

Since January 2020 Elsevier has created a COVID-19 resource centre with

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the

company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related

research that is available on the COVID-19 resource centre - including this

research content - immediately available in PubMed Central and other

publicly funded repositories, such as the WHO COVID database with rights

for unrestricted research re-use and analyses in any form or by any means

with acknowledgement of the original source. These permissions are

granted for free by Elsevier for as long as the COVID-19 resource centre

remains active.

Journal of Biotechnology 359 (2022) 130–141

Available online 3 October 2022
0168-1656/© 2022 Elsevier B.V. All rights reserved.

Multiple genome analytics framework: The case of all SARS-CoV-2
complete variants

Konstantinos F. Xylogiannopoulos 1

Department of Computer Science, University of Calgary, Calgary, AB, Canada

A R T I C L E I N F O

Keywords:
Multiple genome analytics framework
LERP-RSA
ARPaD
MuGA
SPaD
MPaD
SARS-CoV-2
COVID-19

A B S T R A C T

Pattern detection and string matching are fundamental problems in computer science and the accelerated
expansion of bioinformatics and computational biology have made them a core topic for both disciplines. The
requirement for computational tools for genomic analyses, such as sequence alignment, is very important,
although, in most cases the resources and computational power required are enormous. The presented Multiple
Genome Analytics Framework combines data structures and algorithms, specifically built for text mining and
(repeated) pattern detection, that can help to efficiently address several computational biology and bioinfor
matics problems, concurrently, with minimal resources. A single execution of advanced algorithms, with space
and time complexity O(nlogn), is enough to acquire knowledge on all repeated patterns that exist in multiple
genome sequences and this information can be used as input by meta-algorithms for further meta-analyses. For
the proof of concept and technology of the proposed Framework scalability, agility and efficiency, a publicly
available dataset of more than 300,000 SARS-CoV-2 genome sequences from the National Center for Biotech
nology Information has been used for the detection of all repeated patterns. These results have been used by
newly introduced algorithms to provide answers to questions such as common patterns among all variants,
sequence alignment, palindromes and tandem repeats detection, different organism genome comparisons, po
lymerase chain reaction primers detection, etc.

1. Introduction

The COVID-19 pandemic has highlighted governmental, scientific,
economic and political focus on the biotechnology industry and its ef
forts to address the virus consequences as soon as possible. Major
pharmaceutical and biotechnology companies worldwide have invested
huge amounts in new technologies for the past couple of decades and the
first promising results, from technologies such as the mRNA vaccines,
have become visible. Indeed, the fast expansion of the biotechnology
industry with the help of advanced computing infrastructures, such as
cloud computing, has opened a new era in the domain.

Some of the most common problems addressed in computer science
over time are related to pattern matching and searching. In bioinfor
matics, there has been a plethora of completely diverse methodologies
and algorithms since early 1970, which were developed to deal with the
simplest problems, such as to determine if a specific string exists in a
biological sequence, to more complex problems such as the multiple
sequence alignment. Furthermore, the development of artificial intelli
gence and deep learning provides more sophisticated tools for image

analysis or clinical data analytics.
The analyses of biological sequences such as DNA, RNA, proteins,

etc., are considered standard string problems in computer science since
such sequences are built from predefined discrete alphabets (the nu
cleotides or the amino-acids encoding). What make these string prob
lems challenging in bioinformatics and computational biology, from a
computer science perspective, is the size of the strings and the compu
tationally intensive procedures to solve them. Moreover, in most cases
solutions cannot be provided in short time with regular computational
resources. For example, the complete, combined, human genome, a
3.1Gbp long string, was initially sequenced in 2001 (International
Human Genome Consortium, 2001) and it was practically impossible to
be analyzed by desktop computers as a single piece of information since
only supercomputers could store and process data structures of such
long strings in memory. For example, the construction of a suffix tree
data structure for the first human chromosome with an approximate size
of 250Mbp, requires 26 GB of memory (Chen, 2018). Despite the
introduction of 64-bit processor architecture at that time, 64-bit oper
ating systems that could handle more than 4 GB RAM were introduced a

E-mail address: kostasfx@yahoo.gr.
1 ORCID ID: https://orcid.org/0000-0003-2376-898X

Contents lists available at ScienceDirect

Journal of Biotechnology

journal homepage: www.elsevier.com/locate/jbiotec

https://doi.org/10.1016/j.jbiotec.2022.09.015
Received 23 February 2022; Received in revised form 26 June 2022; Accepted 26 September 2022

mailto:kostasfx@yahoo.gr
https://orcid.org/0000-0003-2376-898X
www.sciencedirect.com/science/journal/01681656
https://www.elsevier.com/locate/jbiotec
https://doi.org/10.1016/j.jbiotec.2022.09.015
https://doi.org/10.1016/j.jbiotec.2022.09.015
https://doi.org/10.1016/j.jbiotec.2022.09.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbiotec.2022.09.015&domain=pdf

Journal of Biotechnology 359 (2022) 130–141

131

few years later. Nowadays, advanced hardware and clustering frame
work systems are used for such big data analyses. New technologies such
as Next Generation Sequencing (NGS) from leading companies require
advanced computational tools and algorithms, specifically designed for
string matching problems in order to perform sequence alignment in
multiple (usually millions) genomic fragments simultaneously.

The currently presented Multiple Genome Analytics (MuGA)
Framework will demonstrate that it is possible, with limited resources
and in short time, to analyze hundreds of thousands of complete ge
nomes (or other kind of sequences) and detect all repeated patterns that
exist in them. Additionally, it will be presented how the combination of
an advanced data structure and the results of such analysis can help
other algorithms to solve many, diverse, pattern detection problems.
Finally, these newly introduced algorithms, for specific types of pattern
detection problems, will be tested on a large dataset comprised from all
SARS-CoV-2 full genome variants, which is the only one of this size
publicly available.

In order to achieve such results, the Multiple Genome Analytics
Framework initially uses the Multivariate Longest Expected Repeated
Pattern Reduced Suffix Array (LERP-RSA) data structure in combination
with the All Repeated Patterns Detection (ARPaD) algorithm (Xylo
giannopoulos et al., 2014, 2016; Xylogiannopoulos, 2017). In brief, the
LERP-RSA is a special variation of the standard Suffix Array (Manber
and Myers, 1990) data structure using the actual, lexicographically
sorted, suffix strings. The ARPaD algorithm, both in its recursive and
non-recursive variant, has the ability to scan the LERP-RSA only once
and detect every pattern that occurs at least twice in it. Additionally, the
algorithm is pattern agnostic, i.e., it does not require an input parameter,
rather it scans the data structure once and returns all results in a
deterministic way regardless of string or pattern attributes, e.g., fre
quency, length, alphabet, overlapping or not, etc.

So far, LERP-RSA and ARPaD have been extensively used in many,
diversified, domains with vast datasets in most cases and exceptional
problem solving results, regardless hardware limitations, making them a
state-of-the-art approach for big data problems in text mining and
pattern detection (Xylogiannopoulos, 2017). An example of such a
problem is the analysis in 2016 of a single, continuous, string of one
trillion characters, constructed from the first decimal digits of π, which is
4,000 times larger than the largest human chromosome (Xylogianno
poulos, 2017). Such an analysis is unique in literature and the results
were validated three years later by the Google pi-api using the Google
Cloud Platform (Iwao, 2019).

The contribution of the current work is to introduce an innovative
framework that can be used to address as many string problems as
possible, simultaneously and with limited resources. As a proof of
concept, which also falls into the category of big data analytics, firstly
the analysis of 302,373 SARS-CoV-2 genome variants has been executed
to discover all repeated patterns. These variants refer to any possible
genomic mutation that exists in the virus database, such as silent sub
stitution, frameshift, nonsense, etc., not only pathogenic variants
(Alpha, Delta, Omicron, etc.) and they have been used to simulate
equally complex datasets that are though difficult to be acquired, e.g.,
gene(s) from a human population. Subsequently, these results have been
used by meta-algorithms for additional meta-analytics, such as:

a) discovery of the longest patterns, which exist among every variant of
SARS-CoV-2,

b) comparisons among different organisms such as MERS, A-CoV, A-
Influenza, HRSV and Human,

c) identification of every frequent and infrequent pattern,
d) detection of restriction enzyme-associated loci,
e) descriptive statistics for mutations and sequence alignment,
f) the detection of special patterns such as:

i) palindromes,
ii) tandem repeats,

iii) polymerase chain reaction (PCR) primers.

The proposed MuGA Framework introduces several innovations such
as:

1) the ability to execute workloads for data mining, pattern detection,
etc. on previously detected repeated patterns (not on raw data),
which, acording to literature review, it is unique as a concept and
allows extreme utilization of resources with the consumption of
already discovered knowledge,

2) support of full parallelization for each algorithm querying the
available data but also for different agents using different algorithms,

3) the ability to create a unique data structure that includes every
repeated pattern and can be stored locally or remotely and be
accessed off-line, at will, with the use of commodity computers,

4) the versatility as a platform for additional algorithms.

These innovations of the introduced MuGA framework significantly
differentiate it from standalone algorithms and processes and gives it a
competitive advantage in the field of big data analytics for bioinfor
matics and computational biology purposes. Despite any possible limi
tations of the proposed framework, the benefit of using it on many,
diverse, problems concurrently can overcome any initial hesitation, as it
will be presented in the next sections. A classic analogy to the above
described novelty of the Framework is the binary search algorithm,
which although outperforms any searching algorithm, it needs first to
have the dataset sorted and, therefore, its novelty and complexity cannot
be directly compared to other searching algorithms.

The rest of the paper is organized as follows: Section 2 presents
related work in string matching. Section 3 defines the problem and gives
the motivation behind it. Section 4 presents the data structures and al
gorithms for pattern detection in biological sequences which form the
proposed framework and solve specific problems. Section 5 presents
several applications conducted on the available dataset of all, complete,
SARS-CoV-2 variants and discusses the results per problem application.
Finally, Section 6 presents the conclusions and future extensions of the
presented work.

2. Related work

In bioinformatics the use of computers to perform analyses of bio
logical sequence, more particular address string matching problems,
always had a crucial role. Many new algorithms and methodologies are
presented every year that improve older approaches or introduce new
(Hakak et al., 2017; Faro, 2016; Chen, 2018). Mainly, these methods and
algorithms can be classified into two broad categories, the exact
matching and the approximate matching (Hakak et al., 2017; Chen,
2018). The first category is related to string problems where we seek to
find patterns matching entirely the input string such as, for example,
specific sequence matching a protein transcription promoter. The sec
ond category can be much more complicated since many mutations,
insertions, deletions and base changes may have occur making exact
matching difficult, yet, very important, for example, to detect codon
sequences which can produce the same protein. However, no algorithm
is widely known that can perform a generic, single step, detection of all
repeated patterns.

More precisely, exact matching algorithms have dominated the field
since early ‘70s. Many different approaches have been developed such as
character or index based. This kind of methodologies include brute force
algorithms where characters of the matching pattern are directly
compared to the reference sequence. This leads to heavy computational
algorithms, mainly because of the absence of any preprocessing and
special data structures. The standards for such algorithms are the Boyer-
Moore algorithm, usually used as a benchmark for efficiency measure
ment, that uses a shifting step based on a table holding information
about mismatch occurrences and the Knuth-Morris-Pratt algorithm that
uses a supplementary table to record temporal information during
execution (Hakak et al., 2017; Faro, 2016; Chen, 2018; Boyer and

K.F. Xylogiannopoulos

Journal of Biotechnology 359 (2022) 130–141

132

Moore, 1977; Knuth et al., 1977). Another algorithm, variation of the
first one mentioned, is the Boyer-Moore-Smith (Smith, 1991) while
another extension is the Apostolico-Giancarlo algorithm based on both
of the BM and KMP algorithms (Apostolico and Giancarlo, 1986).
Additionally, we have the Raita algorithm based on dependencies that
occur among successive characters (Raita, 1992). More recent algo
rithms are the BBQ algorithm which introduces parallel pointers that
perform searching from opposite directions (Ahmad, 2014) and several
hybrid methods such as the KMPBS (Xian-Feng et al., 2010) and Cao
et al. (2015) using statistical inference.

Except the brute force algorithms we have another important cate
gory, the hashed based (Hakak et al., 2017; Faro, 2016; Chen, 2018).
Such algorithms are based on the hashing concept in order to produce
hashing values and compare patterns rather than performing a direct
character comparison. The main benefit from such approach is the
considerable improvement of calculation time (Abdul Razzaq et al.,
2013), yet, as with most hashing algorithms, they suffer from the
hashing collision problem. Typical examples of such algorithms is the
Karp-Rabin which is based on modular arithmetic to perform hashing
(Karp and Rabin, 1987) and the Lecroq algorithm, which first splits the
sequence to subsequences and then the pattern matching is performed
on each sequence (Lecroq, 2007). Classic algorithms are also the non
q-gram algorithms such as the Wu and Manber (Wu and Manber, 1994)
where the searching pattern is completely encoded for pattern matching
purposes. Furthermore, more recently developed algorithms are the
multi-window integer comparison algorithm based on suffix strings data
structures such as the Franek-Jennings-Smyth string matching algorithm
(Franek et al., 2007) and the automata skipping algorithm developed by
Masaki et al. (2017). More advanced hybrid approaches have also been
presented that combine best practices from different approaches in order
to optimize their performance such as, for example, Navarro’s algorithm
(Navarro, 2001) which can bypass characters using suffix.

A very well-known and heavily used algorithm is implemented and
used by the National Center for Biotechnology Information (NCBI). The
Basic Local Alignment Search Tool (BLAST) and its variants (BLAST,
2022a) is used for comparing basic sequences, such as nucleotides se
quences, found in DNA and/or RNA. The algorithm takes as inputs the
desired string to search and the sequence to search into. Additionally,
BLAST can execute inexact string matching, something usually
extremely computationally intensive, for multiple sequence alignment
purposes. Another algorithm, more accurate than BLAST, yet, more re
sources hungry and slower, is the Smith-Waterman algorithm (Smith
and Waterman, 1981). Several variations of BLAST also exist, such as the
SmartBLAST that it can be used for protein matching and Primer-BLAST
that it can be used for primers specific to PCR templates (NCBI, 2022b).

An important aspect of pattern detection is the discovery of specific
type of patterns in biological sequences such as palindromes and tandem
repeats. The importance of such discoveries can be presented with one of
the latest marbles in biology, the discovery of the clustered regularly
interspaced short palindromic repeats (CRISPR) in bacteria and the use
of CRISPR-Cas9 protein that allows to interfere with DNA in a molecular
level (Jinek et al., 2012). However, in the case of CRISPR problem it is
necessary to identify only palindromes that their length is in between a
specific range and they repeat with a relative periodicity. The detection
of single occurred, very short or very long palindromes is not important.

Another well studied problem is the detection of short tandem re
peats, something very difficult over a whole genome. This kind of re
peats are classic examples of repeats in protein encoding regions and are
closely related to serious diseases, such as the Huntington’s disease
(Mitsuhashi et al., 2019). An example of methods for tandems detection
can be found in Mitsuhashi et al. (2019) which is based on DNA align
ment using LAST software.

3. Problem definition

So far, we have presented several algorithms that are used in

bioinformatics and computational biology. Yet, all these algorithms
have as a common attribute the input pattern that is under investigation.
Such type of algorithms can address specific problems and require each
time to access the full dataset of one or more sequences to operate and
produce results, which could be inefficient.

To address bioinformatics and computational biology problems, it
would be more preferable to have a data structure or a database of in
formation that can be used for as many queries as possible and be
transformed to valuable knowledge. Moreover, the full process should
be able to:

a) be contacted on commodity computers with limited resources
b) keep the cost low
c) allow scale up to deal with larger datasets without the need for new

hardware resources
d) address several different computational biology and bioinformatics

problems concurrently

4. Proposed framework

The framework that will be introduced in the next sections, is built
on the foundation of the Longest Expected Repeated Pattern Reduced
Suffix Array (LERP-RSA) data structure and the related family of algo
rithms such as ARPaD, SPaD and MPaD that are specifically designed for
the LERP-RSA (Xylogiannopoulos, 2017). Several applications of the
aforementioned data structure and algorithms will be presented, as a
pipeline of execution, that can either extract useful information directly
from the dataset or the results generated, or can be used as an input for
other algorithms for several type of meta-analytics in biological
sequences.

4.1. LERP-RSA data structure

The Longest Expected Repeated Pattern Reduced Suffix Array (LERP-
RSA) is a special purpose data structure for pattern detection, which has
been developed and optimized to work with a variety of algorithms.
Manber and Myers (1990) defined the suffix array of a string as the array
of the indexes of the lexicographically sorted suffix strings, which allows
to perform several tasks on the string, such as pattern matching. The
LERP-RSA is a variation of the suffix array, yet, it uses the actual suffix
strings and not only the position indexes. The quadratic space
complexity of the data structure, with regard to the input string, can be
reduced to log-linear with the use of the LERP reduction, derived from
the Probabilistic Existence of Longest Expected Repeated Pattern The
orem and its Lemma (Xylogiannopoulos et al., 2016; Xylogiannopoulos,
2017):

Lemma: Let S be a random string of size n, constructed from a finite
alphabet Σ of size m ≥ 2, and an upper bound of the probability P(X) is
P(X), where X the event “LERP is the longest pattern that occurs at least
twice in S.” An upper bound for the length l of the Longest Expected
Repeated Pattern (LERP) length we can have with probability P(X) is:

l = LERP =

⌈

logm
n2

2P(X)

⌉

where l≪n and P(X) > 0.
Yet, the Theorem and the Lemma have as a prerequisite that the

string is random. In brief, random means that all characters of the al
phabet occur with the same frequency and this property should be valid
for reasonably long substrings, following the normality of irrational
numbers property as presented by Calude’s Theorem (Calude, 1995).
Randomness could limit the application on biological sequences but this
problem has been addressed easily with the Moving LERP (Xylo
giannopoulos et al., 2014, Xylogiannopoulos, 2017).

The LERP-RSA data structure has some unique features that allows to
be characterized as a state-of-the-art data structure, such as (a) classi

K.F. Xylogiannopoulos

Journal of Biotechnology 359 (2022) 130–141

133

fication based on the alphabet, (b) network and cloud distribution based
on the classes, (c) full and semi parallelism, (d) self-compression, (e)
indeterminacy and (f) multivariable and multidimensional data
description. All these features will be proved very important for the
MuGA Framework in the next sections. Especially the construction of
Multivariate LERP-RSA data structure with the synthesis of every bio
logical sequence under examination is fundamental for all algorithms
that will be presented. The data structure has both time and space
complexity of O(nlogn).

4.2. ARPaD algorithm

After constructing the Multivariate LERP-RSA data structure we
execute the All Repeated Patterns Detection (ARPaD) algorithm. The
algorithm has two versions, the recursive left-to-right and the non-
recursive top-to-bottom (Xylogiannopoulos, 2017). Both versions have
the same time complexity O(nlogn). The algorithm can be executed on
each LERP-RSA class independently and, therefore, it can be executed in
parallel. The only constrains for such execution is the available hard
ware, processors or cores and memory. Additionally, ARPaD can be
executed independently on each class, assuming enough resources, or
even use different Classification Level per alphabet letter. This can be
achieved also for datasets that significantly exceed the available local
resources by using the network and/or cloud distribution.

4.3. SPaD algorithm

Another important algorithm of the ARPaD family is the Single
Pattern Detection (SPaD) algorithm (Xylogiannopoulos, 2017). The
SPaD algorithm is mainly used for meta-analyses purposes, when we
want to discover specific information in the ARPaD results or LERP-RSA,
and its correctness has been proven in (Xylogiannopoulos, 2017).
Moreover, especially with the LERP-RSA it can be extremely efficient
with constant time complexity O(1) with regard to the input string
(Xylogiannopoulos, 2017). Although ARPaD can be executed once to
detect all repeated patterns that can be stored for later meta-analyses
purposes, SPaD has to be used every time we need to, e.g., check the
existence of non-repeated patterns. For this purpose, we execute the
SPaD directly on the LERP-RSA data structure since single occurred
patterns can exist only in the LERP-RSA, if they do exist. There are two
distinct cases of SPaD execution with regard to the length of the pattern
we need to find; if a pattern is equal or shorter than LERP or if a pattern
is longer than LERP. The SPaD algorithm, except of its straight forward
application, can also be used with wildcards or regular expressions for
the detection of more complex patterns.

4.4. MPaD algorithm

The Multiple Pattern Detection (MPaD) (Xylogiannopoulos, 2017)
algorithm is a direct extension of the SPaD. For multiple pattern
detection, instead of executing SPaD algorithm in a loop, the process is
optimized with the use of the MPaD. Practically, the first step of the
SPaD is extended by breaking down all patterns into fragments and
adding common fragments into batches. This can help the algorithm
execution because patterns can have shared fragments that they will be
searched only once and if not existed a complete batch of patterns can be
rejected simultaneously, instead of repeating the process. As with SPaD,
MPaD can also be used with wildcards and regular expressions for more
advanced pattern detection.

4.5. Meta-analytics

As mentioned earlier, the construction of the LERP-RSA data

structure and the detection of all repeated patterns is the first, very
important and unique step of the proposed MuGA Framework. After the
completion of the initial data knowledge discovery, several metadata
analyses can be performed with the use of many problem specific al
gorithms. These analyses depend on several factors and the problems
that we want to address such as sequence alignment, genome compar
ison, palindromes and tandem repeats detection, etc. The importance of
the full analysis and repeated patterns detection is that it needs to be
executed only once and our further, detailed, meta-analyses in the re
sults are standalone processes. Moreover, the results can be stored on
external storage media, locally or remotely on the cloud, and accessed
whenever is needed, by class, without the need to repeat the analysis or
access the full dataset.

In this section, three different and novel algorithms, which use as
input the results of ARPaD and can be used to solve completely different
problems, will be introduced. These algorithms serve as a proof of
concept of the MuGA Framework and its ability to incorporate addi
tional algorithms for the solution of many other problems.

4.5.1. PCR primers detection
Since the scope of the algorithm presented here is to identify possible

primers for PCR, it is important to search for patterns that exist in
approximately the same position with a small deviation. Additionally,
following the 5-prime to 3-prime PCR execution we should find patterns
from both start and end of the sequence. Therefore, we use two bands
that define two regions at the beginning and end of sequence, still, it can
be anywhere in the full DNA sequence depending on which part of the
DNA we want to amplify.

First of all, the algorithm terminates because the first for-loop runs
over the finite patterns discovered by ARPaD with a predefined length
and the second over a finite filtered results list of the patterns that have
specific attributes and discovered in the first loop.

The first part of the algorithm runs over the patterns of specific
length. Then it checks for every pattern if the pattern exists in all se
quences of the dataset and if it exists in the same position band for all
sequences. If this is true then it stores the pattern to the results. When all
patterns have been scanned then the second loop scans any available
database with the use of SPaD to check if the pattern occurs in another
organism. If the pattern exists then it is removed from the results. When
all patterns have been scanned then the algorithm returns the list of
results. It is important to mention that the second loop is optional since it
depends on the available databases of other organisms and, additionally,
since for large patterns the probability to exist in another organism and
more particularly in human, is significantly small.

K.F. Xylogiannopoulos

Journal of Biotechnology 359 (2022) 130–141

134

The algorithm is correct because in the first for-loop it checks if a
pattern exists in all sequences and at the same band, regardless of exact
position in the band. The reason that position bands are used and not
exact positions is that because of insertion or deletion mutations the
pattern can be found before or after the original position on the refer
ence sequence. Thus, it is important to find the pattern approximate
position with regard to the reference sequence. In the second for-loop
the algorithm just uses the SPaD algorithm to investigate if the pattern
exists in another organism (human).

The worst-case time complexity of the algorithm is O(rs+rlogd) with
regard to the number r of patterns of length PL and occurrences s in all
sequences in PPB and the size d of optional organism databases. It is
important to mention that the factor rs is many magnitudes smaller than
the original size, because of the number of patterns of length PL, as it will
be presented in the experimental results section. Moreover, the check of
pattern position is very simple since the ARPaD results can be stored
sorted by sequences index and position. Therefore, there is no need for a
run over the full positions list of the pattern rather than a quick binary
search for possible positions in the PPB. The second factor in the
complexity is the total cost for the SPaD algorithm which is a logarithmic
binary search for each pattern in LP.

4.5.2. Palindromes
As mentioned in the previous section, CRISPR problem is related

with the detection of repeated palindromes. Moreover, it is obvious that
since ARPaD detects all repeated patterns, the only task that needs to be
performed for palindrome detection is to filter ARPaD results only for
palindromes.

Algorithm 2 is simple in execution since it has a for-loop over every
pattern found by ARPaD with length PL, and, therefore, it terminates.
Inside the loop, the algorithm checks if the pattern is a palindrome. This
is a trivial string problem and there are several solutions, such as using a

stack, an array, etc. If the pattern is a palindrome then the algorithm
verifies if it exists multiple times in the sequences of appearance and
store the sequence in the results list. The list is returned when the for-
loop completes. The second if-statement is optional in case we care
only for palindromes that exist multiple times in every sequence.

The algorithm is correct because in every run of the loop it checks if a
pattern of length PL is palindrome or not. Then it checks if it exists
multiple times in every sequence. The worst-case time complexity is
O(r(p+s)) with regard to the number of patterns r and the palindrome
check p plus the check of multiple occurrences s in every sequence.

The algorithm can be used for both text palindromes, i.e., matches of
A-A, C-C, G-G and T-T, and biological palindromes, i.e., A-T and C-G.
This feature depends on how the check for palindrome is executed in the
first if-statement.

4.5.3. Tandem Repeats
For the detection of Tandem Repeats, Algorithm 3 can be used. The

algorithm runs over patterns of a specific length TL, usually very small,
and checks if there are enough occurrences of at least TMO that have a
periodicity of exactly the length of the tandem. In this way, longer
patterns of tandems are constructed. If a pattern exists then it stored in
the results list.

The algorithm terminates because it runs over the patterns set of a
specific length that can be found in the ARPaD results and then over the
occurrences of the pattern. The algorithm is correct because the outer
loop runs over all patterns of length TL while the inner loop on the sorted
occurrences of the pattern. If then for a successive TMO number of oc
currences the periodicity of the pattern, i.e., occurrences, have period
icity exactly the length of the pattern then it is recorded as a tandem
repeat.

The worst-case complexity is equal to a linear search over the whole
dataset. If there is only a TL pattern that repeats all over the sequence
then there are in total n/TL checks for the positions. Therefore, the
worst-case time complexity for the algorithm is O(ro) with regard to r
the number of patterns and o the number of occurrences.

4.6. Synopsis

The Multiple Genome Analytics Framework is based on two distinct
phases. In the first phase, the first step is the construction of the
Multivariate LERP-RSA data structure from the raw data of the se
quences. The LERP-RSA data structure construction has a space and time
complexity of O(nlogn) as it has been already discussed thoroughly. In
the case of the Multivariate LERP-RSA, since we have m sequences of
approximate length n, the total space complexity is O(mnlogn) since the
total size of the dataset, if it is considered a single sequence, is m× n.
However, the logarithmic part of the complexity is not equally m × n
since the sequences are independent and according to Calude’s theorem
(Calude, 1995) we do not expect such long repeated patterns.

When LERP-RSA construction is completed then we execute the
second step of the first phase which is the All Repeated Patterns
Detection (ARPaD) algorithm. It is important to mention that both steps
of the first phase are executed once during the lifecycle of the data an
alytics process. ARPaD has time complexity O(nlogn) with regard to the
dataset size and the results can be stored for any kind of meta-analytics.
Having the LERP-RSA data structure and ARPaD results stored then we
can execute the second phase of the framework which is based on meta-
algorithms such as SPaD, MPaD and MuGA family of PCR-PD, PD and
TRD algorithms, to perform any kind of analysis such as sequence
alignment, genomic comparisons, detecting primers for polymerase
chain reaction process, identifying protein promoters, palindromes and
tandem repeats, etc. (Fig. 1).

In Fig. 2 the creation of the LERP-RSA data structure is represented.
First the raw data is split to the m genomes and then each genome is the
input to the LERP-RSA creation algorithm. For each genome, distinct
classes are created and then the classes are combined to create the final

K.F. Xylogiannopoulos

Journal of Biotechnology 359 (2022) 130–141

135

LERP-RSA data structure. The total number of classes for each variant is
|Σ|CL where the base |Σ| is the cardinality of the alphabet, i.e., 4 for DNA/
RNA sequences or 20 for proteins. It is important to mention that
depending on the available hardware resources several parallelization
approaches can be used. For example, LERP-RSA can be created for each
genome in semi-parallel or full parallel execution depending on the
number of processors or nodes in a clustering framework. Additionally,
each class during the LERP-RSA creation purpose can be also be paral
lelized according to the available resources. ARPaD execution can also
be parallelized based on available resources and number of classes,
based on the Classification Level (Fig. 3).

It is also important to clarify how to deal with continuously
expanding datasets. One, direct, approach is whenever a single or
multiple new sequence(s) enter(s) the dataset to create the corre
sponding LERP-RSA and then merge the new, shorter, data structure
with the previously created (Xylogiannopoulos et al., 2014; Xylo
giannopoulos, 2017). Then the ARPaD can be executed only on clusters
that have been updated. Of course, in this case it is possible to have
discovered new repeated patterns that did not exist before.

Finally, the meta-analyses depend on several problem specific algo
rithms, such as Algorithms 1, 2 and 3, using LERP-RSA and ARPaD re
sults as input and with the combination of SPaD and MPaD algorithms
(Fig. 4). The whole process can also be parallelized not only for each
problem but also for all problems in order to be executed simulta
neously. The most important observation for the three meta-algorithms

of Subsection 4.5 is that all of them use as input the ARPaD algorithm
results. This is the reason for having exceptional time complexity since
they use the advantage of the knowledge of all repeated patterns that
have been detected in a previous phase by ARPaD.

Another, very important, observation is the difficulty to directly
compare the MuGA Framework absolute time (not theoretical big-O) to
other approaches. Although the theoretical time complexity it is proven
to be extremely good (log-linear), the actual time cannot be compared
because of the two phases of the framework and the fact that it has been
built to deal with problems in a holistic approach. This means that the
framework and its algorithms find all patterns that exist instead of
checking if a specific pattern exists or not. For example, Algorithm 2 will
find all palindromes that exist and the same is valid for Algorithm 3 for
tandem repeats. Also, the first phase has to be executed only once and
the results are used by all meta-algorithms concurrently, providing a
very high degree of parallelization not for one algorithm, but for all
algorithms that we can execute on LERP-RSA and ARPaD results to solve
simultaneously many problems.

5. Experimental analyses and applications

For the presentation of possible applications of the Multiple Genome
Analytics Framework on different use cases, a free dataset consisted
from all SARS-CoV-2 (taxid 2697049) complete genome variants has
been used. The dataset was recorded on May 14th, 2021, and down
loaded from the National Library of Medicine at the National Center for
Biotechnology Information (NCBI) (NCBI, 2022a) in its FASTA format.
The dataset can be downloaded directly from the NCBI web portal by
defining the appropriate parameters, i.e., (a) the virus, (b) the complete
genome and (c) dataset time span. However, for consistency and ease of
use purposes, the NCBI constructed file can be found and downloaded
directly on (NCBI, 2021).

The recorded dataset at the specific date consists of 302,373 variants
with an average variant length of 29,852 bases. However, there is one

Fig. 1. Multiple Genome Analytics Framework Workflow.

Fig. 2. Parallel creation of LERP-RSA data structure for m Genome Sequences of variable length and Classification Level CL.

Fig. 3. Parallel execution of ARPaD algorithm per LERP-RSA class.

K.F. Xylogiannopoulos

Journal of Biotechnology 359 (2022) 130–141

136

variant, the MT873050.1/USA/MA-MGH-01491/2020, which has
length just 2,859 bases and it has been removed from the dataset. The
total size of the dataset is approximately 9 GB, three times the size of the
total human genome. Although SARS-CoV-2 is a single stranded plus
RNA virus, the DNA reverse transcribed sequences have been recorded
in the dataset. For this reason, the standard nucleotides alphabet {A, C,
G, T} has been used and the sequence strings have been cleaned from
many non-standard characters such as N, R, W, etc. and replaced with a
neutral symbol $ to help avoid meaningless or irrelevant patterns.

For the analysis, a laptop computer with an Intel i7 CPU at 2.6 GHz
has been used with 16 GB RAM and an external disk of 1 TB for a semi-
parallel execution, consuming approximately 40 h. It is important
though to state that the most time-consuming phase is the on-disk
construction of the LERP-RSA, which took approximately 35 h while
the rest was consumed by the ARPaD. The disadvantage of using an
external disk affected the performance because of the comparably low I/
O transfer rate. For a broader semi-parallel execution, three computers
and a tablet with approximately same configuration have been used in
order to execute per computer one master class of the alphabet (A***,
C***, G*** and T***) and took approximately 11 h. The use of the semi-
parallel execution significantly improved the performance, yet, it could
be further improved with the use of a standard workstation computer or
the use of more appropriate desktop computers. Despite that, the
experiment proves that the analysis is feasible with minimal resources in
acceptable time.

The Classification Level used is four, creating 256 classes because of
the four characters alphabet (AAAA, AAAC, AAAG, …, TTTG, TTTT). For
the specific dataset and available resources, it was not possible to use the
standard value of Classification Level three, representing the 64 codon
elements used for the translation process to proteins. The reason for
selecting Classification Level four is to keep classes small in size and be
able to analyzed by computers with 16 GB RAM (or less). In an earlier
initial analysis of approximately 55,000 complete variants (preprint
available on bioRxiv) Classification Level three had been used, proving
the versatility of the MuGA Framework and how easy is to scale up to
deal with significantly larger datasets.

The results of this analysis are enormous and for practical reasons
only few, interesting, use cases and meta-analyses will be presented
here. The LERP value used is 60 (20 codons length). The total size of the
LERP-RSA data structure on disk is 620 GB, which practically means that
it cannot be processed as a single class dataset. The larger class, using the
predefined classification, is the TGTT with size approximately 7.2 GB,
which justifies the selection of Classification Level four, while the
smallest is the CCGG with size approximately 210MB. Of course, the size
of the data structure depends on the selection of the LERP value and can
be significantly reduced based on the analyses needs and the balancing
to avoid disk usage whatsoever.

A summary of the ARPaD results can be found on Table 1. There are
256 repeated patterns with length four, as many as the classes, yet, with
length five there are 1,280 instead of the expected 1,024. This happens

because of the patterns which include the characters replaced with the
neutral symbol $ and practically alters the alphabet size to five char
acters for the part of the suffix string that is longer than the Classification
Level. The cumulative number of patterns with length up to 60 char
acters is 88.3 million approximately and the number of the total cu
mulative occurrences of these patterns are approximately 511.5 billion
(Table 1).

Table 2 presents the most frequent 60 characters long patterns from
the 64 classes of Classification Level three. The reason to present Clas
sification Level three patterns in the table instead of the used Classifi
cation Level four is practically to keep the table as much as possible
short. The patterns in the table are sorted based on the average posi
tioning in all sequences (variants). The column next to mean positioning
is the standard deviation of the pattern among all sequences, which
takes values between 26 and 27 for all patterns. The next two columns
are the minimum and maximum positions that the patterns have been
detected in the sequences. The next column is the position that each
pattern occurs in the reference sequence NC_045512.2. As we can
observe, we can have some very interesting qualitative and quantitative
information. For example, for the first pattern in Table 2 for class CGG,
we have in total 301,269 occurrences where 151,214 occur exactly at
the same position as in the reference sequence while 149,055 occur
before and 1,000 after. This can help us conclude that up to the specific
position most of the variants (149,055) have more deletions than in
sertions in the genome while the rest (1,000) have more insertions than
deletions. It is also interesting that most patterns have many more
mutated sequences before the average occurring position, on average
220,000, and fewer after, on average 1,050, while on average 80,000
patterns occur at the expected position.

In the same Table 2, some patterns are marked with the same color.
These patterns are practically overlapping, as we can observe from their
mean position which increments by one or a few more characters. These
patterns can be further expanded with the use of other 60 characters
long patterns or shorter patterns to form common regions in the se
quences where most of the sequences are identical. Moreover, this in
formation can be used for sequence alignment purposes, although it is a
more demanding task, which will be presented in future work. The
patterns in Table 2 create 12 different blocks in the SARS-CoV-2
sequence. These blocks practically separate the vast majority of the se
quences to common regions and more blocks can be used with shorter
patterns, something that it is expected since the patterns are from the
same organism and are expected to be somehow conservable. It needs to
be mentioned that this is not valid for all sequences since some may not
occur in specific sequences due to mutations. Still, shorter patterns can
reveal these blocks.

A very important observation regarding genome conservation of the
SARS-CoV-2 organism is that the longest repeated patterns that exist
among all variants at least once have length 10 bases and there are only
nine (Table 3), while with length 9 they exist 61 patterns. In most cases
these patterns occur in multiple positions in every variant. These can be

Fig. 4. Execution of Meta-Analyses with Meta-Algorithms over the LERP-RSA and ARPaD results.

K.F. Xylogiannopoulos

Journal of Biotechnology 359 (2022) 130–141

137

of extreme importance since a restriction enzyme could be used to cut
the SARS-CoV-2 genome at the specific patterns, degrade it and, there
fore, restrict the proliferation of the virus.

Another application of the proposed methodology is the comparison
of genomes among different organisms. For example, in Table 4 we have
all patterns from SARS-CoV-2 that exist at least once in every variant of
the virus and has length equal to 10. These patterns are compared with
other organisms’ genomes, using the SPaD, such as the Alpha Corona
virus (A-CoV) (taxid 693996, 1,126 total variants), Alpha Influenza
virus (taxid 197911, 9,763 total variants), Human Orthopneumovirus
(HRSV) (taxid 11250, 2,490 total variants), MERS Coronavirus (taxid
1335626, 591 total variants) (NCBI, 2022a) and the human genome
(GRCh38.p12) (GRCh38, 2022). In order to check if the patterns exist in

other organisms, the SPaD and MPaD algorithms have been used, having
as input the specific patterns. As we can observe at Table 4, Alpha
Coronavirus has all patterns in common with SARS-CoV-2, except one.
Four of them occur in very few variants of A-CoV while the rest in many
more. Alpha Influenza although has six common patterns with
SARS-CoV-2, they occur in very few variants of the virus. Human
Orthopneumovirus has only two common patterns again with few oc
currences. Interesting is the case of the MERS coronavirus that has five
common patterns with SARS-CoV-2, where two of them occur in almost
all MERS-CoV variants and the other three only in one or two variants.
What it looks impressive is that all patterns exist in the human genome
too, with different number of occurrences varying from 467 up to 14,
325. Nonetheless, this observation could be probabilistically expected
because of the very short pattern length and the significantly large size
of the human genome. Still, slightly longer common patterns cannot be
found in both the virus and the human genome.

Possible application of this information is the determination of
primers for PCR analyses. Since the patterns exist in all SARS-CoV-2
variants they can be used in pairs to amplify the largest part of the
virus. However, if used with human DNA sample then PCR is not
possible since human genome could also be amplified. This can be
bypassed with the use of longer patterns, e.g., with length 60 as the
pattern in Table 2, that do not exist in the human genome. Yet, since
these patterns are not present in all SARS-CoV-2 variants, two couples
must be used that cover all possible cases. This can help to use PCR not
just on specific SARS-CoV-2 proteins but on much larger parts of the
genome. For example, if we use Algorithm 1 with the Primer Length
parameter equal to the shorter, but lengthy enough, 30 characters long
patterns, then the GTGCTGGTAGTACATTTATTAGTGATGAAG and
GCGTGTAGCAGGTGACTCAGGTTTTGCTGC patterns will be found in
the results, occurring approximately at positions 934 and 27,039
respectively, which are capable to amplify approximately 87% of the
genome.

Another category of interesting patterns are the palindromes. In total
they have been detected 638 repeated palindromes with length from 12
bases up to 30, including trivial palindromes, for example, continuous A
or palindromes of type AA…AA$AA…AA, where $ can be any character.
No test for palindromes of more than 30 or less than 12 letters has been
executed because typically they form trivial and not important palin
dromes. In Table 5, a list of the most frequent, non-trivial, palindromes
are presented. These indicative palindromes are very easy to be
extracted from the ARPaD results using, for example, Algorithm 2 or
query executors with regular expressions. Additionally, as it can be
observed from Table 1, there are approximately 19 million patterns that
need to be checked with length from 12 up to 30, which means that the
required checks are 1,000 fold less than the total size of the dataset. This
is valid also in the case of applying the method on a single sequence. Of
course, there are some infrequent palindromes (Table 5) that are
repeated just twice in the full dataset and such palindromes are in total
262. It is important to mention that Algorithm 2 has been used to detect
text palindromes in this dataset, as discussed in subsection 4.5.2, since
biological palindromes usually do not exist in short viral genome.

Finally, in Table 6 some examples of tandem repeats are presented,
as they have been detected using Algorithm 3. As with palindromes, the
tandem repeats have been identified as repeated patterns and it is very
easy to be filtered from the ARPaD results. Tandem repeats of length
from 9 characters up to 25 have been spotted with types of repeats, such
as, 3 characters by 3 times, 3×4, 4×3, 3×5, 5×3, 4×4, 3×6, 6×3, 4×5,
5×4 and 5×5. As we can observe in Table 6 from the examples, some
tandem repeats are very frequent, practically they occur in most variants
or multiple times per variant, while there are some others that are
extremely rare. Although it is mentioned that it is possible to detect
tandem repeats as repeated patterns, the obvious argument is: “what
will happen if a tandem repeat is not repeated?” Such cases are also easy
to be detected because if, for example, a tandem repeat of three char
acters by six (or more repetitions) exist, with total length 18 characters,

Table 1
ARPaD Results, Patterns and Occurrences Frequencies.

L. Repeated
Patterns

Cumulative
Patterns

Patterns
Occurrences

Cumulative
Occurrences

4 256 256 8,979,514,845 8,979,514,845
5 1,280 1,536 8,979,360,796 17,958,875,641
6 6,377 7,913 8,979,206,429 26,938,082,070
7 28,684 36,597 8,979,051,982 35,917,134,052
8 96,118 132,715 8,978,887,799 44,896,021,851
9 220,504 353,219 8,978,696,312 53,874,718,163
10 356,768 709,987 8,978,478,185 62,853,196,348
11 459,208 1,169,195 8,978,259,310 71,831,455,658
12 531,863 1,701,058 8,978,053,216 80,809,508,874
13 591,332 2,292,390 8,977,855,568 89,787,364,442
14 645,872 2,938,262 8,977,660,436 98,765,024,878
15 698,593 3,636,855 8,977,465,502 107,742,490,380
16 750,697 4,387,552 8,977,270,080 116,719,760,460
17 802,583 5,190,135 8,977,073,859 125,696,834,319
18 854,310 6,044,445 8,976,877,424 134,673,711,743
19 905,990 6,950,435 8,976,680,835 143,650,392,578
20 957,561 7,907,996 8,976,483,481 152,626,876,059
21 1,009,096 8,917,092 8,976,285,444 161,603,161,503
22 1,060,566 9,977,658 8,976,086,825 170,579,248,328
23 1,111,944 11,089,602 8,975,887,628 179,555,135,956
24 1,163,269 12,252,871 8,975,687,751 188,530,823,707
25 1,214,552 13,467,423 8,975,487,118 197,506,310,825
26 1,265,853 14,733,276 8,975,285,952 206,481,596,777
27 1,317,114 16,050,390 8,975,084,110 215,456,680,887
28 1,368,448 17,418,838 8,974,881,778 224,431,562,665
29 1,419,819 18,838,657 8,974,678,912 233,406,241,577
30 1,471,158 20,309,815 8,974,475,528 242,380,717,105
31 1,522,507 21,832,322 8,974,271,716 251,354,988,821
32 1,573,831 23,406,153 8,974,067,684 260,329,056,505
33 1,625,123 25,031,276 8,973,863,313 269,302,919,818
34 1,676,419 26,707,695 8,973,658,918 278,276,578,736
35 1,727,777 28,435,472 8,973,455,515 287,250,034,251
36 1,779,075 30,214,547 8,973,253,405 296,223,287,656
37 1,830,382 32,044,929 8,973,057,875 305,196,345,531
38 1,881,706 33,926,635 8,972,869,112 314,169,214,643
39 1,933,040 35,859,675 8,972,683,803 323,141,898,446
40 1,984,331 37,844,006 8,972,499,669 332,114,398,115
41 2,035,636 39,879,642 8,972,316,851 341,086,714,966
42 2,086,954 41,966,596 8,972,132,927 350,058,847,893
43 2,138,316 44,104,912 8,971,948,793 359,030,796,686
44 2,189,692 46,294,604 8,971,764,688 368,002,561,374
45 2,241,072 48,535,676 8,971,579,751 376,974,141,125
46 2,292,419 50,828,095 8,971,389,770 385,945,530,895
47 2,343,742 53,171,837 8,971,193,112 394,916,724,007
48 2,395,058 55,566,895 8,970,993,383 403,887,717,390
49 2,446,380 58,013,275 8,970,790,590 412,858,507,980
50 2,497,755 60,511,030 8,970,585,542 421,829,093,522
51 2,549,149 63,060,179 8,970,377,537 430,799,471,059
52 2,600,553 65,660,732 8,970,167,730 439,769,638,789
53 2,651,922 68,312,654 8,969,956,928 448,739,595,717
54 2,703,351 71,016,005 8,969,744,785 457,709,340,502
55 2,754,827 73,770,832 8,969,531,917 466,678,872,419
56 2,806,319 76,577,151 8,969,318,628 475,648,191,047
57 2,857,829 79,434,980 8,969,104,750 484,617,295,797
58 2,909,359 82,344,339 8,968,890,580 493,586,186,377
59 2,960,959 85,305,298 8,968,676,244 502,554,862,621
60 3,012,586 88,317,884 8,968,461,663 511,523,324,284

K.F. Xylogiannopoulos

Journal of Biotechnology 359 (2022) 130–141

138

then its sub-patterns of three by three (or more repetitions) of nine
characters have been detected as repeated patterns and since one occurs
exactly after the end of the other one then they form a longer pattern
and, therefore, tandem repeat.

Concluding, it is important to mention that the real execution time
(not computational) for the meta-analytics algorithms of the MuGA
Framework can be measured in seconds or few minutes, depending on
the problem. This occurs because these algorithms have to access
already discovered knowledge from the ARPaD algorithm and with the
use of the LERP-RSA data structure, when needed. This feature of the
algorithms gives them competitive advantage to other standalone ap
proaches that need to access raw data. Moreover, these algorithms re
turn every possible result that may exist for each type of problem. For
example, in the case of palindromes the MuGA-PD returns every possible

pattern with palindrome format and does not simply check if a specific
palindrome exists since this is a simple task for the SPaD algorithm, in
logarithmic complexity.

6. Conclusions

The current paper presents the Multiple Genome Analytics Frame
work, which is a combination of data structures and algorithms specif
ically created for advanced text mining and pattern detection in discrete
sequences that are adapted for biological sequences. More particularly,
the purpose of the paper is to present a framework that can be used as
the foundation of concurrently solving many different string problems in
bioinformatics using previously detected repeated patterns. The MuGA
Framework is a modular system, executed in different phases, that

Table 2
Positional Descriptive Statistics for Most Frequent Patterns Per Classification Level Three Class, Length 60 and Colors for Overlapping Patterns.

(continued on next page)

K.F. Xylogiannopoulos

Journal of Biotechnology 359 (2022) 130–141

139

allows the optimum utilization of available resources.
As a proof of MuGA Framework adaptability, scalability and effi

ciency, the analysis of more than 300,000 variants of the complete
SARS-CoV-2 genome has been used. Using ordinary computers, it has
been presented that it is possible to perform advanced pattern detection
and produce results that can be fed as input to meta-algorithms or used
indirectly from other methodologies to perform even more detailed or
diverse meta-analyses. Although viral DNA usually does not include
important information for patterns such as palindromes and tandem
repeats (mostly found in bacterial and eukaryotic DNA), the specific
dataset has been used as a proof of concept for the MuGA Framework

with regard to the ability to analyze complex, multivariate, big datasets
and solve concurrently a variety of problems. The specific dataset can be
considered to be a simulation of more complex datasets, such as genes
from multiple humans or other organisms, which is not though possible

Table 2 (continued)

Table 3
Longest Patterns Existing in Every Variant of SARS-CoV-2.

Longest Patterns with Appearance at least once in Every
SARS-CoV-2 Variant

Total Pattern
Occurrences

ATGCTGTTGT 905,838
ATGGTAATGC 906,103
GAAGAAGCTA 602,515
TAAACGAACT 1,061,910
TATGGTGCTA 603,948
TCAACTCAGG 901,394
TGGACAACAG 1,202,518
TGGTGTTTAT 1,207,566
TTTTATGTCT 604,441

Table 4
Comparison of Longest Patterns among different Organisms.

Longest Patterns with
Appearance at least
once in Every SARS-
CoV-2 Variant

Organism Genome

A-
CoV|
1126|

Alpha
Influenza|
9763|

HRSV|
2490|

MERS-
CoV|
591|

GRCh38.
p12|1|

ATGCTGTTGT 169 4 16 0 5,080
ATGGTAATGC 774 6 0 584 5,640
GAAGAAGCTA 52 52 160 2 3,813
TAAACGAACT 6 0 0 0 467
TATGGTGCTA 760 0 0 0 1,932
TCAACTCAGG 0 0 0 1 3,184
TGGACAACAG 5 13 0 0 7,302
TGGTGTTTAT 383 3 0 588 5,654
TTTTATGTCT 22 34 0 2 14,325

Table 5
Indicative Most and Least Frequent Palindromes of SARS-CoV-2.

Length Occurrences Pattern

12 302,210 GTGTTAATTGTG

13 302,089 CAAACTGTCAAAC

12 302,071 AGATTGGTTAGA

13 301,930 TTTTGGTGGTTTT

15 301,917 ATTTTGGTGGTTTTA

12 301,897 TCAATGGTAACT

12 301,886 AATATCCTATAA

12 301,770 ATAAACCAAATA

13 301,662 AATTTGTGTTTAA

15 301,655 GAATTTGTGTTTAAG

13 301,615 TTGAAGAGAAGTT

12 301,564 AAAACAACAAAA

12 301,552 AGTGTAATGTGA

12 301,547 TTCAGTTGACTT

12 301,447 ATGACTTCAGTA

14 301,438 AATGACTTCAGTAA

13 301,291 AAAGACACAGAAA

12 301,248 CAAGAAAAGAAC

13 300,778 AAATCACACTAAA

16 300,716 CAATGACTTCAGTAAC

13 300,702 AGACGACAGCAGA

18 300,694 TCAATGACTTCAGTAACT

20 300,147 CTCAATGACTTCAGTAACTC

12 299,248 GACTCAACTCAG

13 298,917 TTCTAACAATCTT

13 298,603 TAACTTCTTCAAT

13 294,659 TCAGACTCAGACT

15 294,586 ATCAGACTCAGACTA

12 2 TGGACAACAGGT

13 2 ATACCAGACCATA

13 2 GTAGTGGGTGATG

13 2 TTGAAGCGAAGTT

14 2 AGCAAGTTGAACGA

15 2 CTTGAAGAGAAGTTC

16 2 AAGCAAGTTGAACGAA

17 2 TATCAGACTCAGACTAT

18 2 AAAGCAAGTTGAACGAAA

19 2 AATATCATCCCTACTATAA

K.F. Xylogiannopoulos

Journal of Biotechnology 359 (2022) 130–141

140

to be easily acquired and accessed for research purposes. Very impor
tantly, this dataset is the only one that is publicly available to everyone
and meets the problem definition boundaries with regard to size,
genomic sequence length and complexity.

he proposed framework introduces a divide and conquer approach
with the use of the special LERP-RSA data structure and ARPaD algo
rithm. Although the construction of the LERP-RSA, on disk, could be
relatively slow for commodities computers, yet, the advantage is the fact
that it can be constructed off-line and stored on disk to be used for future
purposes. Nevertheless, with the use of larger Classification Level with
more classes of smaller sizes, the use of disk can be totally omitted and
the full process can be executed directly in memory and possibly in
parallel, depending on available resources. Additionally, it has been
presented that all repeated patterns can be detected, with the use of the
LERP-RSA data structure and the single execution of the ARPaD algo
rithm, forming a database of results that the MuGA family algorithms,
with the help of the SPaD and the MPaD algorithms, can filter and
explore to perform several meta-analyses. Both LERP-RSA data structure
and ARPaD algorithm are very efficient and can produce the results in a
few hours using commodity hardware while the meta-algorithms can
perform various analyses in a few seconds or minutes because of the
advantage of the repeated patterns knowledge.

It has been proven that the framework introduced here can address
the requirements of the problem as defined in Section 3. First of all, it
can be executed on commodity computers with limited resources and,
therefore, keep the cost low. Moreover, it can scale up to deal with larger
datasets, either by simply changing initial parameters such as the LERP
value and Classification Level or with insignificant cost in hardware.
Finally, and more importantly, it can address several different problems
concurrently by utilizing and optimizing the available hardware.

The scope of the current work is to present the modularity, flexibility,
scalability and efficiency of the Multiple Genome Analytics Framework
in order to solve string problems and identify hidden patterns, for bio
informatics and computational biology purposes, in big datasets, with
minimum resources and in a cost-effective way. In future work a more
detailed and thorough description of usage on additional problems will
be presented with more custom-made methodologies and algorithmic
variations. Additionally, a software application for the scientific com
munity it is intended to be created that will incorporate a variety of
functionalities and it could help researchers to address many bioinfor
matics and computational biology problems.

Funding

No funds, grants, or other support was received.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data Availability

The datasets generated during and/or analyzed during the current
study are available in the NCBI repository (GRCh38, 2022), (NCBI,
2022a). The downloaded SARS-CoV-2 dataset can be found additionally
on Kaggle (NCBI, 2021).

References

Abdul Razzaq, A.A., Rashid, N.A.A., Hasan, A.A., Abu-Hashem, M.A., 2013. The exact
string matching algorithms efficiency review. Glob. J. Technol. 576–589.

Ahmad, M.K. (2014) “An Enhanced Boye-Moore Algorithm (Doctoral dissertation).”
Middle East University.

Anon, SARS-CoV-2 dataset created on May 14th, 2021 (NCBI) 〈https://www.kaggle.co
m/kostasfx/sarscov2–20210514〉.

Apostolico, A., Giancarlo, R., 1986. The Boyer-Moore-Galil String Searching Strategies
Revisited (in English). SIAM J. Comput. 15 (1), 98–105.

BLAST, National Center for Biotechnology Information (NCBI), 2022a 〈https://blast.
ncbi.nlm.nih.gov/Blast.cgi〉.

Boyer, R.S., Moore, J.S., 1977. A fast string searching algorithm. Commun. ACM
762–772.

Calude, C., 1995. What is a random string? J. Univers. Sci. 1 (1), 48–66.
Cao, Z., Zhenzhen, Y., Lihua, L. (2015) “A fast string matching algorithm based on

lowlight characters in the pattern.” 7th International Conference on Advanced
Computational Intelligence (ICACI), pp. 179–182.

Chen, Y., 2018. String matching in DNA databases. Open Access Biostat. Bioinforma 1, 4.
Faro, S. (2016). “Evaluation and Improvement of Fast Algorithms for Exact Matching on

Genome Sequences.” In Proceedings of the 2016 International Conference on
Algorithms for Computational Biology.

Franek, F.J., Jennings, C.G., Smyth, W.F., 2007. A simple fast hybrid pattern matching
algorithm. J. Discret. Algorithms 682–695.

GRCh38.p12, National Center for Biotechnology Information (NCBI), 2022, 〈ftp://ftp.
ncbi.nlm.nih.gov/genomes/Homo_sapiens/〉.

Hakak, S., Kamsin, A., Shivakumara, P., Gilkar, G.A., Khan, W.Z., Imran, M., 2017. Exact
string matching algorithms: survey, issues and future reseach directions. Prep. Pap.
IEEE Transcations J.

International Human Genome Consortium, 2001. Initial sequencing and analysis of the
human genome. Nature 409, 860–921.

Iwao, E.H., (2019) “Pi in the sky: Calculating a record-breaking 31.4 trillion digits of
Archimedes’ constant on Google Cloud.” 〈https://cloud.google.com/blog/products/
compute/calculating-31–4-trillion-digits-of-archimedes-constant-on-google-cloud〉.

Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., Charpentier, E., 2012.
A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial
immunity. Science 337 (6096), 816–821.

Karp, R.M., Rabin, M.O., 1987. Efficient randomized pattern-matching algorithms. IBM
J. Res. Dev. 31 (2), 249–260.

Knuth, D.E., Morris, J.H., Pratt, V.R., 1977. Fast pattern matching in strings. SIAM J.
Comput. 6 (2), 323–350.

Lecroq, T., 2007. Fast exact string matching algorithms. Inf. Process. Lett. 102 (6),
229–235.

Manber, U. and Myers, G., (1990) “Suffix arrays: a new method for on-line string
searches.” Proceedings of the First Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 319–327.

Masaki, W., Hasuo, I., Suenag, K. (2017) “Efficient online timed pattern matching by
automata-based skipping.” International Conference on Formal Modeling and
Analysis of Timed Systems, Springer, pp. 224–243.

Mitsuhashi, S., Frith, M.C., Mizuguchi, T., et al., 2019. Tandem-genotypes: robust
detection of tandem repeat expansions from long DNA reads. Genome Biol. 20, 58.
https://doi.org/10.1186/s13059-019-1667-6.

Navarro, G., 2001. NR-grep: a fast and flexible pattern-matching tool. Softw. Pract. Exp.
31, 1265–1312.

National Center for Biotechnology Information (NCBI), 2022b 〈https://blast.ncbi.nlm.
nih.gov/Blast.cgi〉.

National Center for Biotechnology Information (NCBI), 2022a, 〈https://www.ncbi.nlm.
nih.gov/labs/virus/vssi/#/virus〉.

Raita, T., 1992. Tuning the Boyer-Moore-Horspool string searching algorithm. Softw.:
Pract. Exp. 879–884.

Smith, P.D., 1991. Experiments with a very fast substring search algorithm. Softw. Pract.
Exp. 21, 1065–1074.

Smith, T.F., Waterman, M.S., 1981. Identification of common molecular subsequences.
J. Mol. Biol. 147 (1), 195–197.

Table 6
Indicative Tandem Repeats of SARS-CoV-2 per Length and Type.

Type Length Occurrences Pattern

3×3 9 301,943 CTGCTGCTG

3×3 9 301,236 AGTAGTAGT

3×3 9 300,970 CGACGACGA

3×3 9 300,920 GACGACGAC

3×3 9 13 TAGTAGTAG

4×3 12 126 ACAAACAAACAA

3×4 12 86 GTTGTTGTTGTT

3×4 12 83 CTTCTTCTTCTT

3×4 12 80 TAATAATAATAA

3×4 12 23 GAAGAAGAAGAA

4×3 12 12 AACCAACCAACC

3×4 12 8 AGAAGAAGAAGA

4×3 12 2 AGAAAGAAAGAA

3×5 15 20 CAACAACAACAACAA

4×4 16 62 CAAACAAACAAACAAA

K.F. Xylogiannopoulos

http://refhub.elsevier.com/S0168-1656(22)00224-3/sbref1
http://refhub.elsevier.com/S0168-1656(22)00224-3/sbref1
https://www.kaggle.com/kostasfx/sarscov2-20210514
https://www.kaggle.com/kostasfx/sarscov2-20210514
http://refhub.elsevier.com/S0168-1656(22)00224-3/sbref2
http://refhub.elsevier.com/S0168-1656(22)00224-3/sbref2
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://refhub.elsevier.com/S0168-1656(22)00224-3/sbref3
http://refhub.elsevier.com/S0168-1656(22)00224-3/sbref3
http://refhub.elsevier.com/S0168-1656(22)00224-3/sbref4
http://refhub.elsevier.com/S0168-1656(22)00224-3/sbref5
http://refhub.elsevier.com/S0168-1656(22)00224-3/sbref6
http://refhub.elsevier.com/S0168-1656(22)00224-3/sbref6
ftp://ftp.ncbi.nlm.nih.gov/genomes/Homo_sapiens/
ftp://ftp.ncbi.nlm.nih.gov/genomes/Homo_sapiens/
http://refhub.elsevier.com/S0168-1656(22)00224-3/sbref7
http://refhub.elsevier.com/S0168-1656(22)00224-3/sbref7
http://refhub.elsevier.com/S0168-1656(22)00224-3/sbref7
http://refhub.elsevier.com/S0168-1656(22)00224-3/sbref8
http://refhub.elsevier.com/S0168-1656(22)00224-3/sbref8
https://cloud.google.com/blog/products/compute/calculating-31-4-trillion-digits-of-archimedes-constant-on-google-cloud
https://cloud.google.com/blog/products/compute/calculating-31-4-trillion-digits-of-archimedes-constant-on-google-cloud
http://refhub.elsevier.com/S0168-1656(22)00224-3/sbref9
http://refhub.elsevier.com/S0168-1656(22)00224-3/sbref9
http://refhub.elsevier.com/S0168-1656(22)00224-3/sbref9
http://refhub.elsevier.com/S0168-1656(22)00224-3/sbref10
http://refhub.elsevier.com/S0168-1656(22)00224-3/sbref10
http://refhub.elsevier.com/S0168-1656(22)00224-3/sbref11
http://refhub.elsevier.com/S0168-1656(22)00224-3/sbref11
http://refhub.elsevier.com/S0168-1656(22)00224-3/sbref12
http://refhub.elsevier.com/S0168-1656(22)00224-3/sbref12
https://doi.org/10.1186/s13059-019-1667-6
http://refhub.elsevier.com/S0168-1656(22)00224-3/sbref14
http://refhub.elsevier.com/S0168-1656(22)00224-3/sbref14
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus
http://refhub.elsevier.com/S0168-1656(22)00224-3/sbref15
http://refhub.elsevier.com/S0168-1656(22)00224-3/sbref15
http://refhub.elsevier.com/S0168-1656(22)00224-3/sbref16
http://refhub.elsevier.com/S0168-1656(22)00224-3/sbref16
http://refhub.elsevier.com/S0168-1656(22)00224-3/sbref17
http://refhub.elsevier.com/S0168-1656(22)00224-3/sbref17

Journal of Biotechnology 359 (2022) 130–141

141

Wu, S., Manber, U., 1994. A Fast Algorithm for Multi-pattern Searching. Department of
Computer Science, University of Arizona, Tucson, AZ, Report TR-94-17.

Xian-Feng, H., Yu-Bao, Y., Xia, L. (2010) “Hybrid pattern-matching algorithm based on
BM-KMP algorithm.” 3rd International Conference In Advanced Computer Theory
and Engineering (ICACTE), (5), pp. 310–313.

Xylogiannopoulos, K.F., (2017) “Data structures, algorithms and applications for big data
analytics: single, multiple and all repeated patterns detection in discrete sequences.”
PhD thesis.

Xylogiannopoulos, K.F., Karampelas, P., Alhajj, R., 2014. Analyzing very large time series
using suffix arrays. Appl. Intell. 41 (3), 941–955. https://doi.org/10.1007/s10489-
014-0553-x.

Xylogiannopoulos, K.F., Karampelas, P., Alhajj, R., 2016. Repeated patterns detection in
big data using classification and parallelism on LERP reduced suffix arrays. Appl.
Intell. 45 (3), 567–597. https://doi.org/10.1007/s10489-016-0766-2.

K.F. Xylogiannopoulos

http://refhub.elsevier.com/S0168-1656(22)00224-3/sbref18
http://refhub.elsevier.com/S0168-1656(22)00224-3/sbref18
https://doi.org/10.1007/s10489-014-0553-x
https://doi.org/10.1007/s10489-014-0553-x
https://doi.org/10.1007/s10489-016-0766-2

	Multiple genome analytics framework: The case of all SARS-CoV-2 complete variants
	1 Introduction
	2 Related work
	3 Problem definition
	4 Proposed framework
	4.1 LERP-RSA data structure
	4.2 ARPaD algorithm
	4.3 SPaD algorithm
	4.4 MPaD algorithm
	4.5 Meta-analytics
	4.5.1 PCR primers detection
	4.5.2 Palindromes
	4.5.3 Tandem Repeats

	4.6 Synopsis

	5 Experimental analyses and applications
	6 Conclusions
	Funding
	Declaration of Competing Interest
	Data Availability
	References

