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of ground truth. Phantom tests overcome this limitation by controlling the object of
study, but remain simple and are not representative of patient complexity. The objec-
tive of this study is to evaluate the accuracy of a simulation method using synthetic
spheres inserted into acquired raw data prior to reconstruction, simulating multiple
scenarios in comparison with equivalent physical experiments.

Methods: We defined our experimental framework using the National Electri-

cal Manufacturers Association NU-2 2018 Image Quality standard, but replaced the
standard sphere set with more appropriate sizes (4, 5, 6, 8, 10 and 13 mm) better suited
to current PET scanner performance. Four experiments, with different spheres-to-
background ratios (2:1,4:1, 6:1 and 8:1), were performed. An additional dataset was
acquired with a radioactive background but no activity within the spheres (water only)
to establish a baseline. Then, we artificially simulated radioactive spheres to reproduce
other experiments using synthetic data inserted into the original sinogram. Images
were reconstructed following standard guidelines using ordered subset expectation
maximization algorithm along with a Bayesian penalized likelihood algorithm. We first
visually compared experimental and simulated images. Afterward, we measured the
activity concentration values into the spheres to calculate the mean and maximum
recovery coefficients (RC,.on and RC,,,,) which we used in a quantitative analysis.

Results: No significant visual differences were identified between experimental

and simulated series. Mann-Whitney U tests comparing simulated and experimental
distributions showed no statistical differences for both RC,,..,, (P value=0.611) and
RC,ax (P value=10.720). Spearman tests revealed high correlation for RC, .., (0 =0.974,
Pvalue <0.001) and RC,,,, (0 =0.974, P value <0.001) between both datasets. From
Bland—Altman plots, we highlighted slight shifts in RCpean and RC,,., Of, respectively,
214+£16.9% and 3.3+ 22.3%.
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Conclusions: We evaluated the efficiency of our hybrid method in faithfully mimick-
ing practical situations producing satisfactory results compared to equivalent experi-
mental data.

Keywords: Positron emission tomography, Performance, Methods, Phantom,
Experiment, Simulation

Background

Since the introduction of the first positron emission tomography (PET) scanners,
increasingly higher sensitivity and improved spatial and timing resolution have
become available thanks to hardware improvement (scintillator crystal, photodetec-
tor, electronics) and software development (reconstruction and image analysis) [1].
Overall performances of PET devices have thereby been greatly increased. Hence, per-
formance evaluation is crucial to guide clinical practice with efficiency. Even though
clinical data are the final target, their use to characterize systems response is con-
strained by the lack of ground truth. Therefore, the assessment of their performances
is achieved through tests based on standards that were defined by scientific experts
from national and international authorities such as the National Electrical Manufac-
turers Association (NEMA) and the International Electrotechnical Commission (IEC)
[2, 3]. These procedures are relevant for investigating and benchmarking the scan-
ners using a standard object whose parameters are controlled [4], but are often not
appropriate to current clinical challenges such as the detectability of subcentimeter
lesions [5, 6] or to patient complexity [7]. These objects, commonly named phantoms,
consist of relatively simple geometrical objects, fillable with radioactive aqueous solu-
tions. Phantom preparation and acquisition require material, radiotracer and scan-
ner availability, which can be complex to schedule besides clinical practice. Thus, it is
difficult to generate large samples of experimental data due to limited resources and
accessibility.

Simulation provides an alternative method to the use of physical data through com-
putational modeling. The most realistic is particle-tracking-based simulation, which is
generically referred to as Monte Carlo method [8, 9]. In medical imaging, the SimSET
package uses Monte Carlo techniques to model the physical processes and instrumenta-
tion, in particular in PET imaging [10]. A major limitation in particle-tracking simula-
tion is the significant computation time which limits the generation of large datasets.
Analytical simulation is another method that models the average probability of photon
interactions instead of individual photon tracking. Therefore, it significantly improves
computational cost and can generate large datasets promptly [10-15].

By combining physical (phantom and patient) data with fast analytical simulation, we
could quickly generate significant sets of imaging configurations to explore for instance
lesion detection [14, 15]. Hence, it would make it possible to generate a large number
of different datasets from a single physical sample [13—-15]. The data insertion simula-
tion method consists in embedding synthetic information with known characteristics
such as location, volume, shape and activity into pre-acquired data using system mod-
eling. Technically, the data insertion simulation method relies on the forward projec-
tion through the scanner model of the synthetic spheres into simulated sinogram. It is
then summed to the original sinogram to obtain new raw data for the reconstruction of
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simulated datasets. The purpose of such simulation method is to link practicality and
ground truth.

In order to design a hybrid method, Juma [10] used and compared two simulation
techniques, SimSET and a forward projector, that generates lesion sinogram estimating
events from an estimated activity map. He considered the analytical simulation as the
most appropriate method, taking into account simulation times, technical limitations
related to file formats and the opportunity to easily simulate time-of-flight (TOF). In a
recent study, Gabrani-Juma et al. [14] contrasted results obtained with analytical simula-
tion using a digital phantom to NEMA image quality (IQ) results and observed that the
simulated spheres showed a systematic overestimation of about 20% compared to the
physical spheres for sizes smaller than 22 mm in diameter. However, the digital phan-
tom did not have the same geometry and volume as the physical NEMA body phan-
tom. Hence, it is difficult to conclude whether this oversight came from the simulation
or structural differences of the study object.

We have similar analytical simulation and a reconstruction toolbox for remote recon-
struction provided by the manufacturer through a research collaboration. Our final goal
is to use it on clinical data to create a scalable ground truth responding to the clinical
need. Prior to that, we currently focused on its validation first in contrast to experimen-
tal data defined as a reference. In this study, we aimed to introduce a hybrid simulation
method and to evaluate its accuracy in multiple scenarios in comparison with equivalent

physical experiments.

Methods

PET-CT system

All the experiments were performed on the Discovery MI 5-ring positron emission
tomography-computed tomography (PET-CT) digital system (General Electric Health-
care, Chicago, IL, USA). This PET-CT device is combining TOF, high resolution and
high sensitivity, which improve overall image quality by reducing the noise in the recon-
structed images and enhance lesion detection [16]. There are several reconstruction
algorithms available to produce images from the acquired raw data such as the common
ordered subset expectation maximization (OSEM). A more recent Bayesian penalized
likelihood (BPL) algorithm, gives access to a regularization parameter f that allows to
reduce image noise through each iteration [17, 18]. Results from the NEMA NU2-2012
standard performance tests for this configuration of the device have been published [19].
The evaluation of its performances is important but is not sufficiently discriminating
compared to its capabilities such as subcentimeter lesion detection. We performed sev-
eral experiments based on the NEMA NU-2 2018 IQ performance standard in which we
adapted the set of fillable spheres for challenging smaller sizes.

Phantoms experiments

We opted for the NEMA Image Quality NU-2 2018 test because it aims to simulate a
PET-CT whole-body clinical use case [2]. We used the body phantom with its lung
insert, but replaced the standard fillable spheres by another set with smaller internal
diameters of, respectively, 4, 5, 6, 8, 10 and 13 mm (Data Spectrum Corporation, Dur-
ham, NC, USA). A central axial section of the phantom is shown in Fig. 1.
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Fig. 1 Central section of the spheres from CT images

Table 1 Activity concentration (kBg/mL) within the background and spheres of the body phantom
for each series

Activity concentration (AC) (kBq/mL) Resulting SBR
Background Spheres
Experiment SBR 2:1 532 11.03 2.07
Experiment SBR 4:1 544 21.38 393
Experiment SBR 6:1 5.50 33.19 6.03
Experiment SBR 8:1 532 4242 797
Experiment SBR 0:1 552 0.00 0.00

As required by the standard, we placed a scatter phantom on the cradle outside the
scanner field of view. The filling of the phantoms, their positioning and their acquisitions
on the examination bed were carried out according to the standard recommendation.
Five distinct experiments were performed corresponding to five concentrations of '°F
leading to five spheres-to-background ratios (SBR) of approximately 2:1, 4:1, 6:1, 8:1 and
finally 0:1 (water only within the spheres) as a baseline for data insertion. The radioactive
concentration of the background was nearly the same for all the experiments in order to
get rather the same total activity within the body phantom. Details of the filling levels in
the different compartments of the scanned phantom are available in Table 1.

We chose to conduct this study with OSEM and BPL algorithms because the former is
part of the standard procedure and the latter is used in clinical routine for reporting by
the physicians in our institution. It allowed us to compare the impact of the reconstruc-
tion algorithms using our method. Images were obtained using acquisition and recon-
struction parameters detailed in Table 2.

Simulation method

The simulation method consists of inserting synthetic information with known char-
acteristics, such as location, volume and activity, into pre-acquired raw data using sys-
tem modeling. Finally, modified raw data are reconstructed into simulated axial images
[13-15].
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Table 2 Acquisition and reconstruction parameters
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Acquisitions durations (s): 323/334/346
Matrix size: 384 x 384

FOV (mm): 400

Slice thickness (mm): 2.8

Voxel dimensions (mm): 1.042x1.042x 28
Voxel volume (mm?3): 3.04

Algorithm 1

Reconstruction algorithm: OSEM

TOF: Yes

Iterations: 4

Subsets: 34

Filter (FWHM): 2

Z-Alter: None

Corrections: Attenuation, scatter, randoms
Point spread function (PSF) modeling: No

Algorithm 2

Reconstruction algorithm: BPL

TOF: Yes

Beta (B): 20

Corrections:

Point spread function (PSF) modeling:

Attenuation, scatter, randoms
Yes

Offline data insertion and image reconstruction were achieved using a reconstruc-
tion research toolbox (Duetto v02.13, General Electric Healthcare, Chicago, IL, USA).

Beforehand, we exported the raw data and computed tomography attenuation cor-
rection (CTAC) images from the scanner to a dedicated high-performance research
workstation Z8 (Hewlett-Packard, Palo Alto, CA, USA) where modeling, simulation
and reconstruction were executed using MATLAB R2018b (The MathWorks Inc.,
Natick, MA, USA).

Modeling

First, we determined the spatial coordinates of the center of each physical sphere
from the CT images. We modeled the spheres according to the internal diameter
of the physical set using a coded MATLAB function. Spatial coordinates and inter-
nal diameter were used as input data in the function as a complement to the exam
dimensions, the voxel dimensions and a factor value for upsampling. Due to the limi-
tation of a finite sampled voxel size, a binary mask with the current image resolution
would be insufficient to represent a real-world sphere. In addition, the modeling step
presents a constraint we have to consider for the data insertion and reconstruction
afterward. The synthetic information inserted into the pre-acquired data should have
commonalities in terms of reconstruction and acquisition parameters, such as matrix
size or slice thickness. These parameters are crucial as they impact the size of the vox-
els, which must be identical to the original examination.

In this study, the sphere mask was generated by the following steps:
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(1) Creation of an empty matrix (full of zero) whose dimensions correspond to the
dimensions of the original exam;

(2) Upsampling the image grid with a given factor in x, y and z dimensions (16 here);

(3) Determining a binary sphere mask in the upsampled resolution according to the
sphere diameter and sub-voxels sizes;

(4) Calculating the mean value of the sub-voxels contained in the same voxel prior to
the downsampling of the image grid to its original size.

A schematic illustration of these steps can be found in Additional file 1: Fig. S1.

As the sphere mask was generated by using the mean values, the voxel value in the
mask would no longer be binary, but would contain floating point values between
zero and one, and could best represent a sphere used in a typical physical phantom. In
Table 3, we contrasted the volume of each physical sphere with the calculated volume of
the corresponding synthetic sphere using the number of voxels composing it, their value
(between 0 and 1) and the theoretical volume of a voxel (available in Table 2).

In the last step, we had to determine the activity concentration (AC) (Bq/mL) that
would be inserted inside the synthetic spheres. To achieve that, we drew 12 Volumes-of-
Interest (VOI) distributed in the phantom background. We extracted two specific tags
from the DICOM images header: RescaleSlope and Rescalelntercept, which were used
to convert image intensities into activity concentrations (Bq/mL). These tags had varying
values depending on the slice. Equation (1) represents this step for each image num-
bered S (Slice number).

AC(Bq/mL) = DICOM Intensity(S) * RescaleSlope(S) 4 Rescalelntercept(S) (1)

Then, we calculated the average AC value within each VOI and afterward determined
the average AC value across all VOIs and defined an AC baseline (Bq/mL) to generate
insertions directly related to the initial experiment. Finally, we multiplied the sphere
mask by the AC baseline value and the exact value of each SBR to simulate the four syn-

thetic sets of images mimicking the acquired experiments.

Data insertion

Once these preliminary steps have been completed, we conducted the generation of
modified raw data using specific functions provided by the manufacturer. The inser-
tion process relies on the forward projection through the scanner model of the synthetic

Table 3 Comparison between physical and synthetic internal diameter/volume for each sphere size

Physical diameter (mm) Physical volume (mm3) Synthetic diameter (mm) Synthetic
volume
(mm?)
1243 1005.57 1243 1004.9
9.89 506.51 9.88 505.8
7.86 254.25 7.85 25364
6.23 126.61 6.22 126.46
495 63.51 494 63.52

3.95 32.27 395 32.23
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spheres into simulated sinogram. It is part of the reconstruction research toolbox.
During this process, scanner and phantoms effects (geometric efficiency, detector effi-
ciency variations, resolution and attenuation) are applied using raw data and CTAC
images from the original acquisition [14, 15]. Poisson noise realization is applied to esti-
mate noise of the inserted data. It is based on the counts per second per unit volume of
inserted spheres in the image domain prior to the forward projection. Ultimately, origi-
nal and simulated sinograms were summed to obtain new raw data used for the recon-
struction of the simulated datasets.

Image reconstruction
Offline image reconstruction was achieved using the reconstruction research toolbox.
Those reconstructions are numerically equivalent to the reconstruction processing avail-
able on the PET console. Reconstructed DICOM images are finally uploaded to the
interpretation console database for analysis.

The entire simulation process is illustrated in Fig. 2.

Images and data analysis

A statistical data analysis was conducted in order to assess the similarity between the
simulated and the experimental data considered as the reference. We first assessed the
visual equivalence of the simulated images compared to the experimental results. For
each set of acquisitions, we had three sets of images, equivalent in terms of total counts,
which we averaged to obtain a single frame. Visual inspection was performed on the
central slice allowing to get all the spheres in the same plane. Afterward, we also per-
formed a quantitative analysis using the image interpretation software PETVCAR® on
the AWServer client console (General Electric Healthcare, Chicago, IL, USA). To per-
form this analysis, we placed, for each set of images, 6 spherical VOIs centered on each
sphere. The volume of each VOI aimed at reproducing the real internal volume of the
corresponding spheres and was identical for experimental and simulated series. This
study focused on the maximum and mean activity concentrations (kBq/mL) within the
spheres. As required by the NEMA standard, each experimental and simulated series
consisted of three successive acquisitions which were analyzed individually, following
the same measurement conditions, and then averaged to improve the reproducibility of
the results. Finally, taking into account all ratios studied and all sphere sizes, we obtained
48 measurements of mean and maximum activity concentrations (kBq/mL), AC and
AC .0
We then calculated the mean and maximum recovery coefficient, RC
dividing AC
phantom preparation (2).

mean

for both experimental and simulated series (6 spheres x 2 algorithms x 4 SBR).
and RC,
and AC_,, by the theoretical activity concentrations deducted from

mean

mean

ACmean/max (kBq/mL) @
ACtheoretical (kBq/ mL)

RCmean/max =

As the background activity might vary from one experiment to another, even if the SBR
was the same, we performed this calculation in order to normalize the different datasets and
avoid discrepancies between reiterations (Table 1). Simulated and experimental averaged
recovery coefficient (RC) were compared considering entire datasets and reconstruction
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Fig. 2 Workflow of the data insertion process

algorithms datasets. First, we carried out a nonparametric Mann—Whitney test to highlight

any differences in RC ., and RC_, . distributions between the experimental and simulated

mean
data. Then, we performed a Spearman test [20] to estimate their crossed correlation. More-
over, we verified the normality of the distribution of differences between experimental and
simulated quantitative data using D’Agostino—Pearson test [21], in order to further refine
the statistical analysis creating Bland—Altman plots [22, 23]. These tests were carried out on
all the experimental and simulated data and subsequently repeated for each algorithm. The
criterion for the significant difference was p <0.05 for the Mann—Whitney and D’Agostino—

Pearson tests. A strong correlation was identified by p <0.05 and p>0.8.

Results

Visual comparison

As expected, due to the creation process of the simulated images, the visual aspect
of the background in both experimental and inserted data was similar. Considering

Page 8 of 18
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the spheres, the same objects could be visualized in both series. However, we could
spot slight differences at the PET performance limits for low contrast and small tar-
gets, such as the 8 mm sphere at SBR 2:1 and 5 mm at SBR 4:1. This observation was
reported for both OSEM and BPL algorithms. An overview of the images is available
in Figs. 3 and 4, respectively, for OSEM and BPL reconstruction.

RC comparison
The results provided by the quantitative analysis for both experimental and simulated
data are expressed as average and standard deviation (SD) for each SBR (column) and
sphere size (row) in Tables 4 and 5.

We highlighted RC,,.,, relative errors inferior to 20% for all configurations, and the

same for RC, ., except for 6 mm sphere at SBR 2:1 (OSEM), which was not visible on

max
the image and gave a relative error of 39%. Otherwise, neglecting this extreme value,
the RC,,, relative error was within 23%. Considering the impact of the reconstruc-
tion algorithm, the OSEM algorithm gave the largest relative error differences for

both RC and RC_,..

mean

(a) (b)

& .
~ ¥, -

' - .
- - d .

- - . .
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- ) -

- . . »
IR LoV

Fig. 3 Visual comparison of OSEM averaged reconstructed images: a Experimental series (from top to
bottom, respectively, SBR 2:1, 4:1, 6:1 and 8:1). b Simulated series (from top to bottom, respectively, SBR 2:1,
4:1,6:1 and 8:1)
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(a)

(b)

.

Fig. 4 Visual comparison of BPL averaged reconstructed images: a Experimental series (from top to bottom,
respectively, SBR 2:1, 4:1, 6:1 and 8:1). b Simulated series (from top to bottom, respectively, SBR 2:1, 4:1, &:1
and 8:1)

Table 4 Experimental and simulated RC values from OSEM algorithm for each SBR and sphere size

OSEM

Experimental series

Simulated series

SBR 2:1 SBR 4:1 SBR 6:1 SBR 8:1 SBR 2:1 SBR 4:1 SBR 6:1 SBR 8:1

Sphere  Mean recovery coefficient: Average £ SD

13mm 067+£004 065+002 0644+001 060+001 0714£003 0664002 0644001 06340.01
10mm 065+003 058+002 0574002 0564001 0694004 063+002 0614+002 060+0.01
8mm  056+£004 045+£003 047+£001 045+001 0.58+004 0534003 0514+003 0504002
6mm  043+£006 046+£001 040£001 036£003 049+005 043+003 0404002 0384002
5mm 0424008 032+£006 0304002 0294005 045£006 0354004 031£0.02 030£0.02
4mm 0424014 0294003 0324005 0244005 0404006 031+0.06 026+005 0.23+0.04
Sphere  Maximum recovery coefficient: Average £ SD

13mm  1674£029 1224002 1.124+002 0994003 1494008 1264004 1164004 1.114+0.03
10mm 146+£024 1.11£006 1.054£0.11 0934£006 1494017 1274£0.13 1.16+£0.11 1.10+0.09
8mm  1.11x£008 083£0.15 0834003 087£006 1084023 092+003 084+£004 0.7540.10
6mm  070£004 0.7940.13 0.70£0.13 0634+003 0984007 0814003 0744004 065+0.11
5mm  067+£023 048+£008 047£005 042+0.10 0.72+£006 0554005 0494006 044+0.09
4mm 0554014 0384007 0414011 0304008 06240.16 0424008 0344007 0314005

Page 10 of 18
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Table 5 Experimental and simulated RC values from BPL algorithm for each SBR and sphere size

BPL

Experimental series Simulated series

SBR 2:1 SBR 4:1 SBR 6:1 SBR 8:1 SBR 2:1 SBR 4:1 SBR 6:1 SBR 8:1

Sphere  Mean recovery coefficient: Average + SD

13mm 070£0.04 0.73£001 073+001 070£001 0.754£004 073£0.02 0.74£001 074001
10mm 069+£003 069+001 071001 070£001 0.734£005 072+£0.02 0.74£002 0.73+001
8mm 0594005 054+£005 0614£002 059+000 059+£003 0614+002 065+003 0.65+001
6mm  0444+006 049+002 0514+003 047+008 044+£003 0464003 051+£006 0524002
5mm  041+009 034+£005 0334£004 035+006 035£007 0284005 029+0.03 030+0.04
4mm  040£007 0274003 031+£004 028+£005 0404007 030+£005 0274005 0254004
Sphere  Maximum recovery coefficient: Average £ SD

13mm  165+030 165+£038 1374003 139+£0.12 1.784+0.13 1624006 151£005 1434007
10mm 1574+031 1.62+020 146+£005 140+£009 163+021 1774+018 1.78+0.19 1.59+£0.13
8mm  1.06+023 106£030 1284010 155+£042 1054017 1.18+£027 146+£0.18 1474006
6mm  064+0.12 085+006 1.064+028 1.02+0.18 0.754+004 080+006 1.03+£008 1.1140.11
5mm 0544015 050+£001 0454008 0.51+£006 049+£009 0404005 042+001 046£0.02
4mm  049+£006 0404004 0404007 036+£008 0474012 037+006 033£007 0314005

A graphical representation of these data is available in Figs. 5 (OSEM) and 6 (BPL),
which indicates similar trends for the variation of RC_,, and RC,,, versus sphere size
for both synthetic and physical spheres whatever the SBR.

The Mann—Whitney test showed no statistical differences between experimental and
simulated RC values (both RC, ., and RC

ied the impact of the reconstruction algorithm on RC values, despite a higher value

max)- This was also confirmed when we stud-
for the BPL algorithm. Spearman tests revealed a strong correlation for all datasets
(p>0.950). From Bland—Altman plots, we determined the mean differences and agree-
ment intervals (within 95% of the differences). Considering all data, we obtained results
for RC,,.., and RC, .. of 2.1+16.9% and 3.3 +=22.3%, respectively. This analysis showed
a small difference between OSEM and BPL for both RC,,, (respectively, 4.4+14.5%
vs.—0.321+18.1%) and RC ., (5.9+£22.2% vs. 0.77 £21.6%). All the results of the statis-
tical analysis are presented in Table 6. Figures 7 and 8 show the correlation curves and

Bland—Altman plots for RC and RC_,,, respectively.

mean

Discussion

As mentioned in the background section, hybrid method using physical data and analyt-
ical simulation can be used as an alternative solution for the evaluation of PET scanners,
compared to pure simulated data or experimental procedures.

A key assumption of this kind of method is that the forward projection model needs
to be able to closely represent the relationship between image and raw data domains.
While this method can be used to evaluate the system response under this assump-
tion, any imperfections in the forward projection model would be blended into the
generated data and would not be detected by the current approach. For this reason,
the current method would not be able to answer the question of whether the forward

projection model is exact or not but can be used to compare the results in different
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Fig. 5 Experimental and simulated RC curves using OSEM algorithm as a function of sphere size: RCmean
and RCmax curves are arranged in two columns (left and right, respectively) and SBR ordered in rows (from

top to bottom: 2:1,4:1, 6:1 and 8:1)
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RC

RC

RC

activity and noise combinations with several replications. Another method to com-

pare with the current approach is Monte Carlo simulation [8, 9]. While the Monte

Carlo simulation seems to be able to faithfully simulate the data with a given sys-

tem model, the system model is never perfect. In this case, Monte Carlo simulated

data may suffer from the imperfections of the simulated models, including inaccurate

crystal chemical compositions, electronic design, single-to-coincidence stream, etc.
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Fig. 6 Experimental and simulated RC curves using BPL algorithm as a function of sphere size: RCmean and
RCmax curves are arranged in two columns (left and right, respectively) and SBR ordered in rows (from top to

bottom: 2:1, 4:1, 6:1 and 8:1)

Therefore, a Monte Carlo approach may not be a perfect solution for assisting sys-

tem evaluation, and the proposed approach can be a good fit to complete the system

evaluation along with physical phantom measurements.

In this study, we aimed to introduce a hybrid simulation method and to evaluate its

accuracy in multiple scenarios in comparison with equivalent physical experiments.

Based on real images and using a model of the scanner, the method generated images

whose visual rendering and visualization of objects are similar to experimental images.
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Table 6 Results from the statistical tests performed on RC values for overall and individual

algorithm data
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Fig. 8 Correlation curves (left) and Bland—-Altman plots (right) of RC,,,,, data: Different configurations are
ordered in rows (from top to bottom: whole RC,.,, OSEM RC,, ., and BPL RC,,..,)

Discrepancies observed in the visual comparison occurred for target presenting chal-
lenging size and contrast in terms of detection for the device. It is the limit of the method
which shows slight deviation from the physical images when the limits in performance of
the system are reached. Nevertheless, given this specificity and weakness of these differ-
ences, we considered them negligible for our study and the final clinical implementation
and assessed the equivalence between the two datasets. From the quantitative analyses,
we were able to verify that the experimental and simulated data were comparable, cor-
related, with differences normally distributed. Both algorithms showed no statistical dif-
ferences and close results in terms of correlations and limits of agreement. Although, we

could highlight higher mean differences for OSEM RC and RC ., due to the noise

mean max
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reduction induced by the regularization algorithm. Indeed, BPL applies activity-depend-
ent smoothing and suppresses image noise in low-activity regions [15]. In our case, the
cold spheres from the original images represented the insertion locations. Hence, it
resulted in a deviation for the mean difference between BPL (less than 1%) and OSEM
(within 6%) considering RC
ting and the choice of not having activity inside the spheres for the original acquisition.

mean and RC_., which could be explained by the study set-

In this study, we demonstrated the reliability of the method applied under specific
experimental conditions through the insertion of synthetic spheres and their compari-
son with equivalent experimental data defined as reference. We showed that we were
able to simulate realistic visual and quantitative results compared to experimental data
even under challenging situations such as small and low contrast targets. Based on com-
puter programs developed by the PET manufacturer, the method uses the same pro-
cesses available on the physical systems. In contrast to some simulation studies [11-13],
the method offers all available features of the physical system like PSF or TOF imple-
mentation. Files generated during the initial acquisition and reconstruction are used to
generate new datasets inserting virtual information to obtain a practical render of the
exam. These synthetic datasets are useful for qualitative and quantitative assessment of
system performance as they combine real backgrounds with inserted objects of known
size, activity and location. From a single dataset, it allows to generate as many configura-
tions as needed without requiring access to the scanner, which may be limited in terms
of device and radiotracer availability. In addition, it can be applied directly to clinical
data in order to evaluate impacts of acquisition and reconstruction parameter on patient
examination [14, 15]. We intend to employ this method to support the physical and clin-
ical evaluation phase of a new PET-CT device as part of the collaborative research part-
nership with the manufacturer.

Our final objective is to extend our simulation method to patient data in order to eval-
uate the impact of small lesions with low activity on clinical images while keeping con-
trol over the inserted object (location, size, activity, shape and pattern).

Computation times for generating sinograms were significantly shorter than recon-
struction times. With TOF, the simulation duration was about 15 min, and without TOF
it decreased to nearly 2 min. Currently, reconstruction times are about 2 h for the OSEM
algorithm and 6 h for the BPL algorithm for a single bed position. For the same recon-
struction parameters without TOF, we observed reconstruction times of approximately
25 min for the OSEM algorithm and around 3 h for the BPL algorithm. It is possible to
parallelize the reconstructions of different bed positions (for example, a clinical exami-
nation) and thus reduce the reconstruction time to a single bed position. We are working
on exporting the modified raw data to the PET console to drastically shorten the recon-
struction process. Hence, it will be possible to perform the simulation into raw data on
the workstation and remigrate them afterward to the physical PET scanner and generate
reconstructed images in minutes.

One of the underlying limitations in the model-based projection method is that
inserted information does not add scatter and random coincidences in the resulting
sinogram. Hence, the modified data include only the original random and scattered
coincidences. In this study, given the sizes and activities present in the spheres, we
assumed that their impacts were negligible.
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Conclusion

We introduced and evaluated a hybrid simulation method using synthetic spheres
inserted into acquired raw data prior to their reconstruction. The insertions can be
fully controlled and provide opportunities to evaluate medical imaging functions and
image processing techniques.

In the context of a collaborative research partnership, this study is a first step in
using this method for the performance evaluation of the next generation of PET scan-
ners. It will then be extended to more complex phantom models for validation and
patient data to create a scalable ground truth and guide more efficiently the clinical
practice.
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