04,-11.17] [-18.57,-13.10] [-39.67,-30.13]

91–100  -14.19***  -15.07***  91–100  -53.46***

[-18.23,-10.15] [-17.84,-12.30] [-59.67,-47.25]

Tpopi,t−14  -0.184 Tpopi,t−28  -0.126 ˙Ci,t−7  -0.214*** ˙Ci,t−7  0.0484***

[-0.404,0.0355] [-0.315,0.0629] [-0.255,-0.174] [0.0354,0.0613]

Vi,t−14  -0.0170* Vi,t−28  -0.0187* I
[

˙Ci,t−7  0.531***

[-0.0316,-0.00242] [-0.0352,-0.00230]
−
˙Ci,t−14

]

[0.453,0.609]

TPi,t−14(1)  -4.385*** TPi,t−28(1)  -2.603*

[-6.824,-1.946] [-4.671,-0.535]

TPi,t−14(2)  -6.474*** TPi,t−28(2) -4.247***

[-8.964,-3.983] [-6.369,-2.125]

TPi,t−14(3)  -7.390*** TPi,t−28(3)  -4.875***

[-9.926,-4.854] [-7.086,-2.664]

CTi,t−14(1)  -0.77 CTi,t−28(1) -0.567

[-1.973,0.434] [-1.584,0.450]

CTi,t−14(2) -0.82 CTi,t−28(2) -0.572

[-1.986,0.345] [-1.586,0.442]

α1  21.96*** α2  20.71*** α3  3.328*

[17.92,25.99] [18.30,23.13] [0.0958,6.560]

σ 2
�,1

 4.299*** σ 2
�,2

 2.870*** σ 2
�,4

 3.240***

[3.312,5.287] [2.076,3.665] [2.350,4.130]

σ 2
ǫ ,1

 22.22*** σ 2
ǫ ,2

 33.72*** σ 2
ǫ ,3

 200.4***

[17.82,26.62] [29.39,38.04] [160.2,240.5]



Page 9 of 15Spiliopoulos ﻿BMC Public Health         (2022) 22:1842 	

Higher NPI severity restricts nonresidential mobility 
Nonresidential mobility is clearly impacted by the SI (see 
the estimates of γl,t in Table 1 and Figure 3), as the null 
hypothesis that all SI dummy variable coefficients are 
equal to zero was rejected ( χ2(10) = 428.38, p < 0.0001 ). 
Furthermore, the absolute value of the effect size was 
monotonically increasing in the 10 SI ranges, i.e., higher 
stringency led to reduced mobility.

Lower nonresidential mobility increases case and death 
growth rates The theoretical motivation behind restrict-
ing mobility through lockdown measures is that restrict-
ing it will reduce the number of social interactions, 

thereby reducing transmission and infection. However, 
a reduction in nonresidential mobility necessarily entails 
an increase in the time spent within residences—indeed, 
these two effects are highly negatively correlated in 
the Google mobility data, where the median correla-
tion within panels is -0.89. Consequently, reductions in 
nonresidential mobility may have a detrimental effect 
on case/death growth rates; although transmission 
outside the home may be reduced, within-household 
transmission may be enhanced as people spend increas-
ingly more time with cohabitants in the confines of a 
closed space [41]. Since the two effects work in opposite 

Fig. 3  Impact of policy Stringency Index on the percentage change in nonresidential mobility 
(

γ1,l
)

Fig. 4  Total effect of the Stringency Index level
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directions, the question of whether restricting nonresi-
dential mobility reduces case/death growth rates must 
be resolved empirically. The finding that the impact of 
Mi,t−7 was significantly negative for cases, ˆβc

1 = −0.0417 
([−0.0578,−0.0256], p < 0.001) , and of Mi,t−21 
was significantly negative for deaths ˆβd

1 = −0.0162 
([−0.03,−0.002], p = 0.025) , supports the hypothesis 
that the benefits of reduced nonresidential mobility are 
more than outweighed by the detrimental effects of 
increased within-household transmission (conditioned 
on the stringency of government policies). The effect size 
is moderate, as a 10 percentage point decrease in mobil-
ity leads to an increase of 0.4 percentage points in the 
case growth rate.

The direct link between SI and case/death growth rates 
The null hypothesis that NPI mandates had no direct 
impact on case growth rates was rejected, as the set of 
βc
2,l estimates are all equal not significantly different from 

zero ( χ2(10) = 137.28, p < 0.0001 ). Furthermore, there 
was evidence of a nonlinear relationship between NPI 
stringency and case/death growth rates, with increasingly 
stringent restrictions offering strongly decreasing returns 
(see Table 1; the conclusions are similar for death growth 
rates).

The total effect of NPI stringency on case/death growth 
rates and the optimal level of stringency The total effect of 
the stringency of NPI mandates on case growth rates can 
be computed by adding the direct path β2,l and the indi-
rect path γ1,l × β1 for each stringency level of l. This com-
bined effect of stringency on ˙Ci,t and ˙Di,t is documented 
in Supplementary Tables 2 and 4, and presented graphi-
cally in Figure 4.

The maximum impact of NPI stringency on case growth 
is observed for the SI range of 61–70. I tested the differ-
ence in effectiveness of all other levels against the most 
effective range, 61–70, correcting for multiple compari-
sons using the Sidak correction.2 There was no difference 
in effectiveness for the ranges 51–60 and 71–80 compared 
to 61–70 (see Supplementary  Table  3 for the test statis-
tics). The ranges 81–90 and 91–100 were significantly 
less effective than the range 61–70. Consequently, there 
are no further gains to be achieved beyond the SI range 
of 51–60. The socially optimal SI range, however, must 
account not only for the positive effects of NPIs, but also 
for the significant impact on physical and mental health 
[42–48] and economic costs that result from restrictions 
(for example, see [5–7]). While this would require a full 
cost–benefit analysis [49–52] that is beyond the scope 
of this paper, it is possible to derive the approximate 
upper bound of the socially optimal SI level with a single 
assumption about the cost profiles of different SI levels: 
that the costs are monotonically increasing in the SI level. 
Consequently, without the need to quantify costs, I con-
clude that the upper bound of the socially optimal SI level, 
SI*, is 51–60—that is, the minimum SI range that is not 
significantly different from the maximum effect at 61–70.

Quantifying the exact costs of NPIs is an impor-
tant endeavour, but one that is fraught with difficul-
ties, such as converting non-economic outcomes into 
monetary terms. Furthermore, doing so would require 

Fig. 5  Estimated coefficients across levels of testing policy (TPl) and contact tracing (CTl), where l=level

2  If anything this underestimates the possible range of nonsignificantly differ-
ent SI ranges, as it ignores the uncertainty associated with whether the range 
61–70 is truly the most effective range.
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multiple assumptions about highly uncertain possible 
effects, many in the distant future. By contrast, this upper 
bound on SI* is extremely robust, albeit less informa-
tive. Although the derivation of SI* is based on statisti-
cal significance, it is possible that lower SI levels may be 
statistically significantly different from SI*, but that the 
difference in the effect size is practically of little impor-
tance. Indeed, the ratio of the effect sizes of an SI range of 
31–40 relative to the average of the 51–80 range, is 91% 
[ 85%, 97% ], that is, the former is 91% as effective as the 
latter. The relative effectiveness of the even laxer 21–30 
range is 72% [ 57%, 86%]. If the costs of NPIs increase 
quickly with NPI stringency, it is conceivable that mod-
erately severe policy responses in the 31–40 SI range (and 
possibly even 21–30) may in fact be close to the socially 
optimal SI* (arising from a full cost–benefit analysis), as it 
achieves 91% effectiveness without accounting for costs.

Similarly, the maximum effectiveness on death growth 
rates was also observed in the SI range of 61–70. I 
tested the difference in effectiveness of all other lev-
els against this range and found no significant increase 
in effectiveness for levels beyond 41–50 (see Supple-
mentary  Table  5). An SI range of 31–40 achieved 93% 
[ 87%, 98% ] of the effectiveness of the average of the 41–90 
range; the laxer 21–30 range achieved 73% [ 58%, 88%].

Finally, while the SI aggregates individual NPI policies, 
examining the median values of the individual policies in 

the dataset for each SI range can also be informative (see 
Table 2). Note that in the 31–40 SI range, which achieves 
at least 90% of the maximum impact, the median policies 
do not include any restrictions on transport and internal 
movement, nor do they include stay-home restrictions. 
Furthermore, closing schools and workplaces and can-
celling public events were recommended but not man-
datory. The only stringent individual policies typically 
arising in the 31–40 SI range were quarantining high-risk 
cases from international travel and restrictions on gath-
erings of 100–1,000 people; however, these two policies 
are not reflective of citizens’ everyday behavior. Conse-
quently, voluntary behavioral changes appear to be more 
important drivers of the impact of NPIs on case and 
death growth rates than are mandatory measures.3 This is 
consistent with other studies that also conclude that the 
flattening of NPI effectiveness with increasing stringency 
reflects a relatively stronger voluntary (vs. mandatory) 
component to behavioral changes (e.g., [17–19, 23]).

What causes this voluntary behavioral change? As 
I have shown, it is partly due to citizens’ expectations 
of the risk of infection and severity as captured by γ̂2 in 
Eq. 3—the effect size, however, was found to be relatively 
small. The majority of voluntary behavioral change, is 
likely due to the signalling value of policy decisions. Citi-
zens can use information about the stringency of gov-
ernment measures to infer the severity of the pandemic. 
This implies that recommendations by governments, for 
SI ranges of up to 40, were heeded by citizens, who sig-
nificantly changed their behavior in ways beyond those 
captured by mobility in Eq.  3, such as by implementing 
preventative measures including diligent hand washing, 
wearing masks, and self-isolating when infected.

Extensive public testing significantly reduces case and 
death growth rates, contact tracing does not Figure 5 pre-
sents the estimated coefficients and associated 95% con-
fidence intervals regarding contact tracing and public 
testing (see Table  1 for detailed regression results). All 
three levels of the testing regime were jointly significantly 
different from zero ( χ2(3) = 66.03, p < 0.0001 ), leading 
to progressively greater declines in case growth rates as 
testing became more extensive (robust to multiple com-
parison Sidak corrections).4 Note that the most extensive 

Table 2  Stringency Index levels and their median constitutent 
non-pharmaceutical intervention levels

† upper bound of optimal Stringency Index level for confirmed case growth 
rate, ⋄ upper bound of optimal Stringency Index level for death growth rate, ◦ 
achieves at least 90% of the effectiveness for both case and death growth rates

Restriction type 51− 60† 41− 50⋄ 31− 40◦  Description of 
31− 40◦ levels

school closing 2 1 1 recommend 
closing

workplace clos-
ing

2 1 1 recommend clos-
ing (or work from 
home)

cancellation of 
public events

2 1 1 recommend 
cancelling

gatherings 
restrictions

3 3 2 restrictions on 
gatherings of 
100–1,000 people

transport closing 0 0 0 no measures

stay-home 
restrictions

1 0 0 no measures

internal mobility 
restrictions

0 0 0 no measures

international 
mobility restric-
tions

3 3 3 quarantine arrivals 
from high-risk 
regions

information 
campaigns

2 2 2 coordinated pub-
lic information 
campaign

3  I infer that the restriction on gatherings of 100–1,000 people is not the main 
driver of mandatory behavioral change because the median level of restric-
tions on gatherings for the next less stringent range, 21–30, is zero, that is, no 
restrictions whatsoever. Yet the mean estimate of NPI impact for the 31–40 
range is -12.945, compared to -10.173 for the 21–30 range. Some of this dif-
ference will also be due to other policies that are stricter on average in the 
former compared to the latter.
4  That is, comparing the baseline of no testing to the first 
level ( χ2(1) = 12.42, p = 0.0013 ), the first to the second level 
( χ2(1) = 38.55, p < 0001 ), and the second to the third level 
( χ2(1) = 7.83, p = 0.0153).
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testing policy had an impact of -7.39 [-9.926,-4.854], 
which is 51% [27%,76%] of that of the most impactful 
SI range (61–70). Similarly, the implementation of test-
ing policies significantly reduced the death growth rate 
( χ2(3) = 42.81, p < 0.0001 ). Unlike lockdowns, the only 
costs that testing policies incur are financial; mental 
health, for example, is generally not affected. Coupled 
with its significant impact on COVID-19 dynamics, this 
renders extensive testing a desirable tool.

Contact tracing of any level did not have a significant impact 
on confirmed case growth rate ( χ2(2) = 1.93, p = 0.38 ) or 
death growth rate ( χ2(2) = 1.31, p = 0.52 ). However, con-
tact tracing may still be effective if the number of daily new 
cases is small, when efficient tracing is more manageable. 
There remain important challenges to scaling contact tracing 
[53–55] that could hinder its effectiveness during significant 
outbreaks.

The proportion of the population tested daily does not 
significantly affect case and death growth rates While 
both estimates were negative, as expected, increasing the 
proportion of daily tests did not significantly reduce the 
case growth rate, ˆβ5 = −0.18 [ −0.403,−0.035, p = 0.1 ], 
nor did it significantly reduce the death growth rate, 
-0.126 [ −0.315, 0.063, p = 0.191 ]. Including different 
levels of the ordinal testing policy variable may par-
tially capture this effect, as they will be correlated to 
some degree with the proportion tested—that is, exten-
sive testing as coded in the ordinal variable would likely 
be associated with more testing. Finally, this may be the 
result of implicitly assuming exogeneity; testing may also 
be endogenously determined as governments are likely to 
step up testing during phases with higher transmission.

Vaccination reduces confirmed case and death 
growth rates Despite few datapoints where vaccina-
tion was already well underway, each 1 percentage 
point increase in the cumulative vaccination % reduced 
the case growth rate by -0.017 percentage points 
[−0.032,−0.002, p = 0.022] and the death growth rate by 
-0.0187 percentage points [ −0.035,−0.002, p = 0.026 ]. 
Note that the median (nonzero) cumulative vaccina-
tion % across countries was only 2.6% and the 10th and 
90th percentiles ware 0.07% and 19.8%, respectively. 
Consequently, these relatively low estimates should not 
be assumed to extrapolate for higher vaccination levels, 
especially since this is likely to be a nonlinear relationship 
in reality—that is, the effect of vaccinations may increase 
at an accelerating rate as the population approaches herd 
immunity.

Government policy is endogenous and exhibits hyster-
esis Government policy is strongly endogenous, in con-
trast to the common implicit assumption of exogeneity. 
The seven-day lagged confirmed growth rate coeffi-
cient ˆδ1 = 0.048 [0.035, 0.061, p < 0.0001] was positively 

related to NPI severity. Furthermore, I found significant 
hysteresis in the de-escalation of NPIs. For the same case 
growth rate, NPIs were significantly more stringent if the 
case growth rate had recently been falling rather than ris-
ing: ˆδ2 = 0.531 [0.453, 0.609, p < 0.0001].

Discussion and conclusions
A four-equation structural model of multiple agents 
(SARS-CoV-2 virus, citizens, and governments) captur-
ing the basic dynamics of their endogenous evolution 
revealed several crucial insights. Recall that the SI maps 
the stringency of NPI mandates in the range from 0 (no 
measures taken) to 100. For confirmed case growth rates, 
there were no significant gains to be had beyond an SI 
range of 51–60; moreover, 91% of this effect size was 
achieved with an SI range of 31–40. For death growth 
rates, no significant gains were to be made beyond an SI 
range of 41–50, and 93% of this effect size was achieved 
within the SI range of 31–40. An open testing policy has 
approximately half the benefits of the optimal NPIs with-
out incurring the societal costs associated with long-term 
restrictions. Furthermore, the finding that decreases in 
nonresidential mobility (and therefore increases in time 
spent at residences) raise the growth rate of confirmed 
cases and deaths is aligned with contact tracing analy-
ses of heightened transmission risk within a household 
compared to the wider community [41] and earlier work 
concluding that shelter-in-place orders did not reduce 
COVID-19 infection and mortality rates [56].

Interpretation and implications for policy Table 2 shows 
the median values of the individual NPIs measured in the 
SI for the upper bounds on the socially optimal level of 
NPI stringency for confirmed case growth rates (51–60) 
and death growth rates (41–50), as well as the near-opti-
mal range of 31–40. Note that there is significant hetero-
geneity across NPIs in terms of their severity. The most 
severe NPI mandates in the three SI ranges featured in 
Table  2 are restrictions on gatherings and international 
movement; at the other extreme, no restrictions or rec-
ommendations were put in place for transport and 
internal movements. Stay-home restrictions and recom-
mendations were also mostly absent, with the exception 
of a recommendation to stay home in the 51–60 range. 
Moderately severe restrictions were typically imple-
mented in schools and workplaces: The optimal upper 
bound for confirmed case growth rate includes targeted 
partial closures of schools and workplaces, whereas the 
optimal upper bound for death growth rates and the 
near-optimal SI range (31–40) only feature recommenda-
tions to work from home.

These findings are generally aligned with studies find-
ing that more severe restrictions were not significantly 
more effective than less restrictive policies [1, 17–19]. 
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However, they stand in contrast to others that concluded 
that strict lockdowns were effective [2, 15] during the first 
wave, whilst differing in some policy interventions such 
as school and workplace closures, but agreeing on oth-
ers such as mass gathering restrictions [2]. Differences 
between this and other studies may be due to their more 
limited time series or their lack of explicit behavioral 
modeling of citizens’ and governments’ reactions to the 
pandemic. A significant proportion of the effect of NPIs 
on case and death growth rates can be attributed to vol-
untary behavioral changes (though often following gov-
ernmental recommendations) rather than mandatory, 
government-imposed imperatives. Notably, the 31–40 
range typically included a coordinated public campaign 
aimed at influencing voluntary behavior. This point high-
lights the importance of modeling the behavioral incen-
tives of both governments and citizens in conjunction 
with the pandemic dynamics.

Strengths and limitations The primary strength of this 
study compared to earlier work is its simultaneous mod-
eling of pandemic dynamics with behavioral models of 
citizens’ adaptation to the pandemic and a model of gov-
ernment policies. This more sophisticated model with 
behavioral components was made possible by a growth in 
accumulated data, including testing and vaccination rates. 
Nonetheless, some simplifications were still necessary to 
ensure parameter and model identification and to rein in 
the computational complexity of the estimation processes. 
These simplifications included examining the effects of 
countries’ SI levels that are a composite of individual 
NPIs, rather than examining each NPI separately. Simi-
larly, an average measure of the change in mobility was 
used instead of disaggregated submeasures of the type of 
mobility. Furthermore, while random effects allowed for 
variation across countries in unobservable variables, esti-
mates of the variables of interest (NPIs and other inter-
ventions) were pooled across countries. Readers should 
note that the data did not include the impact of the emer-
gence of the Omicron variant in late 2021. Finally, the 
dependent variables only reflected the number of con-
firmed cases and deaths, but did not capture the impact of 
post-COVID-19 syndrome or “long-COVID”.

Unanswered questions and further research As more 
data become available over time, future research should 
address some of the limitations of the current modeling. 
For example, models would ideally allow for heterogene-
ity in the variable estimates across countries rather than 
pooling estimates across countries; similarly, subnational 
data could be used to avoid pooling across regions within 
countries. Inference about the heterogeneity of NPI effec-
tiveness across different waves and conditional on the pre-
dominance of different variants could also be attempted if 

enough data were available. The analysis of vaccinations 
should be extended to higher levels of vaccination in order 
to properly estimate the likely nonlinear effect beyond the 
low levels reported in this dataset.

Finally, the conclusions of this study must be 
placed within the context of and validated by other 
methodological approaches, such as SIR and agent-
based models. However, this study offers signifi-
cant evidence that very stringent NPIs provide no 
further benefits over moderately stringent ones, 
and that less stringent NPIs function primarily as 
signals for significant voluntary changes in citizens’ 
behavior.
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