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A B S T R A C T   

Pattern detection and string matching are fundamental problems in computer science and the accelerated 
expansion of bioinformatics and computational biology have made them a core topic for both disciplines. The 
requirement for computational tools for genomic analyses, such as sequence alignment, is very important, 
although, in most cases the resources and computational power required are enormous. The presented Multiple 
Genome Analytics Framework combines data structures and algorithms, specifically built for text mining and 
(repeated) pattern detection, that can help to efficiently address several computational biology and bioinfor
matics problems, concurrently, with minimal resources. A single execution of advanced algorithms, with space 
and time complexity O(nlogn), is enough to acquire knowledge on all repeated patterns that exist in multiple 
genome sequences and this information can be used as input by meta-algorithms for further meta-analyses. For 
the proof of concept and technology of the proposed Framework scalability, agility and efficiency, a publicly 
available dataset of more than 300,000 SARS-CoV-2 genome sequences from the National Center for Biotech
nology Information has been used for the detection of all repeated patterns. These results have been used by 
newly introduced algorithms to provide answers to questions such as common patterns among all variants, 
sequence alignment, palindromes and tandem repeats detection, different organism genome comparisons, po
lymerase chain reaction primers detection, etc.   

1. Introduction 

The COVID-19 pandemic has highlighted governmental, scientific, 
economic and political focus on the biotechnology industry and its ef
forts to address the virus consequences as soon as possible. Major 
pharmaceutical and biotechnology companies worldwide have invested 
huge amounts in new technologies for the past couple of decades and the 
first promising results, from technologies such as the mRNA vaccines, 
have become visible. Indeed, the fast expansion of the biotechnology 
industry with the help of advanced computing infrastructures, such as 
cloud computing, has opened a new era in the domain. 

Some of the most common problems addressed in computer science 
over time are related to pattern matching and searching. In bioinfor
matics, there has been a plethora of completely diverse methodologies 
and algorithms since early 1970, which were developed to deal with the 
simplest problems, such as to determine if a specific string exists in a 
biological sequence, to more complex problems such as the multiple 
sequence alignment. Furthermore, the development of artificial intelli
gence and deep learning provides more sophisticated tools for image 

analysis or clinical data analytics. 
The analyses of biological sequences such as DNA, RNA, proteins, 

etc., are considered standard string problems in computer science since 
such sequences are built from predefined discrete alphabets (the nu
cleotides or the amino-acids encoding). What make these string prob
lems challenging in bioinformatics and computational biology, from a 
computer science perspective, is the size of the strings and the compu
tationally intensive procedures to solve them. Moreover, in most cases 
solutions cannot be provided in short time with regular computational 
resources. For example, the complete, combined, human genome, a 
3.1Gbp long string, was initially sequenced in 2001 (International 
Human Genome Consortium, 2001) and it was practically impossible to 
be analyzed by desktop computers as a single piece of information since 
only supercomputers could store and process data structures of such 
long strings in memory. For example, the construction of a suffix tree 
data structure for the first human chromosome with an approximate size 
of 250Mbp, requires 26 GB of memory (Chen, 2018). Despite the 
introduction of 64-bit processor architecture at that time, 64-bit oper
ating systems that could handle more than 4 GB RAM were introduced a 
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few years later. Nowadays, advanced hardware and clustering frame
work systems are used for such big data analyses. New technologies such 
as Next Generation Sequencing (NGS) from leading companies require 
advanced computational tools and algorithms, specifically designed for 
string matching problems in order to perform sequence alignment in 
multiple (usually millions) genomic fragments simultaneously. 

The currently presented Multiple Genome Analytics (MuGA) 
Framework will demonstrate that it is possible, with limited resources 
and in short time, to analyze hundreds of thousands of complete ge
nomes (or other kind of sequences) and detect all repeated patterns that 
exist in them. Additionally, it will be presented how the combination of 
an advanced data structure and the results of such analysis can help 
other algorithms to solve many, diverse, pattern detection problems. 
Finally, these newly introduced algorithms, for specific types of pattern 
detection problems, will be tested on a large dataset comprised from all 
SARS-CoV-2 full genome variants, which is the only one of this size 
publicly available. 

In order to achieve such results, the Multiple Genome Analytics 
Framework initially uses the Multivariate Longest Expected Repeated 
Pattern Reduced Suffix Array (LERP-RSA) data structure in combination 
with the All Repeated Patterns Detection (ARPaD) algorithm (Xylo
giannopoulos et al., 2014, 2016; Xylogiannopoulos, 2017). In brief, the 
LERP-RSA is a special variation of the standard Suffix Array (Manber 
and Myers, 1990) data structure using the actual, lexicographically 
sorted, suffix strings. The ARPaD algorithm, both in its recursive and 
non-recursive variant, has the ability to scan the LERP-RSA only once 
and detect every pattern that occurs at least twice in it. Additionally, the 
algorithm is pattern agnostic, i.e., it does not require an input parameter, 
rather it scans the data structure once and returns all results in a 
deterministic way regardless of string or pattern attributes, e.g., fre
quency, length, alphabet, overlapping or not, etc. 

So far, LERP-RSA and ARPaD have been extensively used in many, 
diversified, domains with vast datasets in most cases and exceptional 
problem solving results, regardless hardware limitations, making them a 
state-of-the-art approach for big data problems in text mining and 
pattern detection (Xylogiannopoulos, 2017). An example of such a 
problem is the analysis in 2016 of a single, continuous, string of one 
trillion characters, constructed from the first decimal digits of π, which is 
4,000 times larger than the largest human chromosome (Xylogianno
poulos, 2017). Such an analysis is unique in literature and the results 
were validated three years later by the Google pi-api using the Google 
Cloud Platform (Iwao, 2019). 

The contribution of the current work is to introduce an innovative 
framework that can be used to address as many string problems as 
possible, simultaneously and with limited resources. As a proof of 
concept, which also falls into the category of big data analytics, firstly 
the analysis of 302,373 SARS-CoV-2 genome variants has been executed 
to discover all repeated patterns. These variants refer to any possible 
genomic mutation that exists in the virus database, such as silent sub
stitution, frameshift, nonsense, etc., not only pathogenic variants 
(Alpha, Delta, Omicron, etc.) and they have been used to simulate 
equally complex datasets that are though difficult to be acquired, e.g., 
gene(s) from a human population. Subsequently, these results have been 
used by meta-algorithms for additional meta-analytics, such as:  

a) discovery of the longest patterns, which exist among every variant of 
SARS-CoV-2,  

b) comparisons among different organisms such as MERS, A-CoV, A- 
Influenza, HRSV and Human,  

c) identification of every frequent and infrequent pattern,  
d) detection of restriction enzyme-associated loci,  
e) descriptive statistics for mutations and sequence alignment,  
f) the detection of special patterns such as:  

i) palindromes,  
ii) tandem repeats,  

iii) polymerase chain reaction (PCR) primers. 

The proposed MuGA Framework introduces several innovations such 
as:  

1) the ability to execute workloads for data mining, pattern detection, 
etc. on previously detected repeated patterns (not on raw data), 
which, acording to literature review, it is unique as a concept and 
allows extreme utilization of resources with the consumption of 
already discovered knowledge,  

2) support of full parallelization for each algorithm querying the 
available data but also for different agents using different algorithms,  

3) the ability to create a unique data structure that includes every 
repeated pattern and can be stored locally or remotely and be 
accessed off-line, at will, with the use of commodity computers,  

4) the versatility as a platform for additional algorithms. 

These innovations of the introduced MuGA framework significantly 
differentiate it from standalone algorithms and processes and gives it a 
competitive advantage in the field of big data analytics for bioinfor
matics and computational biology purposes. Despite any possible limi
tations of the proposed framework, the benefit of using it on many, 
diverse, problems concurrently can overcome any initial hesitation, as it 
will be presented in the next sections. A classic analogy to the above 
described novelty of the Framework is the binary search algorithm, 
which although outperforms any searching algorithm, it needs first to 
have the dataset sorted and, therefore, its novelty and complexity cannot 
be directly compared to other searching algorithms. 

The rest of the paper is organized as follows: Section 2 presents 
related work in string matching. Section 3 defines the problem and gives 
the motivation behind it. Section 4 presents the data structures and al
gorithms for pattern detection in biological sequences which form the 
proposed framework and solve specific problems. Section 5 presents 
several applications conducted on the available dataset of all, complete, 
SARS-CoV-2 variants and discusses the results per problem application. 
Finally, Section 6 presents the conclusions and future extensions of the 
presented work. 

2. Related work 

In bioinformatics the use of computers to perform analyses of bio
logical sequence, more particular address string matching problems, 
always had a crucial role. Many new algorithms and methodologies are 
presented every year that improve older approaches or introduce new 
(Hakak et al., 2017; Faro, 2016; Chen, 2018). Mainly, these methods and 
algorithms can be classified into two broad categories, the exact 
matching and the approximate matching (Hakak et al., 2017; Chen, 
2018). The first category is related to string problems where we seek to 
find patterns matching entirely the input string such as, for example, 
specific sequence matching a protein transcription promoter. The sec
ond category can be much more complicated since many mutations, 
insertions, deletions and base changes may have occur making exact 
matching difficult, yet, very important, for example, to detect codon 
sequences which can produce the same protein. However, no algorithm 
is widely known that can perform a generic, single step, detection of all 
repeated patterns. 

More precisely, exact matching algorithms have dominated the field 
since early ‘70s. Many different approaches have been developed such as 
character or index based. This kind of methodologies include brute force 
algorithms where characters of the matching pattern are directly 
compared to the reference sequence. This leads to heavy computational 
algorithms, mainly because of the absence of any preprocessing and 
special data structures. The standards for such algorithms are the Boyer- 
Moore algorithm, usually used as a benchmark for efficiency measure
ment, that uses a shifting step based on a table holding information 
about mismatch occurrences and the Knuth-Morris-Pratt algorithm that 
uses a supplementary table to record temporal information during 
execution (Hakak et al., 2017; Faro, 2016; Chen, 2018; Boyer and 
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Moore, 1977; Knuth et al., 1977). Another algorithm, variation of the 
first one mentioned, is the Boyer-Moore-Smith (Smith, 1991) while 
another extension is the Apostolico-Giancarlo algorithm based on both 
of the BM and KMP algorithms (Apostolico and Giancarlo, 1986). 
Additionally, we have the Raita algorithm based on dependencies that 
occur among successive characters (Raita, 1992). More recent algo
rithms are the BBQ algorithm which introduces parallel pointers that 
perform searching from opposite directions (Ahmad, 2014) and several 
hybrid methods such as the KMPBS (Xian-Feng et al., 2010) and Cao 
et al. (2015) using statistical inference. 

Except the brute force algorithms we have another important cate
gory, the hashed based (Hakak et al., 2017; Faro, 2016; Chen, 2018). 
Such algorithms are based on the hashing concept in order to produce 
hashing values and compare patterns rather than performing a direct 
character comparison. The main benefit from such approach is the 
considerable improvement of calculation time (Abdul Razzaq et al., 
2013), yet, as with most hashing algorithms, they suffer from the 
hashing collision problem. Typical examples of such algorithms is the 
Karp-Rabin which is based on modular arithmetic to perform hashing 
(Karp and Rabin, 1987) and the Lecroq algorithm, which first splits the 
sequence to subsequences and then the pattern matching is performed 
on each sequence (Lecroq, 2007). Classic algorithms are also the non 
q-gram algorithms such as the Wu and Manber (Wu and Manber, 1994) 
where the searching pattern is completely encoded for pattern matching 
purposes. Furthermore, more recently developed algorithms are the 
multi-window integer comparison algorithm based on suffix strings data 
structures such as the Franek-Jennings-Smyth string matching algorithm 
(Franek et al., 2007) and the automata skipping algorithm developed by 
Masaki et al. (2017). More advanced hybrid approaches have also been 
presented that combine best practices from different approaches in order 
to optimize their performance such as, for example, Navarro’s algorithm 
(Navarro, 2001) which can bypass characters using suffix. 

A very well-known and heavily used algorithm is implemented and 
used by the National Center for Biotechnology Information (NCBI). The 
Basic Local Alignment Search Tool (BLAST) and its variants (BLAST, 
2022a) is used for comparing basic sequences, such as nucleotides se
quences, found in DNA and/or RNA. The algorithm takes as inputs the 
desired string to search and the sequence to search into. Additionally, 
BLAST can execute inexact string matching, something usually 
extremely computationally intensive, for multiple sequence alignment 
purposes. Another algorithm, more accurate than BLAST, yet, more re
sources hungry and slower, is the Smith-Waterman algorithm (Smith 
and Waterman, 1981). Several variations of BLAST also exist, such as the 
SmartBLAST that it can be used for protein matching and Primer-BLAST 
that it can be used for primers specific to PCR templates (NCBI, 2022b). 

An important aspect of pattern detection is the discovery of specific 
type of patterns in biological sequences such as palindromes and tandem 
repeats. The importance of such discoveries can be presented with one of 
the latest marbles in biology, the discovery of the clustered regularly 
interspaced short palindromic repeats (CRISPR) in bacteria and the use 
of CRISPR-Cas9 protein that allows to interfere with DNA in a molecular 
level (Jinek et al., 2012). However, in the case of CRISPR problem it is 
necessary to identify only palindromes that their length is in between a 
specific range and they repeat with a relative periodicity. The detection 
of single occurred, very short or very long palindromes is not important. 

Another well studied problem is the detection of short tandem re
peats, something very difficult over a whole genome. This kind of re
peats are classic examples of repeats in protein encoding regions and are 
closely related to serious diseases, such as the Huntington’s disease 
(Mitsuhashi et al., 2019). An example of methods for tandems detection 
can be found in Mitsuhashi et al. (2019) which is based on DNA align
ment using LAST software. 

3. Problem definition 

So far, we have presented several algorithms that are used in 

bioinformatics and computational biology. Yet, all these algorithms 
have as a common attribute the input pattern that is under investigation. 
Such type of algorithms can address specific problems and require each 
time to access the full dataset of one or more sequences to operate and 
produce results, which could be inefficient. 

To address bioinformatics and computational biology problems, it 
would be more preferable to have a data structure or a database of in
formation that can be used for as many queries as possible and be 
transformed to valuable knowledge. Moreover, the full process should 
be able to:  

a) be contacted on commodity computers with limited resources  
b) keep the cost low  
c) allow scale up to deal with larger datasets without the need for new 

hardware resources  
d) address several different computational biology and bioinformatics 

problems concurrently 

4. Proposed framework 

The framework that will be introduced in the next sections, is built 
on the foundation of the Longest Expected Repeated Pattern Reduced 
Suffix Array (LERP-RSA) data structure and the related family of algo
rithms such as ARPaD, SPaD and MPaD that are specifically designed for 
the LERP-RSA (Xylogiannopoulos, 2017). Several applications of the 
aforementioned data structure and algorithms will be presented, as a 
pipeline of execution, that can either extract useful information directly 
from the dataset or the results generated, or can be used as an input for 
other algorithms for several type of meta-analytics in biological 
sequences. 

4.1. LERP-RSA data structure 

The Longest Expected Repeated Pattern Reduced Suffix Array (LERP- 
RSA) is a special purpose data structure for pattern detection, which has 
been developed and optimized to work with a variety of algorithms. 
Manber and Myers (1990) defined the suffix array of a string as the array 
of the indexes of the lexicographically sorted suffix strings, which allows 
to perform several tasks on the string, such as pattern matching. The 
LERP-RSA is a variation of the suffix array, yet, it uses the actual suffix 
strings and not only the position indexes. The quadratic space 
complexity of the data structure, with regard to the input string, can be 
reduced to log-linear with the use of the LERP reduction, derived from 
the Probabilistic Existence of Longest Expected Repeated Pattern The
orem and its Lemma (Xylogiannopoulos et al., 2016; Xylogiannopoulos, 
2017): 

Lemma: Let S be a random string of size n, constructed from a finite 
alphabet Σ of size m ≥ 2, and an upper bound of the probability P(X) is 
P(X), where X the event “LERP is the longest pattern that occurs at least 
twice in S.” An upper bound for the length l of the Longest Expected 
Repeated Pattern (LERP) length we can have with probability P(X) is: 

l = LERP =

⌈

logm
n2

2P(X)

⌉

where l≪n and P(X) > 0. 
Yet, the Theorem and the Lemma have as a prerequisite that the 

string is random. In brief, random means that all characters of the al
phabet occur with the same frequency and this property should be valid 
for reasonably long substrings, following the normality of irrational 
numbers property as presented by Calude’s Theorem (Calude, 1995). 
Randomness could limit the application on biological sequences but this 
problem has been addressed easily with the Moving LERP (Xylo
giannopoulos et al., 2014, Xylogiannopoulos, 2017). 

The LERP-RSA data structure has some unique features that allows to 
be characterized as a state-of-the-art data structure, such as (a) classi
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fication based on the alphabet, (b) network and cloud distribution based 
on the classes, (c) full and semi parallelism, (d) self-compression, (e) 
indeterminacy and (f) multivariable and multidimensional data 
description. All these features will be proved very important for the 
MuGA Framework in the next sections. Especially the construction of 
Multivariate LERP-RSA data structure with the synthesis of every bio
logical sequence under examination is fundamental for all algorithms 
that will be presented. The data structure has both time and space 
complexity of O(nlogn). 

4.2. ARPaD algorithm 

After constructing the Multivariate LERP-RSA data structure we 
execute the All Repeated Patterns Detection (ARPaD) algorithm. The 
algorithm has two versions, the recursive left-to-right and the non- 
recursive top-to-bottom (Xylogiannopoulos, 2017). Both versions have 
the same time complexity O(nlogn). The algorithm can be executed on 
each LERP-RSA class independently and, therefore, it can be executed in 
parallel. The only constrains for such execution is the available hard
ware, processors or cores and memory. Additionally, ARPaD can be 
executed independently on each class, assuming enough resources, or 
even use different Classification Level per alphabet letter. This can be 
achieved also for datasets that significantly exceed the available local 
resources by using the network and/or cloud distribution. 

4.3. SPaD algorithm 

Another important algorithm of the ARPaD family is the Single 
Pattern Detection (SPaD) algorithm (Xylogiannopoulos, 2017). The 
SPaD algorithm is mainly used for meta-analyses purposes, when we 
want to discover specific information in the ARPaD results or LERP-RSA, 
and its correctness has been proven in (Xylogiannopoulos, 2017). 
Moreover, especially with the LERP-RSA it can be extremely efficient 
with constant time complexity O(1) with regard to the input string 
(Xylogiannopoulos, 2017). Although ARPaD can be executed once to 
detect all repeated patterns that can be stored for later meta-analyses 
purposes, SPaD has to be used every time we need to, e.g., check the 
existence of non-repeated patterns. For this purpose, we execute the 
SPaD directly on the LERP-RSA data structure since single occurred 
patterns can exist only in the LERP-RSA, if they do exist. There are two 
distinct cases of SPaD execution with regard to the length of the pattern 
we need to find; if a pattern is equal or shorter than LERP or if a pattern 
is longer than LERP. The SPaD algorithm, except of its straight forward 
application, can also be used with wildcards or regular expressions for 
the detection of more complex patterns. 

4.4. MPaD algorithm 

The Multiple Pattern Detection (MPaD) (Xylogiannopoulos, 2017) 
algorithm is a direct extension of the SPaD. For multiple pattern 
detection, instead of executing SPaD algorithm in a loop, the process is 
optimized with the use of the MPaD. Practically, the first step of the 
SPaD is extended by breaking down all patterns into fragments and 
adding common fragments into batches. This can help the algorithm 
execution because patterns can have shared fragments that they will be 
searched only once and if not existed a complete batch of patterns can be 
rejected simultaneously, instead of repeating the process. As with SPaD, 
MPaD can also be used with wildcards and regular expressions for more 
advanced pattern detection. 

4.5. Meta-analytics 

As mentioned earlier, the construction of the LERP-RSA data 

structure and the detection of all repeated patterns is the first, very 
important and unique step of the proposed MuGA Framework. After the 
completion of the initial data knowledge discovery, several metadata 
analyses can be performed with the use of many problem specific al
gorithms. These analyses depend on several factors and the problems 
that we want to address such as sequence alignment, genome compar
ison, palindromes and tandem repeats detection, etc. The importance of 
the full analysis and repeated patterns detection is that it needs to be 
executed only once and our further, detailed, meta-analyses in the re
sults are standalone processes. Moreover, the results can be stored on 
external storage media, locally or remotely on the cloud, and accessed 
whenever is needed, by class, without the need to repeat the analysis or 
access the full dataset. 

In this section, three different and novel algorithms, which use as 
input the results of ARPaD and can be used to solve completely different 
problems, will be introduced. These algorithms serve as a proof of 
concept of the MuGA Framework and its ability to incorporate addi
tional algorithms for the solution of many other problems. 

4.5.1. PCR primers detection 
Since the scope of the algorithm presented here is to identify possible 

primers for PCR, it is important to search for patterns that exist in 
approximately the same position with a small deviation. Additionally, 
following the 5-prime to 3-prime PCR execution we should find patterns 
from both start and end of the sequence. Therefore, we use two bands 
that define two regions at the beginning and end of sequence, still, it can 
be anywhere in the full DNA sequence depending on which part of the 
DNA we want to amplify. 

First of all, the algorithm terminates because the first for-loop runs 
over the finite patterns discovered by ARPaD with a predefined length 
and the second over a finite filtered results list of the patterns that have 
specific attributes and discovered in the first loop. 

The first part of the algorithm runs over the patterns of specific 
length. Then it checks for every pattern if the pattern exists in all se
quences of the dataset and if it exists in the same position band for all 
sequences. If this is true then it stores the pattern to the results. When all 
patterns have been scanned then the second loop scans any available 
database with the use of SPaD to check if the pattern occurs in another 
organism. If the pattern exists then it is removed from the results. When 
all patterns have been scanned then the algorithm returns the list of 
results. It is important to mention that the second loop is optional since it 
depends on the available databases of other organisms and, additionally, 
since for large patterns the probability to exist in another organism and 
more particularly in human, is significantly small. 
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The algorithm is correct because in the first for-loop it checks if a 
pattern exists in all sequences and at the same band, regardless of exact 
position in the band. The reason that position bands are used and not 
exact positions is that because of insertion or deletion mutations the 
pattern can be found before or after the original position on the refer
ence sequence. Thus, it is important to find the pattern approximate 
position with regard to the reference sequence. In the second for-loop 
the algorithm just uses the SPaD algorithm to investigate if the pattern 
exists in another organism (human). 

The worst-case time complexity of the algorithm is O(rs+rlogd) with 
regard to the number r of patterns of length PL and occurrences s in all 
sequences in PPB and the size d of optional organism databases. It is 
important to mention that the factor rs is many magnitudes smaller than 
the original size, because of the number of patterns of length PL, as it will 
be presented in the experimental results section. Moreover, the check of 
pattern position is very simple since the ARPaD results can be stored 
sorted by sequences index and position. Therefore, there is no need for a 
run over the full positions list of the pattern rather than a quick binary 
search for possible positions in the PPB. The second factor in the 
complexity is the total cost for the SPaD algorithm which is a logarithmic 
binary search for each pattern in LP. 

4.5.2. Palindromes 
As mentioned in the previous section, CRISPR problem is related 

with the detection of repeated palindromes. Moreover, it is obvious that 
since ARPaD detects all repeated patterns, the only task that needs to be 
performed for palindrome detection is to filter ARPaD results only for 
palindromes. 

Algorithm 2 is simple in execution since it has a for-loop over every 
pattern found by ARPaD with length PL, and, therefore, it terminates. 
Inside the loop, the algorithm checks if the pattern is a palindrome. This 
is a trivial string problem and there are several solutions, such as using a 

stack, an array, etc. If the pattern is a palindrome then the algorithm 
verifies if it exists multiple times in the sequences of appearance and 
store the sequence in the results list. The list is returned when the for- 
loop completes. The second if-statement is optional in case we care 
only for palindromes that exist multiple times in every sequence. 

The algorithm is correct because in every run of the loop it checks if a 
pattern of length PL is palindrome or not. Then it checks if it exists 
multiple times in every sequence. The worst-case time complexity is 
O(r(p+s)) with regard to the number of patterns r and the palindrome 
check p plus the check of multiple occurrences s in every sequence. 

The algorithm can be used for both text palindromes, i.e., matches of 
A-A, C-C, G-G and T-T, and biological palindromes, i.e., A-T and C-G. 
This feature depends on how the check for palindrome is executed in the 
first if-statement. 

4.5.3. Tandem Repeats 
For the detection of Tandem Repeats, Algorithm 3 can be used. The 

algorithm runs over patterns of a specific length TL, usually very small, 
and checks if there are enough occurrences of at least TMO that have a 
periodicity of exactly the length of the tandem. In this way, longer 
patterns of tandems are constructed. If a pattern exists then it stored in 
the results list. 

The algorithm terminates because it runs over the patterns set of a 
specific length that can be found in the ARPaD results and then over the 
occurrences of the pattern. The algorithm is correct because the outer 
loop runs over all patterns of length TL while the inner loop on the sorted 
occurrences of the pattern. If then for a successive TMO number of oc
currences the periodicity of the pattern, i.e., occurrences, have period
icity exactly the length of the pattern then it is recorded as a tandem 
repeat. 

The worst-case complexity is equal to a linear search over the whole 
dataset. If there is only a TL pattern that repeats all over the sequence 
then there are in total n/TL checks for the positions. Therefore, the 
worst-case time complexity for the algorithm is O(ro) with regard to r 
the number of patterns and o the number of occurrences. 

4.6. Synopsis 

The Multiple Genome Analytics Framework is based on two distinct 
phases. In the first phase, the first step is the construction of the 
Multivariate LERP-RSA data structure from the raw data of the se
quences. The LERP-RSA data structure construction has a space and time 
complexity of O(nlogn) as it has been already discussed thoroughly. In 
the case of the Multivariate LERP-RSA, since we have m sequences of 
approximate length n, the total space complexity is O(mnlogn) since the 
total size of the dataset, if it is considered a single sequence, is m× n. 
However, the logarithmic part of the complexity is not equally m × n 
since the sequences are independent and according to Calude’s theorem 
(Calude, 1995) we do not expect such long repeated patterns. 

When LERP-RSA construction is completed then we execute the 
second step of the first phase which is the All Repeated Patterns 
Detection (ARPaD) algorithm. It is important to mention that both steps 
of the first phase are executed once during the lifecycle of the data an
alytics process. ARPaD has time complexity O(nlogn) with regard to the 
dataset size and the results can be stored for any kind of meta-analytics. 
Having the LERP-RSA data structure and ARPaD results stored then we 
can execute the second phase of the framework which is based on meta- 
algorithms such as SPaD, MPaD and MuGA family of PCR-PD, PD and 
TRD algorithms, to perform any kind of analysis such as sequence 
alignment, genomic comparisons, detecting primers for polymerase 
chain reaction process, identifying protein promoters, palindromes and 
tandem repeats, etc. (Fig. 1). 

In Fig. 2 the creation of the LERP-RSA data structure is represented. 
First the raw data is split to the m genomes and then each genome is the 
input to the LERP-RSA creation algorithm. For each genome, distinct 
classes are created and then the classes are combined to create the final 
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LERP-RSA data structure. The total number of classes for each variant is 
|Σ|CL where the base |Σ| is the cardinality of the alphabet, i.e., 4 for DNA/ 
RNA sequences or 20 for proteins. It is important to mention that 
depending on the available hardware resources several parallelization 
approaches can be used. For example, LERP-RSA can be created for each 
genome in semi-parallel or full parallel execution depending on the 
number of processors or nodes in a clustering framework. Additionally, 
each class during the LERP-RSA creation purpose can be also be paral
lelized according to the available resources. ARPaD execution can also 
be parallelized based on available resources and number of classes, 
based on the Classification Level (Fig. 3). 

It is also important to clarify how to deal with continuously 
expanding datasets. One, direct, approach is whenever a single or 
multiple new sequence(s) enter(s) the dataset to create the corre
sponding LERP-RSA and then merge the new, shorter, data structure 
with the previously created (Xylogiannopoulos et al., 2014; Xylo
giannopoulos, 2017). Then the ARPaD can be executed only on clusters 
that have been updated. Of course, in this case it is possible to have 
discovered new repeated patterns that did not exist before. 

Finally, the meta-analyses depend on several problem specific algo
rithms, such as Algorithms 1, 2 and 3, using LERP-RSA and ARPaD re
sults as input and with the combination of SPaD and MPaD algorithms 
(Fig. 4). The whole process can also be parallelized not only for each 
problem but also for all problems in order to be executed simulta
neously. The most important observation for the three meta-algorithms 

of Subsection 4.5 is that all of them use as input the ARPaD algorithm 
results. This is the reason for having exceptional time complexity since 
they use the advantage of the knowledge of all repeated patterns that 
have been detected in a previous phase by ARPaD. 

Another, very important, observation is the difficulty to directly 
compare the MuGA Framework absolute time (not theoretical big-O) to 
other approaches. Although the theoretical time complexity it is proven 
to be extremely good (log-linear), the actual time cannot be compared 
because of the two phases of the framework and the fact that it has been 
built to deal with problems in a holistic approach. This means that the 
framework and its algorithms find all patterns that exist instead of 
checking if a specific pattern exists or not. For example, Algorithm 2 will 
find all palindromes that exist and the same is valid for Algorithm 3 for 
tandem repeats. Also, the first phase has to be executed only once and 
the results are used by all meta-algorithms concurrently, providing a 
very high degree of parallelization not for one algorithm, but for all 
algorithms that we can execute on LERP-RSA and ARPaD results to solve 
simultaneously many problems. 

5. Experimental analyses and applications 

For the presentation of possible applications of the Multiple Genome 
Analytics Framework on different use cases, a free dataset consisted 
from all SARS-CoV-2 (taxid 2697049) complete genome variants has 
been used. The dataset was recorded on May 14th, 2021, and down
loaded from the National Library of Medicine at the National Center for 
Biotechnology Information (NCBI) (NCBI, 2022a) in its FASTA format. 
The dataset can be downloaded directly from the NCBI web portal by 
defining the appropriate parameters, i.e., (a) the virus, (b) the complete 
genome and (c) dataset time span. However, for consistency and ease of 
use purposes, the NCBI constructed file can be found and downloaded 
directly on (NCBI, 2021). 

The recorded dataset at the specific date consists of 302,373 variants 
with an average variant length of 29,852 bases. However, there is one 

Fig. 1. Multiple Genome Analytics Framework Workflow.  

Fig. 2. Parallel creation of LERP-RSA data structure for m Genome Sequences of variable length and Classification Level CL.  

Fig. 3. Parallel execution of ARPaD algorithm per LERP-RSA class.  
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variant, the MT873050.1/USA/MA-MGH-01491/2020, which has 
length just 2,859 bases and it has been removed from the dataset. The 
total size of the dataset is approximately 9 GB, three times the size of the 
total human genome. Although SARS-CoV-2 is a single stranded plus 
RNA virus, the DNA reverse transcribed sequences have been recorded 
in the dataset. For this reason, the standard nucleotides alphabet {A, C, 
G, T} has been used and the sequence strings have been cleaned from 
many non-standard characters such as N, R, W, etc. and replaced with a 
neutral symbol $ to help avoid meaningless or irrelevant patterns. 

For the analysis, a laptop computer with an Intel i7 CPU at 2.6 GHz 
has been used with 16 GB RAM and an external disk of 1 TB for a semi- 
parallel execution, consuming approximately 40 h. It is important 
though to state that the most time-consuming phase is the on-disk 
construction of the LERP-RSA, which took approximately 35 h while 
the rest was consumed by the ARPaD. The disadvantage of using an 
external disk affected the performance because of the comparably low I/ 
O transfer rate. For a broader semi-parallel execution, three computers 
and a tablet with approximately same configuration have been used in 
order to execute per computer one master class of the alphabet (A***, 
C***, G*** and T***) and took approximately 11 h. The use of the semi- 
parallel execution significantly improved the performance, yet, it could 
be further improved with the use of a standard workstation computer or 
the use of more appropriate desktop computers. Despite that, the 
experiment proves that the analysis is feasible with minimal resources in 
acceptable time. 

The Classification Level used is four, creating 256 classes because of 
the four characters alphabet (AAAA, AAAC, AAAG, …, TTTG, TTTT). For 
the specific dataset and available resources, it was not possible to use the 
standard value of Classification Level three, representing the 64 codon 
elements used for the translation process to proteins. The reason for 
selecting Classification Level four is to keep classes small in size and be 
able to analyzed by computers with 16 GB RAM (or less). In an earlier 
initial analysis of approximately 55,000 complete variants (preprint 
available on bioRxiv) Classification Level three had been used, proving 
the versatility of the MuGA Framework and how easy is to scale up to 
deal with significantly larger datasets. 

The results of this analysis are enormous and for practical reasons 
only few, interesting, use cases and meta-analyses will be presented 
here. The LERP value used is 60 (20 codons length). The total size of the 
LERP-RSA data structure on disk is 620 GB, which practically means that 
it cannot be processed as a single class dataset. The larger class, using the 
predefined classification, is the TGTT with size approximately 7.2 GB, 
which justifies the selection of Classification Level four, while the 
smallest is the CCGG with size approximately 210MB. Of course, the size 
of the data structure depends on the selection of the LERP value and can 
be significantly reduced based on the analyses needs and the balancing 
to avoid disk usage whatsoever. 

A summary of the ARPaD results can be found on Table 1. There are 
256 repeated patterns with length four, as many as the classes, yet, with 
length five there are 1,280 instead of the expected 1,024. This happens 

because of the patterns which include the characters replaced with the 
neutral symbol $ and practically alters the alphabet size to five char
acters for the part of the suffix string that is longer than the Classification 
Level. The cumulative number of patterns with length up to 60 char
acters is 88.3 million approximately and the number of the total cu
mulative occurrences of these patterns are approximately 511.5 billion 
(Table 1). 

Table 2 presents the most frequent 60 characters long patterns from 
the 64 classes of Classification Level three. The reason to present Clas
sification Level three patterns in the table instead of the used Classifi
cation Level four is practically to keep the table as much as possible 
short. The patterns in the table are sorted based on the average posi
tioning in all sequences (variants). The column next to mean positioning 
is the standard deviation of the pattern among all sequences, which 
takes values between 26 and 27 for all patterns. The next two columns 
are the minimum and maximum positions that the patterns have been 
detected in the sequences. The next column is the position that each 
pattern occurs in the reference sequence NC_045512.2. As we can 
observe, we can have some very interesting qualitative and quantitative 
information. For example, for the first pattern in Table 2 for class CGG, 
we have in total 301,269 occurrences where 151,214 occur exactly at 
the same position as in the reference sequence while 149,055 occur 
before and 1,000 after. This can help us conclude that up to the specific 
position most of the variants (149,055) have more deletions than in
sertions in the genome while the rest (1,000) have more insertions than 
deletions. It is also interesting that most patterns have many more 
mutated sequences before the average occurring position, on average 
220,000, and fewer after, on average 1,050, while on average 80,000 
patterns occur at the expected position. 

In the same Table 2, some patterns are marked with the same color. 
These patterns are practically overlapping, as we can observe from their 
mean position which increments by one or a few more characters. These 
patterns can be further expanded with the use of other 60 characters 
long patterns or shorter patterns to form common regions in the se
quences where most of the sequences are identical. Moreover, this in
formation can be used for sequence alignment purposes, although it is a 
more demanding task, which will be presented in future work. The 
patterns in Table 2 create 12 different blocks in the SARS-CoV-2 
sequence. These blocks practically separate the vast majority of the se
quences to common regions and more blocks can be used with shorter 
patterns, something that it is expected since the patterns are from the 
same organism and are expected to be somehow conservable. It needs to 
be mentioned that this is not valid for all sequences since some may not 
occur in specific sequences due to mutations. Still, shorter patterns can 
reveal these blocks. 

A very important observation regarding genome conservation of the 
SARS-CoV-2 organism is that the longest repeated patterns that exist 
among all variants at least once have length 10 bases and there are only 
nine (Table 3), while with length 9 they exist 61 patterns. In most cases 
these patterns occur in multiple positions in every variant. These can be 

Fig. 4. Execution of Meta-Analyses with Meta-Algorithms over the LERP-RSA and ARPaD results.  
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of extreme importance since a restriction enzyme could be used to cut 
the SARS-CoV-2 genome at the specific patterns, degrade it and, there
fore, restrict the proliferation of the virus. 

Another application of the proposed methodology is the comparison 
of genomes among different organisms. For example, in Table 4 we have 
all patterns from SARS-CoV-2 that exist at least once in every variant of 
the virus and has length equal to 10. These patterns are compared with 
other organisms’ genomes, using the SPaD, such as the Alpha Corona
virus (A-CoV) (taxid 693996, 1,126 total variants), Alpha Influenza 
virus (taxid 197911, 9,763 total variants), Human Orthopneumovirus 
(HRSV) (taxid 11250, 2,490 total variants), MERS Coronavirus (taxid 
1335626, 591 total variants) (NCBI, 2022a) and the human genome 
(GRCh38.p12) (GRCh38, 2022). In order to check if the patterns exist in 

other organisms, the SPaD and MPaD algorithms have been used, having 
as input the specific patterns. As we can observe at Table 4, Alpha 
Coronavirus has all patterns in common with SARS-CoV-2, except one. 
Four of them occur in very few variants of A-CoV while the rest in many 
more. Alpha Influenza although has six common patterns with 
SARS-CoV-2, they occur in very few variants of the virus. Human 
Orthopneumovirus has only two common patterns again with few oc
currences. Interesting is the case of the MERS coronavirus that has five 
common patterns with SARS-CoV-2, where two of them occur in almost 
all MERS-CoV variants and the other three only in one or two variants. 
What it looks impressive is that all patterns exist in the human genome 
too, with different number of occurrences varying from 467 up to 14, 
325. Nonetheless, this observation could be probabilistically expected 
because of the very short pattern length and the significantly large size 
of the human genome. Still, slightly longer common patterns cannot be 
found in both the virus and the human genome. 

Possible application of this information is the determination of 
primers for PCR analyses. Since the patterns exist in all SARS-CoV-2 
variants they can be used in pairs to amplify the largest part of the 
virus. However, if used with human DNA sample then PCR is not 
possible since human genome could also be amplified. This can be 
bypassed with the use of longer patterns, e.g., with length 60 as the 
pattern in Table 2, that do not exist in the human genome. Yet, since 
these patterns are not present in all SARS-CoV-2 variants, two couples 
must be used that cover all possible cases. This can help to use PCR not 
just on specific SARS-CoV-2 proteins but on much larger parts of the 
genome. For example, if we use Algorithm 1 with the Primer Length 
parameter equal to the shorter, but lengthy enough, 30 characters long 
patterns, then the GTGCTGGTAGTACATTTATTAGTGATGAAG and 
GCGTGTAGCAGGTGACTCAGGTTTTGCTGC patterns will be found in 
the results, occurring approximately at positions 934 and 27,039 
respectively, which are capable to amplify approximately 87% of the 
genome. 

Another category of interesting patterns are the palindromes. In total 
they have been detected 638 repeated palindromes with length from 12 
bases up to 30, including trivial palindromes, for example, continuous A 
or palindromes of type AA…AA$AA…AA, where $ can be any character. 
No test for palindromes of more than 30 or less than 12 letters has been 
executed because typically they form trivial and not important palin
dromes. In Table 5, a list of the most frequent, non-trivial, palindromes 
are presented. These indicative palindromes are very easy to be 
extracted from the ARPaD results using, for example, Algorithm 2 or 
query executors with regular expressions. Additionally, as it can be 
observed from Table 1, there are approximately 19 million patterns that 
need to be checked with length from 12 up to 30, which means that the 
required checks are 1,000 fold less than the total size of the dataset. This 
is valid also in the case of applying the method on a single sequence. Of 
course, there are some infrequent palindromes (Table 5) that are 
repeated just twice in the full dataset and such palindromes are in total 
262. It is important to mention that Algorithm 2 has been used to detect 
text palindromes in this dataset, as discussed in subsection 4.5.2, since 
biological palindromes usually do not exist in short viral genome. 

Finally, in Table 6 some examples of tandem repeats are presented, 
as they have been detected using Algorithm 3. As with palindromes, the 
tandem repeats have been identified as repeated patterns and it is very 
easy to be filtered from the ARPaD results. Tandem repeats of length 
from 9 characters up to 25 have been spotted with types of repeats, such 
as, 3 characters by 3 times, 3×4, 4×3, 3×5, 5×3, 4×4, 3×6, 6×3, 4×5, 
5×4 and 5×5. As we can observe in Table 6 from the examples, some 
tandem repeats are very frequent, practically they occur in most variants 
or multiple times per variant, while there are some others that are 
extremely rare. Although it is mentioned that it is possible to detect 
tandem repeats as repeated patterns, the obvious argument is: “what 
will happen if a tandem repeat is not repeated?” Such cases are also easy 
to be detected because if, for example, a tandem repeat of three char
acters by six (or more repetitions) exist, with total length 18 characters, 

Table 1 
ARPaD Results, Patterns and Occurrences Frequencies.  

L. Repeated 
Patterns 

Cumulative 
Patterns 

Patterns 
Occurrences 

Cumulative 
Occurrences 

4 256 256 8,979,514,845 8,979,514,845 
5 1,280 1,536 8,979,360,796 17,958,875,641 
6 6,377 7,913 8,979,206,429 26,938,082,070 
7 28,684 36,597 8,979,051,982 35,917,134,052 
8 96,118 132,715 8,978,887,799 44,896,021,851 
9 220,504 353,219 8,978,696,312 53,874,718,163 
10 356,768 709,987 8,978,478,185 62,853,196,348 
11 459,208 1,169,195 8,978,259,310 71,831,455,658 
12 531,863 1,701,058 8,978,053,216 80,809,508,874 
13 591,332 2,292,390 8,977,855,568 89,787,364,442 
14 645,872 2,938,262 8,977,660,436 98,765,024,878 
15 698,593 3,636,855 8,977,465,502 107,742,490,380 
16 750,697 4,387,552 8,977,270,080 116,719,760,460 
17 802,583 5,190,135 8,977,073,859 125,696,834,319 
18 854,310 6,044,445 8,976,877,424 134,673,711,743 
19 905,990 6,950,435 8,976,680,835 143,650,392,578 
20 957,561 7,907,996 8,976,483,481 152,626,876,059 
21 1,009,096 8,917,092 8,976,285,444 161,603,161,503 
22 1,060,566 9,977,658 8,976,086,825 170,579,248,328 
23 1,111,944 11,089,602 8,975,887,628 179,555,135,956 
24 1,163,269 12,252,871 8,975,687,751 188,530,823,707 
25 1,214,552 13,467,423 8,975,487,118 197,506,310,825 
26 1,265,853 14,733,276 8,975,285,952 206,481,596,777 
27 1,317,114 16,050,390 8,975,084,110 215,456,680,887 
28 1,368,448 17,418,838 8,974,881,778 224,431,562,665 
29 1,419,819 18,838,657 8,974,678,912 233,406,241,577 
30 1,471,158 20,309,815 8,974,475,528 242,380,717,105 
31 1,522,507 21,832,322 8,974,271,716 251,354,988,821 
32 1,573,831 23,406,153 8,974,067,684 260,329,056,505 
33 1,625,123 25,031,276 8,973,863,313 269,302,919,818 
34 1,676,419 26,707,695 8,973,658,918 278,276,578,736 
35 1,727,777 28,435,472 8,973,455,515 287,250,034,251 
36 1,779,075 30,214,547 8,973,253,405 296,223,287,656 
37 1,830,382 32,044,929 8,973,057,875 305,196,345,531 
38 1,881,706 33,926,635 8,972,869,112 314,169,214,643 
39 1,933,040 35,859,675 8,972,683,803 323,141,898,446 
40 1,984,331 37,844,006 8,972,499,669 332,114,398,115 
41 2,035,636 39,879,642 8,972,316,851 341,086,714,966 
42 2,086,954 41,966,596 8,972,132,927 350,058,847,893 
43 2,138,316 44,104,912 8,971,948,793 359,030,796,686 
44 2,189,692 46,294,604 8,971,764,688 368,002,561,374 
45 2,241,072 48,535,676 8,971,579,751 376,974,141,125 
46 2,292,419 50,828,095 8,971,389,770 385,945,530,895 
47 2,343,742 53,171,837 8,971,193,112 394,916,724,007 
48 2,395,058 55,566,895 8,970,993,383 403,887,717,390 
49 2,446,380 58,013,275 8,970,790,590 412,858,507,980 
50 2,497,755 60,511,030 8,970,585,542 421,829,093,522 
51 2,549,149 63,060,179 8,970,377,537 430,799,471,059 
52 2,600,553 65,660,732 8,970,167,730 439,769,638,789 
53 2,651,922 68,312,654 8,969,956,928 448,739,595,717 
54 2,703,351 71,016,005 8,969,744,785 457,709,340,502 
55 2,754,827 73,770,832 8,969,531,917 466,678,872,419 
56 2,806,319 76,577,151 8,969,318,628 475,648,191,047 
57 2,857,829 79,434,980 8,969,104,750 484,617,295,797 
58 2,909,359 82,344,339 8,968,890,580 493,586,186,377 
59 2,960,959 85,305,298 8,968,676,244 502,554,862,621 
60 3,012,586 88,317,884 8,968,461,663 511,523,324,284  
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then its sub-patterns of three by three (or more repetitions) of nine 
characters have been detected as repeated patterns and since one occurs 
exactly after the end of the other one then they form a longer pattern 
and, therefore, tandem repeat. 

Concluding, it is important to mention that the real execution time 
(not computational) for the meta-analytics algorithms of the MuGA 
Framework can be measured in seconds or few minutes, depending on 
the problem. This occurs because these algorithms have to access 
already discovered knowledge from the ARPaD algorithm and with the 
use of the LERP-RSA data structure, when needed. This feature of the 
algorithms gives them competitive advantage to other standalone ap
proaches that need to access raw data. Moreover, these algorithms re
turn every possible result that may exist for each type of problem. For 
example, in the case of palindromes the MuGA-PD returns every possible 

pattern with palindrome format and does not simply check if a specific 
palindrome exists since this is a simple task for the SPaD algorithm, in 
logarithmic complexity. 

6. Conclusions 

The current paper presents the Multiple Genome Analytics Frame
work, which is a combination of data structures and algorithms specif
ically created for advanced text mining and pattern detection in discrete 
sequences that are adapted for biological sequences. More particularly, 
the purpose of the paper is to present a framework that can be used as 
the foundation of concurrently solving many different string problems in 
bioinformatics using previously detected repeated patterns. The MuGA 
Framework is a modular system, executed in different phases, that 

Table 2 
Positional Descriptive Statistics for Most Frequent Patterns Per Classification Level Three Class, Length 60 and Colors for Overlapping Patterns.  

(continued on next page) 
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allows the optimum utilization of available resources. 
As a proof of MuGA Framework adaptability, scalability and effi

ciency, the analysis of more than 300,000 variants of the complete 
SARS-CoV-2 genome has been used. Using ordinary computers, it has 
been presented that it is possible to perform advanced pattern detection 
and produce results that can be fed as input to meta-algorithms or used 
indirectly from other methodologies to perform even more detailed or 
diverse meta-analyses. Although viral DNA usually does not include 
important information for patterns such as palindromes and tandem 
repeats (mostly found in bacterial and eukaryotic DNA), the specific 
dataset has been used as a proof of concept for the MuGA Framework 

with regard to the ability to analyze complex, multivariate, big datasets 
and solve concurrently a variety of problems. The specific dataset can be 
considered to be a simulation of more complex datasets, such as genes 
from multiple humans or other organisms, which is not though possible 

Table 2 (continued ) 

Table 3 
Longest Patterns Existing in Every Variant of SARS-CoV-2.  

Longest Patterns with Appearance at least once in Every 
SARS-CoV-2 Variant 

Total Pattern 
Occurrences 

ATGCTGTTGT 905,838 
ATGGTAATGC 906,103 
GAAGAAGCTA 602,515 
TAAACGAACT 1,061,910 
TATGGTGCTA 603,948 
TCAACTCAGG 901,394 
TGGACAACAG 1,202,518 
TGGTGTTTAT 1,207,566 
TTTTATGTCT 604,441  

Table 4 
Comparison of Longest Patterns among different Organisms.  

Longest Patterns with 
Appearance at least 
once in Every SARS- 
CoV-2 Variant 

Organism Genome 

A- 
CoV| 
1126| 

Alpha 
Influenza| 
9763| 

HRSV| 
2490| 

MERS- 
CoV| 
591| 

GRCh38. 
p12|1| 

ATGCTGTTGT  169  4  16  0 5,080 
ATGGTAATGC  774  6  0  584 5,640 
GAAGAAGCTA  52  52  160  2 3,813 
TAAACGAACT  6  0  0  0 467 
TATGGTGCTA  760  0  0  0 1,932 
TCAACTCAGG  0  0  0  1 3,184 
TGGACAACAG  5  13  0  0 7,302 
TGGTGTTTAT  383  3  0  588 5,654 
TTTTATGTCT  22  34  0  2 14,325  

Table 5 
Indicative Most and Least Frequent Palindromes of SARS-CoV-2.  

Length Occurrences Pattern 

12 302,210 GTGTTAATTGTG 

13 302,089 CAAACTGTCAAAC 

12 302,071 AGATTGGTTAGA 

13 301,930 TTTTGGTGGTTTT 

15 301,917 ATTTTGGTGGTTTTA 

12 301,897 TCAATGGTAACT 

12 301,886 AATATCCTATAA 

12 301,770 ATAAACCAAATA 

13 301,662 AATTTGTGTTTAA 

15 301,655 GAATTTGTGTTTAAG 

13 301,615 TTGAAGAGAAGTT 

12 301,564 AAAACAACAAAA 

12 301,552 AGTGTAATGTGA 

12 301,547 TTCAGTTGACTT 

12 301,447 ATGACTTCAGTA 

14 301,438 AATGACTTCAGTAA 

13 301,291 AAAGACACAGAAA 

12 301,248 CAAGAAAAGAAC 

13 300,778 AAATCACACTAAA 

16 300,716 CAATGACTTCAGTAAC 

13 300,702 AGACGACAGCAGA 

18 300,694 TCAATGACTTCAGTAACT 

20 300,147 CTCAATGACTTCAGTAACTC 

12 299,248 GACTCAACTCAG 

13 298,917 TTCTAACAATCTT 

13 298,603 TAACTTCTTCAAT 

13 294,659 TCAGACTCAGACT 

15 294,586 ATCAGACTCAGACTA 

12 2 TGGACAACAGGT 

13 2 ATACCAGACCATA 

13 2 GTAGTGGGTGATG 

13 2 TTGAAGCGAAGTT 

14 2 AGCAAGTTGAACGA 

15 2 CTTGAAGAGAAGTTC 

16 2 AAGCAAGTTGAACGAA 

17 2 TATCAGACTCAGACTAT 

18 2 AAAGCAAGTTGAACGAAA 

19 2 AATATCATCCCTACTATAA  
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to be easily acquired and accessed for research purposes. Very impor
tantly, this dataset is the only one that is publicly available to everyone 
and meets the problem definition boundaries with regard to size, 
genomic sequence length and complexity. 

he proposed framework introduces a divide and conquer approach 
with the use of the special LERP-RSA data structure and ARPaD algo
rithm. Although the construction of the LERP-RSA, on disk, could be 
relatively slow for commodities computers, yet, the advantage is the fact 
that it can be constructed off-line and stored on disk to be used for future 
purposes. Nevertheless, with the use of larger Classification Level with 
more classes of smaller sizes, the use of disk can be totally omitted and 
the full process can be executed directly in memory and possibly in 
parallel, depending on available resources. Additionally, it has been 
presented that all repeated patterns can be detected, with the use of the 
LERP-RSA data structure and the single execution of the ARPaD algo
rithm, forming a database of results that the MuGA family algorithms, 
with the help of the SPaD and the MPaD algorithms, can filter and 
explore to perform several meta-analyses. Both LERP-RSA data structure 
and ARPaD algorithm are very efficient and can produce the results in a 
few hours using commodity hardware while the meta-algorithms can 
perform various analyses in a few seconds or minutes because of the 
advantage of the repeated patterns knowledge. 

It has been proven that the framework introduced here can address 
the requirements of the problem as defined in Section 3. First of all, it 
can be executed on commodity computers with limited resources and, 
therefore, keep the cost low. Moreover, it can scale up to deal with larger 
datasets, either by simply changing initial parameters such as the LERP 
value and Classification Level or with insignificant cost in hardware. 
Finally, and more importantly, it can address several different problems 
concurrently by utilizing and optimizing the available hardware. 

The scope of the current work is to present the modularity, flexibility, 
scalability and efficiency of the Multiple Genome Analytics Framework 
in order to solve string problems and identify hidden patterns, for bio
informatics and computational biology purposes, in big datasets, with 
minimum resources and in a cost-effective way. In future work a more 
detailed and thorough description of usage on additional problems will 
be presented with more custom-made methodologies and algorithmic 
variations. Additionally, a software application for the scientific com
munity it is intended to be created that will incorporate a variety of 
functionalities and it could help researchers to address many bioinfor
matics and computational biology problems. 
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