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Exposing the Two Contrasting Faces of STAT2
in Inflammation
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Inflammation is a natural immune defense mechanism of the body’s response to injury, infection, and other
damaging triggers. Uncontrolled inflammation may become chronic and contribute to a range of chronic
inflammatory diseases. Signal transducer and activator of transcription 2 (STAT2) is an essential transcription
factor exclusive to type I and type III interferon (IFN) signaling pathways. Both pathways are involved in
multiple biological processes, including powering the immune system as a means of controlling infection that
must be tightly regulated to offset the development of persistent inflammation. While studies depict STAT2 as
protective in promoting host defense, new evidence is accumulating that exposes the deleterious side of STAT2
when inappropriately regulated, thus prompting its reevaluation as a signaling molecule with detrimental effects
in human disease. This review aims to provide a comprehensive summary of the findings based on literature
regarding the inflammatory behavior of STAT2 in microbial infections, cancer, autoimmune, and inflammatory
diseases. In conveying the extent of our knowledge of STAT2 as a proinflammatory mediator, the aim of this
review is to stimulate further investigations into the role of STAT2 in diseases characterized by deregulated
inflammation and the mechanisms responsible for triggering severe responses.
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Introduction

STAT2 was discovered as a key transcriptional activa-
tor of type I interferon (IFN) signaling (Leung and

others 1995; Qureshi and others 1996). IFNs are a family
of pleiotropic cytokines first characterized by their role in
eliciting antiviral responses through the induction of
interferon-stimulated genes (ISGs), which include genes with
proinflammatory and anti-inflammatory activities (Steen and
Gamero 2013). The elucidated classical signal transduction
pathway activated by type I IFNs involve members of the
family of signal transducers and activators of transcription
(STAT). These proteins were identified in the early 1990s as
factors that reside in the cytoplasm. Treatment with IFN-a
caused their phosphorylation on specific tyrosine (Y) residues
(Y701 for STAT1 and Y690 for STAT2), and subsequent
translocation to the nucleus. (Fu and others 1990, 1992;
Schindler and others 1992; Leung and others 1995). Pri-

marily, STAT2, in conjunction with STAT1 mediates the
transcriptional responses to type I IFN, of which gene prod-
ucts are antiviral, immunomodulatory, antiproliferative,
proinflammatory and anti-inflammatory.

IFNs are classified into 3 classes: Type I, Type II (IFN-g),
and Type III (IFN-l1-4 also referred to as IL-28A, IL-28B,
and IL-29). The largest group is type I IFN, which is
composed of 13 IFN-a subtypes, a single IFN-b, and poorly
characterized IFN-t, IFN-k, IFN-o, IFN-s, and IFN-z
(Pestka and others 2004). Of note, IFN-a and IFN-b are the
2 forms of type I IFN used often for the study of type I IFN
signaling. Activation of the pathway begins with type I IFN
binding to its cognate receptor, which consists of 2 trans-
membrane subunits, IFNAR1 and IFNAR2, preassociated
with Janus kinases TYK2 and JAK1, respectively. TYK2
and JAK1 are activated by transphosphorylation and then
phosphorylate the intracellular chains of IFNAR1 and IF-
NAR2. In the case of type III IFN signaling, a different
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heterodimer receptor complex consisting of IFNLR1 and
IL10R2 is engaged, which leads to STAT1 and STAT2
phosphorylation by JAK kinases in a similar manner as type
I IFN.

As STAT1/STAT2 heterodimers assemble, they associate
with interferon regulatory factor 9 (IRF9), resulting in the
formation of a transcriptional complex termed interferon-
stimulated gene factor-3 (ISGF3). The ISGF3 complex
translocates to the nucleus and binds to the IFN-stimulated
response element (ISRE) located in the promoters of IFN-
stimulated genes (ISGs). While the major transcriptional
complex is ISGF3, both type I IFN and type III IFNs can
also induce the formation of STAT1 and STAT3 homo-
dimers that bind to the IFN-g-activated sequence (GAS)
motif within target gene promoters.

The classical view of ISGF3 as a mediator within most of
the transcriptional responses to type I IFN, however, is
shifting. It has been known for some time that, in the ab-
sence of type I IFN, STAT2 and IRF9 can form a complex
independently of STAT1 (Martinez-Moczygemba and oth-
ers 1997), which shuttles between the cytoplasm and the
nucleus (Banninger and Reich 2004). Additionally, unpho-
sphorylated STAT2 is found bound to a subset ISG pro-
moters before type I IFN stimulation takes place (Testoni
and others 2011).

Without STAT1, type I IFN can activate an alternative
signaling pathway mediated by the STAT2/IRF9 complex
consisting of STAT2 homodimers bound to IRF9. This
complex induces a delayed yet prolonged transcriptional
response and antiviral effects in a manner analogous to
ISGF3 (Blaszczyk and others 2015, 2016). These studies
also indicated that increased expression of STAT2 and/or
IRF9 was required to activate robust expression of shared
ISGs. Increased levels of unphosphorylated ISGF3 follow-
ing type I IFN stimulation has been proposed as a secondary
response to prolonged transcription of ISGs (Wang and
others 2017a). This information is illustrated in Fig. 1.

Under homeostatic conditions, constitutive low levels of
type I IFN maintain cells with adequate levels of ISGF3
components (STAT1/STAT2/IRF9). In the absence of type I
IFN, however, unphosphorylated STAT2 in complex with
IRF9 (STAT2/IRF9) can drive ISG transcription indepen-
dently of STAT1 (Platanitis and others 2019). Once type I
IFN becomes available, ISGF3 replaces STAT2:IRF9 and
powers a robust primary transcriptional response. This ob-
servation highlights the role of STAT2 as a signaling factor
that can function without STAT1 and does not require ty-
rosine phosphorylation to maintain basal gene transcription
levels. The latter finding emphasizes its potential relevance
in other biological actions, which may not be entirely de-
pendent on the classical type I IFN signaling pathway.

Our current understanding of the far-reaching effects of
STAT2 in mediating the biological effects of type I and type
III IFNs appear to be expanding. STAT2 may have a wider
sphere of influence than previously assumed, and in fact,
have a dual function in disease. As examples, pathological
inflammation triggered by persistent activation of type I/III
IFN signaling, lack of negative regulation provided by
STAT2 deficiency, or excessive production of type I/III IFNs
can be seen in inflammatory diseases. Collectively, studies of
STAT2 in infectious, autoinflammatory, and autoimmune
diseases such as psoriasis, asthma, hemophagocytic lym-
phohistiocytosis (HLH), and type I interferonopathies, shed

new light on these additional functions of STAT2. The fol-
lowing summary describes those findings of current literature
with respect to the inflammatory behavior of STAT2 and its
role in the pathogenesis of various diseases marked by
chronic inflammation.

STAT2 in Viral Infection

STAT2 is an integral downstream effector of type I and
type III IFN signaling in restricting the replication of
pathogenic viruses. Nonetheless, viruses are naturally
equipped with their own armamentarium of genes to subvert
the initial protective innate host response initiated by type I
IFN. Similar responses are observed with type III IFN-
induced activation of ISGF3 (Kotenko and Durbin 2017).
Specific viruses inhibit the induction of type I IFN antiviral
responses by targeting STAT2 for degradation or preventing
its activation by impeding tyrosine phosphorylation. It is
important to highlight that some of the IFN target genes or
ISGs exert antiviral activity while others contribute to in-
flammation. The orchestrated activity of all these genes is
necessary to eradicate viruses.

Seminal studies in mice lacking Stat2 have shown the
importance of STAT2 in mediating the antiviral effects of
type I IFN by restricting the replication of vesicular sto-
matitis virus (VSV) (Park and others 2000). In the context of
influenza infection, Stat2-deficient mice are prone to hy-
perinflammation. Loss of Stat2 increases the levels of
proinflammatory cytokines (IL1-a, IL1-b, IL-6, IL-12,
IL17-A, and IFN-g) (Gopal and others 2018). This inflam-
matory response intended to eradicate viruses was shown to
be exacerbated resulting in severe lung injury (Tavares and
others 2017).

An interesting phenotypic feature of Stat2 deficiency, first
described in murine macrophages lacking STAT2, is the
acquired ability to upregulate expression of major histo-
compatibility complex class II after type I IFN stimulation
(Zhao and others 2007; Gothe and others 2022), a response
unique to IFN-g. A change in transcriptional response to
type I IFN that mimics IFN-g could initially be protective
but then become potentially deleterious in the setting of
persistent viral infection by favoring the activation of
proinflammatory genes driven mainly by STAT1. In support
of a regulatory role, STAT2 has been reported to inhibit
STAT1 in response to several proinflammatory cytokines,
including IL-6, IL-27, and IFN-g (Ho and others 2016).
Interestingly, effective control of mouse cytomegalovirus
infection requires activation of STAT2 by all 3 types of
IFNs (Zimmermann and others 2005; Le-Trilling and others
2018), suggesting that the presence of STAT2 is beneficial
in antiviral IFN-g responses. In the case of dengue virus,
STAT2 and STAT1, independently, are protective in re-
stricting infection (Perry and others 2011).

Following dengue infection, Stat2-deficient mice showed
similar increase in serum levels of proinflammatory cyto-
kine TNF-a as Stat1-deficient mice when compared with
wild-type mice. In the absence of Stat1, Stat2 was able to
activate a type I IFN antiviral response to clear infection.
The same observation was noted in mice lacking Stat2.
However, codeletion of Stat1 and Stat2 resulted in a
heightened increase of circulating TNF-a levels associated
with poor survival and high viral load, indicating a cor-
egulatory effect of STAT1/STAT2 signaling. What surfaced
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from this study is that STAT2 can restrict infection in vivo
and control TNF-a production independently from STAT1.
It is worth noting that type III IFNs are also induced by
dengue infection (Palma-Ocampo and others 2015; Hsu and
others 2016). High levels of IFN-l are detected in dengue
fever patients. Pretreatment of epithelial cells with IFN-l
increased IFN-b production during infection indicating a
potential crosstalk between both IFN signaling pathways
that share STAT2 to mount a robust antiviral response
(Palma-Ocampo and others 2015).

Type I IFNs are pivotal in restricting the replication and
spread of lymphocytic choriomeningitis virus (LCMV)
during acute infection (Ou and others 2001). In contrast,
chronic LCMV infection is controlled by impeding type I
IFN signaling (Teijaro and others 2013). Ifnar1-deficient
mice lacking either Stat2 or Irf9 survived LCMV infection
(Hofer and others 2012). Subsequent studies revealed that
Stat1-deficient mice experienced a lethal host response to
the infection (Li and others 2014a). These mice presented

with elevated serum cytokine and chemokine levels (CCL2,
CCL5, IL-5, IL-6), including type I IFN and IFN-g during
LCMV infection. Deletion of Stat2, Irf9, or Ifnar1 in Stat1-
deficient mice conferred survival to LCMV infection.

Type III IFN also shows antiviral activity against LCMV
before the establishment of long-term infection; however,
LCMV-infected cells had reduced expression of Ifnlr1 (Lu-
kacikova and others 2015). These findings point to the
proinflammatory and lethal effects of noncanonical activation
of type I and type III IFN signaling most likely driven by
possible negative regulatory effects of STAT2/IRF9 as op-
posed to ISGF3, which enables persistent LCMV replication.

In recent years, we have learned that type I IFN-induced
activation of STAT2 by phosphorylation on tyrosine (Y)-
690 (Y689 in mice) is not the only occurring post-
translational modification event. Type I IFN signaling is
also impacted by STAT2 being further phosphorylated on
serine (S287, S734) (Steen and others 2013, 2016) and
threonine (T387 and T404/T403 in mice) (Wang and others

FIG. 1. STAT2 is key transcription factor in type I and type III IFN signaling. (A) In the absence of IFN receptor
stimulation, STAT2 in its unphosphorylated form, can form complexes with IRF9 or STAT1/IRF9 and translocate to the
nucleus. They bind the ISRE motif in promoters of ISGs to drive low-level ISG transcription. In contrast, STAT1
homodimers occupy the GAS motif in gene promoters. (B) Following IFN binding to the receptor, STAT1/STAT2 are
tyrosine phosphorylated by JAK kinases and bind IRF9 to form the ISGF3 complex. In the nucleus, ISGF3 activates an
initial and robust IFN transcriptional response. Subsequently, ISG transcription is maintained by a late IFN response driven
by newly synthesized unphosphorylated ISGF3 and STAT2/IRF9 complexes. STAT, signal transducer and activator of
transcription; ISG, interferon-stimulated gene; ISRE, IFN-stimulated response element.
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2017b, 2021), both of which impact type I IFN signaling. It
is unclear as to whether type III IFNs also induce STAT2
phosphorylation on these same sites. Phosphorylation on
S287, S734, and T387 negatively regulates whereas phos-
phorylation on T404 positively activates type I IFN antiviral
responses. In the latter, phosphorylation on T404 was re-
ported to cause disruption of the unphosphorylated STAT1/
STAT2 heterodimer in its antiparallel ‘‘inactive’’ confor-
mation to switch to the parallel conformation and facilitate
STATs 1 and 2 phosphorylation following type I IFN
stimulation.

In vivo studies show that mice carrying Stat2-T403 mu-
tated to alanine (T403A) were highly susceptible to VSV
and herpes simplex virus infection, whereas wild-type
counterparts were protected. Compared with wild-type
mice, Stat2-T403A knockin mice infected with VSV pro-
duced higher serum levels of IFN-b as well as proin-
flammatory mediators, CCL2 and CSF-1, compounded by
accumulation of immune cells in the brain. It is unclear
whether high IFN-b levels produced during VSV infection
increased the protein expression levels of unphosphorylated
STAT2-T403A or its stability and the formation of mutant
STAT2/IRF9 complex to potentially drive the expression of
CCL2, an ISG that can facilitate recruitment of inflamma-
tory monocytes to the site of infection (Conrady and others
2013).

In humans, the discovery of a young child and infant
sibling born with homozygous germline STAT2 deficiency
who experienced severe viral illness has contributed vital
information to the biological significance of STAT2 in an-
tiviral immunity (Hambleton and others 2013). Of the 2,
only the older sibling was vaccinated and developed dis-
seminated vaccine-strain measles after routine immuniza-
tion. In contrast, heterozygous relatives were unaffected.
In vitro studies demonstrated that restoration of STAT2 in
patient’s fibroblasts restored type I IFN response and anti-
viral state.

After this initial report, more STAT2-deficient individuals
have since been identified with similar and/or additional
clinical manifestations with varying penetrance (Duncan
and Hambleton 2021). For instance, 2 cases were reported
with distinct homozygous STAT2 mutations that resulted in
complete loss of STAT2 protein and presented with sec-
ondary HLH (Alosaimi and others 2019; Gothe and others
2020). HLH is a rare condition characterized by severe
systemic hyperinflammation associated with high produc-
tion of IFN-g, where viral infection provokes a robust, de-
structive, and inefficient antiviral response (Rosado and Kim
2013). One patient developed secondary HLH upon infec-
tion with meningitis due to vaccine-strain mumps (Alosaimi
and others 2019). Treatment with high doses of intravenous
immunoglobulin enabled patient recovery. The exact viral
trigger that led to HLH in the second patient who developed
severe illness following MMR vaccination and subsequently
fatal hyperinflammation could not be established (Gothe and
others 2020), as there was no evidence of vaccine-strain
viral replication.

The cause was postulated to be either influenza A or
vaccination strain of Varicella (Freij and others 2021). In
both cases of HLH, STAT2 deficiency was reflected by
decreased expression of ISGs upon stimulation with IFN-a.
Collectively, these 2 case studies demonstrate the far-
reaching detrimental effects of STAT2 deficiency on func-

tionality of the type I IFN response and patients’ abilities to
combat viral illness (Gothe and others 2022). Based on these
findings, one could speculate that type III IFN signaling
would also be impaired in individuals with STAT2 defi-
ciency. The emerging trend is that all STAT2-deficient in-
dividuals share a susceptibility to viral illness during
childhood, which becomes less recurrent when they reach
adulthood. Interestingly, no increase in susceptibility to
bacterial infections has been reported in STAT2-deficient
individuals.

STAT2 in Bacterial Infections

Unlike viral infections, where type I and type III IFNs are
protective, both display dual opposing roles in bacterial
infection. Depending on the bacterial pathogen, IFNs can be
protective or deleterious to the host (Lebreton and others
2011; Cohen and Prince 2013; Boxx and Cheng 2016; Ko-
varik and others 2016). To elucidate the role of IFN sig-
naling in microbial pathogenesis, mice deficient in Ifnar1,
Ifnlr1, and components of the ISGF3 complex are routinely
used. However, the phenotypes of STAT2 or IRF9 defi-
ciency may not mirror those of IFNAR1 deficiency. The
absence of both STAT2 and IRF9 is rather expected to re-
semble double IFNAR1/IFNLR1 deficiency, suggesting that
both factors have critical roles in bacterial infections that are
yet to be fully characterized.

It is widely accepted that type I IFN contributes to the
immunopathology of Salmonella Typhimurium, an intra-
cellular Gram-negative enteric pathogen that evades the
innate immune system by provoking severe inflammation. In
contrast, the role of type III IFN in Salmonella infection is
not entirely clear. In vitro studies show IFN-l treatment
safeguards the integrity of epithelial barriers from
Salmonella-induced damage, whereas IFN-b provides min-
imal effect (Odendall and others 2017). Studies in ifnlr1-
deficient mice would be needed to determine whether IFN-l
has antibacterial activity in vivo. What is known is that loss
of Ifnar1 prolongs host survival to Salmonella infection
(Robinson and others 2012). Type I IFN induces cell death
of Salmonella-infected macrophages by activating ne-
croptosis, a form of inflammatory cell death. This type of
cell death helps to evade the immune response and spread
the infection to other organs (McComb and others 2014).
Deficiency in RIP3 kinase, a key component of the ne-
croptotic pathway, enhances bacterial clearance.

Similarly, macrophages lacking IFN-a, Stat1, Stat2, or
Irf9 were highly resistant to necroptosis. Salmonella infec-
tion was reported to drive necroptosis by upregulating the
mitochondrial phosphatase Pgam5 that in turn sequestered
the transcription factor NRF2 in the cytosol, preventing the
expression of antioxidative genes. Ultimately, this led to the
production of reactive oxygen species, energy depletion and
cell death, which helps the organism evade the immune
response (Hos and others 2017). Of note, STAT2 has been
reported to increase mitochondrial mass in lipopolysaccha-
rides (LPSs)-stimulated macrophages; such an increase in
mitochondrial copy number is needed to support the proin-
flammatory differentiation of macrophages (Yu and others
2020).

Most recent literature shows that Salmonella flagellin
activates the NLRC4 inflammasome to trigger pyroptosis
and the synthesis of lysophospholipids to clear early
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infection (Akhade and others 2020). However, as infection
progresses, type I IFN represses NLRC4 and the lysopho-
spholipid enzyme iPLA2. This results in reduced production
of lysophospholipids that ultimately downregulates flagellin
expression to enable Salmonella to switch to a flagellin-low
phenotype to avert immunosurveillance. It is unclear if de-
letion of STAT1, STAT2, or IRF9 will rescue Salmonella
flagellin expression and enhance bacterial clearance. An-
other study shows that type I IFN remodels lysosome lo-
calization and function, which is associated with enhanced
Salmonella virulence (Zhang and others 2020).

The expression of a unique group of ISGs (IFITM3,
SLC15A3, and CNP) localized to lysosomes after Salmo-
nella infection of intestinal epithelial cells were identified
by a combination of CRISPR/Cas9 screen and proteomic
profile of lysosomes and found to be important in reducing
the pH and protease activity of lysosomes. IFN-dependent
lysosome acidification was associated with the expansion of
Salmonella-containing vacuoles that is permissive for Sal-
monella replication, their rupture, and host cell death.
Whether this is driven through ISGF3 or STAT2/IRF9 is yet
to be determined.

The pathogenic role of STAT2 in Salmonella infection
was recently evaluated more closely. Similar to Ifnar1-
deficient mice (Robinson and others 2012), our group found
that Stat2-deficient mice were less susceptible to Salmonella
infection and had impaired ISG expression, in contrast to
wild-type mice (Wilson and others 2019). Salmonella needs
a highly oxygenated environment to expand (Rivera-Chávez
and others 2016). We observed that Stat2 deficiency limited
the expansion of Salmonella by impairing neutrophil func-
tion (defect in generating superoxide anion), thus leading to
the establishment of a hostile hypoxic environment in the
intestinal lumen, which in turn decreased bacterial burden.
Loss of STAT2 also prevented Salmonella from out-
competing the healthy microbiota thereby impeding dys-
biosis. Based on these findings, we concluded that STAT2
generates a proinflammatory environment, which allows
Salmonella to thrive by increasing luminal oxygenation
driven by neutrophils. However, the specific mechanisms by
which STAT2 promotes this inflamed state are yet to be
elucidated.

Type I IFNs are also detrimental in infection with intra-
cellular Gram-positive Listeria monocytogenes, a foodborne
pathogen, by inducing lymphocyte death (Auerbuch and
others 2004; O’Connell and others 2004). Induction of
apoptosis-associated genes by type I IFN in a STAT1-
dependent manner was first proposed as a mechanism to
explain susceptibility to infection (Stockinger and others
2002). Subsequent studies showed Listeria infection triggers
pyroptosis in macrophages, an inflammatory form of cell
death marked by rupture of the plasma membrane, whereby
inflammasome activation results in caspase 1/caspase 11
activation, cleavage of pro-IL1-b and pro-IL-18, and acti-
vation of pore-forming protein Gasdermin D (Cervantes and
others 2008). IFN-g controls Listeria infection, so a second
mechanism was proposed, by which type I IFN antagonizes
the antimicrobial effects of IFN-g in macrophages (Raya-
majhi and others 2010). As part of the probacterial effect of
type I IFN, Stat2-deficient mice were also found to be more
resistant to Listeria infection (Shaabani and others 2021).

Although type III IFN responses have yet to be deter-
mined, the possibility that it is detrimental in Listeria in-

fection due to its dependence on STAT2 is plausible. In
addition to functioning as a positive activator of type I IFN
signaling, it is important to highlight that STAT2 is also a
negative regulator of the type I IFN pathway. STAT2
functions as an adaptor molecule to USP18, an ISG, to de-
sensitize cells to IFNs (Arimoto and others 2017). Para-
doxically, USP18 expressed in dendritic cells was shown to
promote the replication of Staphylococcus aureus and Lis-
teria by inhibiting the production of antimicrobial IFN-g
and TNF-a (Shaabani and others 2021).

Previously, the intestinal microbiota was reported to af-
fect the host transcriptional response to Listeria infection
(Archambaud and others 2013). The microbiota inhibited
the expression of several microRNAs (miRNAs) that were
inversely correlated with the expression of protein-coding
genes. The expression of 4 miRNAs, miR-143, miR-148a,
miR-200b, and miR-200c, was downregulated in conven-
tional mice upon Listeria infection. Among the 16 top
protein-coding genes identified during Listeria infection,
germ-free and conventional mice showed upregulation of
STAT2 expression. Other ISGs were also identified that are
known to be STAT2 dependent. The relationship between
these ISGs and miRNAs to the probacterial effects of type I
IFN may shed more light into the damaging effects of type I
IFN signaling in certain bacterial infections.

Most recently, a link between STAT2 and METTL3 was
reported to play a proinflammatory role in the pathogenesis
of neonatal bacterial pneumonia (NP), a prevalent cause of
neonatal morbidity and mortality (Li and others 2021).
Bacterial LPSs induce lung inflammation in neonates (Cui
and others 2020). METTL3 catalyzes the methylation of
adenosine to N6-methyladenosine (m6A) on mRNA tran-
scripts, an important process in inflammatory responses. In
the serum of NP patients and LPS-treated human lung fi-
broblasts, METTL3 was upregulated, whereas the expres-
sion of long noncoding RNA SNHG4 was downregulated.
Silencing of METTL3 or overexpression of SNHG4 de-
creased m6A levels of STAT2 mRNA causing a reduction in
STAT2 protein levels and inhibition of LPS-induced pro-
duction of inflammatory cytokines that were reversed by
ectopic STAT2 overexpression. This finding provides in-
sight into the role of STAT2 as a promoter of acute lung
inflammation in the setting of bacterial infection.

Our group previously reported that mice lacking Stat2
were highly susceptible to LPS-induced sepsis, as opposed
to mice missing components of type I IFN signaling that
survived after LPS administration (Alazawi and others
2013). This observation suggested that Stat2 had a protec-
tive role. Lethality could not be explained by induction of a
cytokine storm as no exaggerated increases were noted in
the levels of classical cytokines and chemokines associated
with sepsis. Serum levels of TNF-a, MCP-1, and IL-6 were
lower than wild-type mice, whereas the levels of IFN-g were
similar between strains. We concluded that the Stat2 defi-
ciency phenotype was due to a distinct mechanism that in-
volved increased cellular transmigration of immune cells.
This is in stark contrast to what others have reported re-
garding type I IFN signaling being responsible for lethality
to LPS (Karaghiosoff and others 2003; Kamezaki and others
2004; Bosmann and others 2014) as well as driving TNF-a-
induced systemic inflammatory response syndrome (Huys
and others 2009) and sepsis in a model of cecal ligation and
puncture (CLP) (Dejager and others 2014).
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In these models, expression levels of several cytokines
and chemokines were drastically reduced in Ifnar1-deficient
mice. The latter coincided with reduced trafficking of im-
mune cells in the blood and their migration into tissues. In
the model of CLP, antibody-mediated neutralization of IF-
NAR1 was shown to enhance bacterial clearance by in-
creasing the recruitment of neutrophils (Dejager and others
2014). Therefore, in animal models of sepsis, type I IFNs
are detrimental by amplifying the production of proin-
flammatory mediators that lead to multiorgan failure, al-
though STAT2 has a protective effect.

STAT2 in Superinfection

Superinfection is a secondary infection that occurs following
an existing infection and the most common complication of
influenza illness. Significant mortality in influenza A virus-
infected patients is caused by a secondary bacterial pneumonia
infection (Morens and others 2008). S. aureus is the most
prominent bacterium in influenza bacterial superinfection. In-
duction of type I and type III IFNs’ antiviral response against
influenza enhances susceptibility to bacterial pneumonia in-
fection (Lee and others 2015; Planet and others 2016). Dif-
ferent groups have shown that while influenza virus replicates
better in Ifnar1 and ifnlr1-deficient mice, these mice are su-
perior to wild-type mice in clearing Staphylococcus during
superinfection (Li and others 2012; Planet and others 2016;
Shepardson and others 2016, 2018). One study reported that
administration of IFN-l had the opposite effect with detri-
mental consequences as it increased bacterial burden due to
host immune response to influenza (Rich and others 2019).

Infection by influenza inhibits a Th17-mediated protective
response intended to clear bacterial pneumonia infection dur-
ing influenza and bacterial superinfection (Kudva and others
2011). Bacterial superinfection subsequently antagonizes an-
tiviral type I IFN signaling; STAT1/STAT2 dimerization be-
comes impaired, causing inhibition of ISG expression and
enhanced viral replication (Warnking and others 2015), a
finding that can be extended to type III IFN signaling. A recent
study compared the outcome of influenza and influenza
methicillin-resistant S. aureus superinfection between wild-
type and Stat2 null mice (Gopal and others 2018). As expected,
influenza-infected Stat2-deficient mice had increased mortality,
impaired viral clearance, and severe inflammatory response
than wild-type mice. In the context of an influenza bacterial
superinfection, Stat2-deficient mice survived and showed
bacterial clearance. No discernable differences in perivascular
inflammation were noted between wild-type and Stat2-
deficient mice as well as in the levels of IL-17, IL-22, and
IL-23 cytokines, known to be altered by influenza infection.

RNA-seq analysis revealed that expression levels of IFN-
g, IL-4, and IL-13 were increased in the lungs of Stat2 null
mice in comparison to wild-type mice during superinfection.
Stat2 null mice also showed elevated expression of che-
mokines, IFN-g induced ISGs, and genes representing a dual
phenotype of M1- and M2-type macrophages. Additionally,
loss of Stat2 signaling was shown to enhance the uptake and
killing of bacteria by macrophages. Furthermore, blocking
IFN-g in influenza-infected Stat2-deficient mice before
bacterial infection decreased bacterial clearance.

Our most current global health challenge is coronavirus
disease 2019 (COVID-19), caused by severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) (Hu and others

2021). Other viruses that similarly cause dysregulated in-
flammation and acute respiratory disease are SARS-CoV-1
and MERS-CoV. Optimal and balanced activation of type I
and type III IFN-dependent antiviral responses as the first
line of defense can subvert SARS-CoV-2 infection. COVID-
19 patients in critical condition, however, experience severe
inflammation due to the induction of a pulmonary cytokine
storm, defective type I IFN secretion, impaired/delayed type
I IFN response (inhibiting the JAK/STAT pathway) and
production of neutralizing autoantibodies to type I IFN.

All of these were associated with poor outcomes (Zhang
and others 2021). SARS-CoV-2 utilizes the angiotensin-
converting enzyme 2 (ACE2) as a receptor for virus entry
and replication. ACE2 has been described as an ISG because
of its induction by all 3 types of IFNs and virus infection
(Chua and others 2020; Ziegler and others 2020; Salka and
others 2021). However, recent studies invalidate that ACE2
is an ISG. Rather, a spliced variant of ACE2 (dACE2) is an
ISG that is nonfunctional and unable to promote infection
(Onabajo and others 2020; Blume and others 2021), indi-
cating a protective effect by IFNs.

SARS-CoV-2 replicates poorly in wild-type and immuno-
deficient SCID mice that lack human ACE2 transgene. Also
noted were mice deficient in Ifnar1 presenting with mild lung
pathology. However, some of these mice showed an increase
in viral titers and peribronchial inflammation, indicating that
these mice are not a suitable model to recapitulate the patho-
genesis of COVID-19. Recently, a Syrian hamster model of
SARS-CoV-2 infection (Chan and others 2020) was utilized to
investigate the dual role of STAT2 signaling in the patho-
genesis of the disease (Boudewijns and others 2020). Infected
wild-type hamsters developed severe lung pathology marked
by high infiltration of neutrophils, bronchopneumonia, and
edema, all of which resemble the pathology seen in COVID-19
patients (Xu and others 2020). There were no differences in
viral RNA levels in the lungs of WT, Stat2-deficient, and
IL28ra (also known as ifnlr1)-deficient hamsters.

Nonetheless, when compared with wild-type, Stat2-
deficient hamsters showed higher titers of infectious virus in
the lung that disseminated to other organs, suggesting STAT2
was critical in controlling SARS-CoV-2 viral replication. In
the absence of STAT2, bronchopneumonia and perivascular
edema were drastically attenuated unlike that observed with
Il28ra deficiency, which could be attributed to the over-
lapping antiviral effects of type I IFN mediated by STAT2
that remain intact in ifnlr1-deficient mice. Infection of Stat2-
deficient hamsters also showed lower baseline expression of
antiviral ISGs and inflammatory cytokines (IL-6, IP-10, IFN-
l, and Mx2) with no effect on ACE2 expression. Of note,
critically ill COVID-19 patients have reduced IFN responses
coupled with an enhanced IL-6 and TNF-a proinflammatory
response (Hadjadj and others 2020).

Furthermore, COVID-19 patients have higher rates of co-
infection or secondary bacterial infection than influenza pa-
tients (Shafran and others 2021). Two studies showed that
COVID-19 mortality was associated with elevated expression
of both type I and type III IFNs in the lung (Broggi and others
2020; Major and others 2020). These studies also revealed that
excessive production of IFN-a, IFN-b, and IFN-l (more ro-
bustly) in the lungs by synthetic viral RNA caused damage to
the lung epithelium and hindered repair by inducing p53 to
inhibit cell proliferation and differentiation during influenza
recovery, which enhances susceptibility to lethal bacterial
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superinfection. This inherently aggravates severity of disease
and clinical outcomes. These findings indicate that STAT2
downstream type I and type III IFN signaling serves a dual
function in controlling viral infections at the expense of
causing unrestrained inflammation and severe pathologies.

STAT2 as an Inducer of Inflammatory Cytokines
in Cancer

IL-6 is a major cytokine involved in the activation of the
STAT3 oncogenic pathway that promotes tumor growth and
metastasis ( Johnson and others 2018). It was recently re-
ported that metastatic colonization of colorectal tumor cells
to the liver was reduced in Il6-deficient mice (Toyoshima
and others 2019). Without IL-6, CD11c+ dendritic cells that
accumulated in the metastatic liver expressed high levels of
Ifna and Ifnb. When blocking Ifnar1, metastatic colonization
to the liver was restored.

STAT2 is widely recognized for its role in mediating the
antitumor activities of type I IFN (Clifford and others
2003; Wang and others 2003; Yue and others 2015). To
investigate this closer, we induced tumors in wild-type and
Stat2-deficient mice employing chemical models of skin and
colorectal cancer (Gamero and others 2010). In the absence
of STAT2, mice not only developed fewer tumors but also
presented with an attenuated inflammatory transcriptional
signature that is found before the onset of cancer. These
inflammatory signatures involve the expression of chemo-
kines (Ccl2, Ccl3, Ccl4, Cxcl9, Cxcl10) and cytokines (IL1a,
Il1b, and Il6), all of which were reduced. Loss of STAT2
decreased IL-6 secretion and STAT3 activation while re-
constitution of STAT2 in an established STAT2-deficient
cancer cell line rescued IL-6 production. This finding, thus,
uncovered a new association between STAT2 and IL-6 in
the setting of skin and colorectal cancer models.

IL-6 is induced weakly by ISGF3 in response to type I IFN,
but is significantly enhanced by activators of the NF-kB
signaling pathway (Nan and others 2018). Analysis of the IL-
6 promoter revealed an ISRE motif needed for activation and
occupied by the IRF9/STAT2 complex when present at high
levels in concert with the NF-kB subunit p65. STAT2 acts as
a bridge whereby IRF9 binds the ISRE complex and the p65
binds the NF-kB DNA element, although STAT2 does not
bind to DNA. Consequently, this generates a more robust
response that further drives IL-6 transcription. Also, in-
creased unphosphorylated STAT2 protein levels can drive the
expression of additional chemokines and cytokines that are
dependent on NF-kB. This study also underscored a rela-
tionship between STAT2 and lung cancer in which elevated
STAT2 mRNA levels were associated with poor clinical
outcome. It has yet to be determined if the protumorigenic
effects of STAT2 is due to impaired type I and/or type III IFN
signaling by the actions of IL-6 or other soluble factors.

STAT2 in Asthma

Asthma is a complex inflammatory disease characterized by
narrowing of the airways of the lungs, eosinophilic inflam-
mation, mucus hypersecretion, increased Th2 cytokines (IL-4,
IL-5, and IL-13), elevated IgE production, shortness of breath,
and wheezing (Hamid and Tulic 2009). The development and
exacerbation of the disease is influenced by lifestyle, genetics,
and environmental factors. Research has shown genetic vari-

ants of STAT6, STAT3, and STAT4 being strongly associated
with this respiratory condition (Litonjua and others 2005;
Korman and others 2008; Qian and others 2014). A more re-
cent study further implicates the STAT family in progression
of asthma by identifying a STAT2-related polymorphism di-
rectly linked to asthma susceptibility (Hsieh and others 2009).
Proportions of genotypes at a single nucleotide polymorphism
site in the STAT2 gene (rs2066807) were observed for both
asthma and control patients.

Results indicated that the distribution of the genotypes
CC/CG/GG were significantly different when these 2 groups
were compared. Based upon statistical analysis, the study
predicts that STAT2*C-associated variants could be corre-
lated with increased asthma susceptibility. In this same
study, TLR4 and CD40-related polymorphisms were found
not to contribute to increased susceptibility to asthma. In the
future, identification of STAT2 polymorphisms in the exons
or promoter region will enable expansion of a database of
markers and help with predicting disease susceptibility.

Type I and type III IFN levels are found increased in
patients with asthma (da Silva and others 2017). Both types
of IFNs have been shown to inhibit the development of Th2
cells and secretion of Th2 cytokines, which suppress allergic
responses that in turn attenuate lung inflammation ( Jordan
and others 2007; Huber and others 2010). Intranasal delivery
of IFN-l1 was found to decrease severity of airway in-
flammation in an experimental model of ovalbumin-induced
asthma (Li and others 2014b). A recent study looked at
asthmatic children’s peripheral blood mononuclear cells,
which had elevated IFN-l and STAT2 expression (Krug and
others 2021). These cells were noted to have a degree of
protection against rhinovirus infections. One study reported
that 80%–85% of asthma exacerbations in children are as-
sociated with upper respiratory viral infections and rhino-
virus being the most common (Johnston and others 1995).

Therefore, a decrease in type I and type III IFN response
during viral infection in asthmatics can have detrimental
effects in promoting asthma exacerbation by the inability of
IFNs to restrict Th2 cytokine secretion. Collectively, these
studies imply a protective anti-inflammatory effect of
STAT2 and identifies a possible target for the induction of
antiviral responses in asthmatic children.

Glucocorticoids are a first-line treatment in the prevention
and symptomatic control of asthma. One study looked at the
association of glucocorticoid usage among asthmatic chil-
dren and rhinovirus infection. The study showed reduced
type I IFN signaling among glucocorticoid-treated children
and an association with rhinovirus replication (Marcellini
and others 2021). Stimulation of rhinovirus-infected Beas 2b
epithelial cells with IFN-b in the presence of the gluco-
corticoid, fluticasone propionate, decreased mRNA expres-
sion of ISGs. This reduction in ISG expression was due to
impaired STAT1 and STAT2 tyrosine phosphorylation, thus
preventing an antiviral response and enabling rhinovirus
replication. This finding helps to explain why long-term use
of inhaled corticosteroids in patients with asthma increases
the risk of respiratory infections. Additionally, these data
further solidify the role STAT2 plays in this process.

STAT2 in Inflammatory Bowel Disease

Inflammatory Bowel Disease (IBD) is a chronic intestinal
condition characterized by inflammation of the digestive
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tract. IBD occurs in 2 forms: Crohn’s Disease (CD) and
Ulcerative Colitis (UC) (Friedrich and others 2019). Type I
and type III IFNs have been studied in models of acute and
chronic colitis and are considered a double-edged sword as
they can reduce or intensify the severity of inflammation
(Rauch and others 2014; McElrath and others 2021; Wallace
and others 2021; Xu and others 2021).

A growing body of evidence shows that patients with
active IBD displaying a high IFN response signature are
poor responders to anti-TNF-a drugs (Andreou and others
2020; Mavragani and others 2020). In addition, IFN-l is
increased in the serum of CD patients with active disease
(Günther and others 2019). Clinical trials of type I IFN
therapy have produced mixed results (Musch and others
2002; Pena Rossi and others 2009); therefore, the bene-
ficial effects of type I IFN therapy in treating IBD remain
controversial. IFN-l has not yet been tested to treat IBD
but given the detrimental and beneficial effects seen in
mouse models, like those with type I IFN, extreme cau-
tion is urged.

Today, hardly anything is known about STAT2 in IBD
and no genetic association to UC or CD has been reported.
Current knowledge regarding the role of STAT2 in IBD is
limited to flow cytometric analysis of different STATs in
lamina propria lymphocytes from healthy individuals and
patients with active disease in which intracellular levels of
STAT2 were decreased in both UC and CD patients (Mudter
and others 2005). As the sample size of this study was small,
more studies that use a larger cohort of patients would be
required to elucidate the activation status of STAT2. In an-
other study, IRF9 was found to be proinflammatory, in a type
I and type III IFN independent noncanonical fashion, by
forming a complex with STAT1 in an acute model of dextran
sodium sulfate (DSS)-induced colitis (Rauch and others
2015). From this study, it was implied that STAT2, as part of
the ISGF3 complex, is protective against acute colitis.

In a mouse model of CD, in which Caspase 8 is deleted in
the intestinal epithelium (Casp8DIEC), mice spontaneously
developed inflammatory lesions in the terminal ileum
(Günther and others 2011). Administration of DSS resulted
in colonic inflammation and necroptosis of Paneth cells,
which produce antimicrobial peptides.

Treatment of Casp8DIEC intestinal organoids with either
IFN-b- or TNF-a-induced cell death (Stolzer and others
2021). This same study investigated the different contribu-
tions of STAT1 and STAT2 in this model. In vivo, STAT1
played no role in inducing inflammation and instead, par-
tially contributed to the death of Paneth cells. In contrast,
Paneth cell death occurred independently of STAT2. How-
ever, unlike STAT1, STAT2 contributed to the severity of
inflammation. In a different study, expression of IFN-l in
Casp8DIEC mice was lethal by promoting massive epithelial
cell death and loss of immune homeostasis independently of
TNF-a through STAT1 signaling (Günther and others 2019).
However, the potential contribution of STAT2 in this con-
text is still unclear. These findings highlighted the distinc-
tive, nonoverlapping roles that STAT1 and STAT2 serve in
intestinal inflammation.

STAT2 in Type I Interferonopathy

Unrestrained activation of type I IFN signaling pathway can
result in a group of disorders defined as type I interferono-

pathy (Crow and Stetson 2021). Patients with type I inter-
feronopathy often show signs of severe auto-inflammation
such as cerebral calcifications and skin ulcerations, in addition
to upregulation of IFN-a and aberrant induction of ISGs.
Recent studies have implicated STAT2 in the pathogenesis of
type I interferonopathies by demonstrating that STAT2 mu-
tations that directly impact its interaction with USP18 interfere
with the role of STAT2 as a key negative regulator of the type
I IFN pathway.

Two independent studies identified children who died due
to excessive type I IFN activity and severe inflammation
caused by a homozygous germline missense mutation in
STAT2. In the first study, a lethal germline homozygous
variant of STAT2 at position c.442CC>T was identified in 2
children (Duncan and others 2019). This mutation resulted
in an amino substitution at arginine 148 with tryptophan
(R148W). As a result, this mutation affected the recruitment
of USP18 to IFNAR2, causing desensitization to type I IFN
stimulation. Dysfunction of the negative regulatory system,
thus, caused prolonged tyrosine phosphorylation, nuclear
localization of STAT2, heightened ISG expression, and
hyperinflammation. In the second study, arginine at position
148 was replaced by glutamine (R148Q) at the site where
USP18 binds (Gruber and others 2020).

This mutation does not interfere with ISGF3 activity, nor
does it inhibit the interaction between USP18 and R148Q
STAT2; however, it entirely impairs the ability of STAT2 to
mediate USP18 trafficking to the receptor to turn off type I
IFN signaling. Whether type III IFN contributes to this
phenotype is unclear. Altogether, this contributed to the
development of severe type I interferonopathy in the patient.
Research that furthers our understanding of type I inter-
feronopathies early in their development will prove valuable
to efforts toward therapeutic treatments.

STAT2 in Psoriasis

Psoriasis is a chronic inflammatory skin disease that
commonly results in the formation of lesional plaques,
which appear as red, silvery, scaly patches on the skin.
Pathogenesis of psoriasis is marked by the penetration and
infiltration of immune cells, namely Th1 and Th17 cells,
into superficial layers of the skin (Nograles and others
2008). While previous research had demonstrated increased
expression of STAT1 and STAT3 in psoriatic skin, recent
studies point to the involvement of STAT2 in the patho-
genesis of the disease. Genome-wide association studies
show STAT2 as a psoriasis susceptibility gene (Gupta and
others 2014; Yin and others 2015; Fodil and others 2016).
A recent study revealed activation of STAT2 signaling in
skin lesions of patients with psoriasis ( Johansen and others
2017). Paired skin biopsies taken from psoriasis patients
with lesional and nonlesional skin as well as skin from
healthy individuals were analyzed for STAT2 mRNA levels.

Only lesional psoriatic skin displayed elevated STAT2
mRNA expression when compared with normal and nonle-
sional skin. This increase in STAT2 expression also mat-
ched at the protein level. Psoriatic skin lesions not only had
elevated STAT2 protein but also displayed activated
STAT2. Curiously, no changes in STAT2 expression were
detected in atopic dermatitis, a different inflammatory skin
condition. This study also reported that human keratinocytes
responding to type I IFN stimulation produced the
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chemokines CCL5 and CXCL11, both of which required
STAT2 but not STAT1 for their induction. These findings
imply that STAT2 is involved in the recruitment of immune
cells into the epidermal and dermal layers of the skin. In a
different study, T cell lines generated from the skin of
psoriasis patients showed increased sensitivity to type I IFN
when compared with T cells from healthy subjects (Eriksen
and others 2005).

The level and kinetics of STAT2 activation by IFN-b
were elevated and prolonged when compared with STAT1
activation. Another study profiled transcriptomic changes
in psoriatic keratinocytes isolated from paired lesional
and nonlesional skin of psoriasis patients (Pasquali and
others 2019). A subset of upregulated genes identified in
psoriatic lesions contained binding sites for STAT2. The
role of type III IFN in the pathogenesis of psoriasis is not
entirely clear. Psoriatic lesions display elevated IFN-l
associated with an ISG signature (Wolk and others 2013)
and psoriatic patients have elevated serum levels of IFN-l
(Cardoso and others 2016). Treatment of human kerati-
nocytes with type III IFN induced chemokines CXCL10
and CXCL11 (Witte and others 2016). Of note, induction
of CXCL11 is mediated by STAT2 in response to type I
IFN. This hints at a shared response between these 2
cytokines and their overlapping contribution to the path-
ogenesis of psoriasis.

Current knowledge pertaining to psoriasis pathogenesis
also encompasses our understanding of risk loci and
variants that confer risk for psoriasis and psoriatic ar-
thritis (PsA). PsA is a chronic inflammatory condition
closely linked to psoriasis (Rahmati and others 2020). To
date, all risk loci known to be associated with psoriasis
also confer risk for PsA. Thus, identifying risk loci that
distinguish risk for PsA from psoriasis can significantly

aid in the development of treatments and processes by
which patients at high risk for each inflammatory condi-
tion are identified. These data point to STAT2 as having
an active deleterious role in psoriasis.

Concluding Remarks

Over the years, multiple studies have reaffirmed the es-
sential role of STAT2 in activating the transcriptional re-
sponse to type I and type III IFNs. It is becoming
increasingly clear that STAT2 has distinct functions in
pathogenic infections, autoimmune and autoinflammatory
diseases as depicted in Fig. 2. STAT2 is protective against
viral infections while deleterious in bacterial infections.
Loss of STAT2 can lead to hyperinflammation and tissue
injury in the setting of viral illness due to the failed attempt
of the host to clear the virus. Severe inflammation is also
observed in certain bacterial infections and in superinfections;
however, in this case, STAT2 activates a damaging tran-
scriptional inflammatory program. Similarly, severe inflam-
mation is noted in patients with persistent type I and type III
IFN signaling as observed in multiple human diseases (IBD,
psoriasis, type I interferonopathies).

It is important to consider that STAT2 is multifaceted:
initially, it assumes the role of an activator and later,
functions as a suppressor of type I IFN signaling. This be-
came apparent with the identification of individuals born
with a primary immunodeficiency disorder characterized by
a STAT2 deficiency.

During childhood, they experienced recurrent viral in-
fections and others born with a lethal homozygous STAT2
variant (R148W/Q), which cannot restrict type I IFN sig-
naling and led to severe inflammation. In that regard,
STAT2 can be viewed as an immune rheostat. However,

FIG. 2. STAT2 plays a dual role as a transcription factor involved in promoting proinflammatory and anti-inflammatory
activities. Unrestrained STAT2 signaling due to uncontrolled infection, tissue injury, or heightened IFN-I production can
lead to detrimental and severe inflammation. Shown are the various diseases to which STAT2 can be associated as either
protective or pathogenic or both.
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whether the inflammatory effects of STAT2 are driven so-
lely by a secondary transcriptional response mediated by
unphosphorylated STAT2/IRF9 complex and if this operates
independently of type I or type III signaling, is still un-
known. Already, STAT2 has been shown to promote the
expression of protumorigenic cytokines, IL-6 and TNF-a.
This may aid in explaining the contribution of STAT2 in
promoting cancer. Nevertheless, mechanistic studies are
warranted to understand mechanistically how STAT2 pro-
motes hyperinflammation and whether this feature is regu-
lated by post-translational modifications and association
with other proteins. Insight into these inquiries will prompt
the development of treatments that target key factors in a
myriad of inflammatory diseases assumed to be linked to
STAT2.
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Peters G, Ludwig S, Ehrhardt C. 2015. Super-infection with
Staphylococcus aureus inhibits influenza virus-induced type I
IFN signalling through impaired STAT1-STAT2 dimeriza-
tion. Cell Microbiol 17(3):303–317.

Wilson RP, Tursi SA, Rapsinski GJ, Medeiros NJ, Le LS,
Kotredes KP, Patel S, Liverani E, Sun S, Zhu W, Kilpatrick
L, Winter SE, Gamero AM, Tükel Cx. 2019. STAT2 depen-
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