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Background. Osteoporosis is a common bone metabolic disease with increased bone fragility and fracture rate. Effective diagnosis
and treatment of osteoporosis still need to be explored due to the increasing incidence of disease. Methods. Single-cell RNA-seq
was acquired from GSE147287 dataset. Osteoporosis-related genes were obtained from chEMBL. Cell subpopulations were
identified and characterized by scRNA-seq, t-SNE, clusterProfiler, and other computational methods. “limma” R packages were
used to identify all differentially expressed genes. A diagnosis model was build using rms R packages. Key drugs were
determined by proteins-proteins interaction and molecular docking. Results. Firstly, 15,577 cells were obtained, and 12 cell
subpopulations were identified by clustering, among which 6 cell subpopulations belong to CD45+ BM-MSCs and the other
subpopulations were CD45-BM-MSCs. CD45- BM-MSCs_6 and CD45+ BM-MSCs_5 were consider as key subpopulations.
Furthermore, we found 7 genes were correlated with above two subpopulations, and F9 gene had highest AUC. Finally, five
compounds were identified, among which DB03742 bound well to F9 protein. Conclusions. This work discovered that 7 genes
were correlated with CD45-BM-MSCs_6 and CD45+ BM-MSCs_5 subpopulations in osteoporosis, among which F9 gene had
better research value. Moreover, compound DB03742 was a potential inhibitor of F9 protein.

1. Introduction

Osteoporosis is a common bone metabolic disease, which is
characterized by the loss of bone mass and the disorder of
bone structure caused by the imbalance between bone for-
mation and bone resorption. Therefore, patients with osteo-
porosis are often accompanied by increased bone fragility
and fracture rate [1, 2]. Older people and postmenopausal
women are particularly susceptible to the disease, which is
strongly associated with decreased levels of sex hormones
[3, 4]. Among the many clinical adverse consequences of
osteoporosis, hip fracture and vertebral fracture are the most
serious, and the mortality rate can be as high as 20% after

one year of onset. Patients often need hospitalization, and
the accompanying complications of other organs are signif-
icantly increased, such as pneumonia and pulmonary
thrombosis induced by long-term repose [5]. Therefore,
effective diagnosis and treatment of osteoporosis are partic-
ularly important.

With the proposal of the concept of “precision ther-
apy,” clinical treatment based on sequencing technology
has become one of the most important methods to treat
cancer [6–8]. The most widely used field of single-cell
sequencing technology is tumor research. So far, the anal-
ysis of single-cell sequencing data has provided us with a
new understanding of the heterogeneity, origin of tumor
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cells, and occurrence and development of most tumors. In
colorectal cancer, Zhang et al. studied the transcriptional map
of infiltrating T cell immune receptors; elaborated the sub-
group distribution of these cells, tissue distribution character-
istics, and tumor heterogeneity; and identified potential drug
targets [9]. Bian et al. used this technology to study single cell
copy number variation during the occurrence and metastasis
of human colorectal cancer and analyzed abnormal DNA
methylation and differential expression [10]. In breast cancer,
researchers discovered and identified the polyclonal origin of
breast cancer by means of cell trajectory inference and tumor
heterogeneity analysis, providing a new theoretical basis for
the early diagnosis of breast cancer [11]. By single-cell
sequencing of microenvironment cells, the researchers
mapped a variety of immune cells infiltrated in the breast can-
cer microenvironment [12–14]. However, the heterogeneity,
diagnosis, and treatment of osteoporosis are rarely studied
by single cell sequencing.

In view of the powerful function of single-cell sequenc-
ing technology in tumor research, this study will use this
technology to explore osteoporosis and provide new ideas
for early diagnosis and treatment of osteoporosis through
single-cell sequencing analysis.

2. Materials and Methods

2.1. Data Acquisition. Single-cell sequencing data GSE147287
[15], downloaded from the Gene Expression Omnibus (GEO)
dataset, includes two samples (osteoporosis patients and oste-
oarthritis patients). First of all, from the PubChem database
(https://pubchem.ncbi.nlm.nih.gov/) [16], to download 3D/
2D structure of osteoporosis drugs, mainly including of gluco-
corticoid hormones and calcineurin inhibitors, chEMBL
(http://www.ebi.ac.uk/chembl/) [17] was used to download
these drugs active site-related genes.

2.2. Data Control. The R Package Seurat function [18] was
used to set the expression of each gene in at least 3 cells,
and each cell expressed at least 250 genes to filter a single
cell. Mitochondria and rRNA quantities were further calcu-
lated by PercentageFeatureSet function. Genes expressed in
each cell were less than 5,000, the percentage of mitochon-
dria was less than 25%, and the UMI of each cell was at least
greater than 100. The FindVariableFeatures function was
employed to detect highly variable genes, followed by scaling
and PCA dimensionality reduction for all genes using the
ScaleData function.

2.3. Cell Type Annotation. We used FindNeighbors and
FindClusters [19] (Dim = 20, Resolution = 0:1) here for cell
clustering. The FindAllMarkers function was conducted to
select the marker gene. Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway annotation was performed using
R Package ClusterProfiler [20].

2.4. Compared Patient with and without Osteoporosis. Differ-
ential gene expression analysis was performed in patients
with and without osteoporosis in the GSE35959 dataset
[21] by limma package [22] with jlog 2ðFold ChangeÞj > 1
and p < 0:05.

2.5. Classification Algorithms. In GSE35959 dataset, RMS
was used to construct diagnostic model [23]. We combined
multiple genes model as well as single gene model to identify
osteoporosis.

2.6. Computation of Estimate Score, Stromal Score, and
Immune Score. R software estimation of stromal and
immune cells in malignant tumors using expression data
(ESTIMATE) arithmetic [24] was utilized to compute over-
all stroma level (stromal score), the immunocyte infiltration
(immune score), and the combination (ESTIMATE score).

2.7. ssGSEA. For analyzing the infiltration level of 28
immune cells, we used the single-sample gene set enrich-
ment analysis (ssGSEA) method of R software gene set var-
iation analysis (GSVA) [25] package [26].

2.8. Molecular Docking Simulation. In this experiment,
Autodock Vina software [27] was used for molecular dock-
ing simulation. AutoDockTools 1.5.6 [28] is used to prepare
all input files. PDB-IDs of target genes were obtained from
Protein Data Bank (PDB) [29] database. To identify the
most binding mode for ligand molecules, the Lamarckian
algorithm [30] was used with exhaustiveness being set to 8,
the maximum number of conformations output being set
to 10, and the maximum allowable energy range being set
to 3 kcal/mol. The results were processed by Pymol [31].
100 ns molecular dynamics simulations were performed
using Gromacs2019 software package [32] to assess the
binding stability of the receptor-ligand complex.

3. Results

3.1. Single-Cell RNA-Seq Profiling and Clustering. First, the
single-cell data was filtered by setting each gene to be
expressed in at least three cells, with at least 250 genes per
cell, yielding 17,669 cells. The quality control diagram of
samples before and after filtration is shown in Figure S1A-
B, which requires that the detected cells express less than
5,000 genes, the mitochondrial content is less than 25%,
and the UMI of each cell is at least more than 100.
Therefore, 15,577 cells are finally obtained. In addition, a
significant positive relationship was observed between UMI
and the number of detected genes (Pearson’s r = 0:73), and
there was a significant negative correlation between UMI
and mitochondrial content (Pearson’s R = −0:16), gene
number, and mitochondrial content (Pearson’s R = −0:16)
(Figure S1C). The cells were mapped to two dimensions
based on PC_2 and PC_1 groups. It has been found that
the two cell subpopulations were not significantly
separated (Figure S1D).

Furthermore, t-distributed stochastic neighbor embed-
ding (t-SNE) algorithm, which is commonly in visualizing
high dimensional data, was applied here for cell popula-
tion clustering. Figure 1(a) is the t-SNE diagram of two
samples, and Figure 1(b) is t-SNE of 12 cell subpopula-
tions. Next, we detected the expression of CD45 in 12 sub-
populations and found that 6 subpopulations were CD45+
BM-MSCs and 6 subpopulations were CD45-BM-MSCs
(Figure 1(c), Figure S1E).
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Figure 1: Continued.
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Accordingly, we performed differential analysis using
the FindAllMarkers function with logfc = 0:5, Minpct =
0:5, and adjPval < 0:05. The top 5 differential genes of 12
cell subpopulations in the heat map plot are illustrated
in Figure 1(d). The distribution of 12 cell subpopulations
in two samples is shown in Figure 1(e). KEGG analysis
indicated that 35 pathways were significantly enriched on
12 cell subpopulations, and many of them were related
to tumorigenesis (Figure 1(f)).

3.2. Identification of Hub Genes. Fisher test was adopted to
analyze the distribution variation of 12 cell subpopulations
between osteoporosis and osteoarthritis, as the cutoff of
FC>4 or FC<0.25 andp < 0:05, and subpopulations of
CD45- BM-MSCs_6 and CD45+ BM-MSCs_5 were selected
as vital for next analysis (Table 1).

Next, limma package was used to identified differentially
expressed gene between osteoporosis and no-osteoporosis;

as a result, 191 downregulated genes and 1,717 upregulated
genes were screened (Figures 2(a) and 2(b)). Venn analysis
between 1,908 differentially expressed gene and 135 genes,
which from chEMBL, showed that only 17 genes were tar-
gets for the treatment of osteoporosis (Figure 2(c)).

Based on the above marker genes of subpopulations,
ssGSEA analysis was used to calculate score of the two hub
subpopulations, and variance analysis of subpopulations
score between osteoporosis and no-osteoporosis indicated
that CD45+ BM-MSCs_5 subpopulation had significant dif-
ference (Figures 2(d) and 2(e)). The correlation analysis of
the 17 genes with the two hub subpopulations score demon-
strated that 7 genes (HSD17B2, ACHE, CCR4, F9,
ADRA1D, MC5R, and GRM2) were negatively correlated
with CD45+ BM-MSCs_5 subpopulation (Figure 2(f)).

3.3. Construction of Diagnostic Model Base on 7 Genes. The
diagnostic models were separately constructed for these 7
genes. The results showed that the AUC values calculated
by these 7 genes alone were not well (Figure 3). Due to the
poor diagnosis of single genes, rms was used to construct
diagnostic model based on 7 genes, and the AUC values in
GSE35959 dataset, GSE7158 dataset, GSE13850 dataset,
and GSE7429 dataset, were, respectively, 1, 0.762, 0.798,
and 0.91 (Figure 4), which are better than the AUC values
of singles genes. This data indicated that the combination
of these 7 genes is of great significance in diagnosing osteo-
porosis patients.

3.4. Analysis of Hub Genes and Immune. First, stromal score,
immune score, and ESTIMATE score were calculated by
ESTIMATE, and the results showed that three genes
(CCR4, F9, and GRM2) were positively correlated with the
immune score (Figure 5(a)). Then, 28 characteristic genes
of immune cells obtained from previous study were used to
calculate the score of immune cells by ssGSEA method.
Pearson correlation analysis showed that CCR4, F9, and
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Figure 1: Single-cell RNA analysis of osteoporosis patients and osteoarthritis patients. (a) t-Distributed stochastic neighbor embedding of
two samples. (b) t-Distributed stochastic neighbor embedding of 12 subpopulations. (c) t-Distributed stochastic neighbor embedding of 12
subpopulations after BM-MSCs cell annotation. (d) The proportion and cell numbers of 12 subpopulations in two samples. (f) Kyoto
Encyclopedia of Genes and Genomes enrichment analysis of 12 subpopulations.

Table 1: Differential analysis of cell types.

Osteoporosis/osteoarthritis
cell_name p:val fc

CD45+ BM-MSCs_1 1.03E-64 1.952078384

CD45- BM-MSCs_6 1.29E-43 40.55324249

CD45+ BM-MSCs_4 0.045726035 0.861342268

CD45+ BM-MSCs_2 0.185992587 0.934653196

CD45- BM-MSCs_2 1.50E-25 0.584120062

CD45- BM-MSCs_3 5.45E-21 0.489261845

CD45- BM-MSCs_1 3.69E-11 1.274037866

CD45- BM-MSCs_4 0.175479663 0.898346627

CD45+ BM-MSCs_3 8.77E-05 0.765464953

CD45+ BM-MSCs_5 1.89E-48 0.249892213

CD45+ BM-MSCs_6 0.52377383 1.073767195

CD45- BM-MSCs_5 1.76E-21 0.309302402
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Figure 2: Identification of hub genes. (a) Volcano plot of differentially expressed genes between osteoporosis and nonosteoporosis. (b)
Heatmap of differentially expressed genes between osteoporosis and nonosteoporosis. (c) Venn of differentially expressed genes and
target genes for osteoporosis drugs. (d) CD45-BM-MSCs score differences analysis between osteoporosis and nonosteoporosis. (e) CD45
+BM-MSCs score differences analysis between osteoporosis and nonosteoporosis. (f) The correlation analysis between 17 hub genes and
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GRM2 were significantly associated with some immune cells
(Figure 5(b)). Enrichment analysis was conducted by GSVA
package, and the correlation between three genes and path-
ways was calculated by Pearson’s method. The results indi-
cated that these three genes were correlated with multiple
pathways (Figure 5(c)).

3.5. Prediction of Therapeutic Drugs. Since the area under the
curve (AUC) values of F9 gene were higher than those of the
other two genes in multiple data sets, we believed that the
role of F9 gene in osteoporosis patients has more potential
to be studied. The RCORR function of Hmisc package was

used for correlation analysis of osteoporosis patients in
GSE35959 data set, and a total of 1377 genes were highly sig-
nificantly correlated with F9 gene. The distance density plot
of drug to F9-related gene set is shown in Figure 6.

Molecular docking was conducted to verify whether the
top 5 compounds closest to F9 gene set (Table 2) had signif-
icant regulatory effects on F9 protein. The results showed
that all the key compounds in the network, especially
DB03742, had strong affinity for F9 protein (-8.2 kcal/mol)
(Figure 7(a)). In addition, DB03742 could form a stable
complex with F9 by hydrogen bonding with SER190 of F9
protein and hydrophobic interaction with ALA95, LYS98,
TYR99, CYS191, and TRP215 (Figures 7(b) and 7(c)).

Molecular dynamics simulations at 100ns showed that
the F9 protein concept was stable (Figures 7(d) and 7(f)).
In addition, the RMSF value of compound DB03742 was
basically stable at about 3Å (Figure 7(e)). In general, com-
pound DB03742 binds to the active site of F9 protein rela-
tively stable, suggesting that compound DB03742 has a
high potential as an inhibitor of F9 protein.

4. Discussion

ScRNA-seq is a highly useful tool in transcriptional classi-
fication of various disease cell types [33–36]. Herein, oste-
oporosis scRNA-seq data from GEO database was
collected to distinguish cell subpopulations, and here, we
determined 12 subgroups, among which 6 cell subpopula-
tions belong to CD45-BM-MSCs. In a large set of samples,
specifically expressed gene markers could be utilized as
specific markers in cell subgroup identification. Further-
more, 7 key genes associated with osteoporosis treatment
drugs were screened and found to be negatively correlated
with CD45+ BM-MSCs_5 subgroup score, and they
showed excellent diagnosis efficiency, especially F9 gene.
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Figure 4: Construction of 7 key gene diagnostic models.
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Figure 5: The correlation analysis between hub genes and immune. (a) The correlation analysis between 7 hub genes and immune
scores. (b) The correlation analysis between 7 hub genes and 28 immune cells scores. (c) Heatmaps of potentially regulated
pathways of 3 genes associated with immune.
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Through network pharmacology, we found that DB03742
is highly bound to F9 protein, which is a potential F9 pro-
tein inhibitor, and speculated that DB03742 may be effec-
tive in the treatment of osteoporosis. In previous research,
Liang et al. reported the heterogeneity of tumor immune
cells analyzed by scRNA-seq, and a risk model was con-
structed to predict the survival of ovarian cancer samples
[37]. Juan Lu et al. analyzed the heterogeneity of the
TIME at the single-cell level and determined a 3-gene
model that could accurately evaluate the survival outcome
and immunotherapy response of HCC samples [38]. This
work was the first to identify the heterogeneity of osteopo-

rosis at the single-cell level and to identify key genes and
therapeutics for the diagnosis of osteoporosis.

Here, we performed differential analysis on gene expres-
sion data from the GSE35959 database. 7 genes were vital for
diagnosis of osteoporosis, among which 17β-hydroxysteroid
dehydrogenase type 2 (17β-HSD2) is an enzyme that cata-
lyzes the conversion of estradiol (E2) and testosterone (T)
to estrone (E1) and androstenedione, respectively. Blockade
of 17β-HSD2 increases intracellular E2 and T, inhibits fur-
ther bone resorption by osteoclasts, and stimulates osteo-
blast osteogenesis by estrogen and androgen receptor
stimulation, respectively [39, 40]. A minor reduction in

Table 2: Molecular docking of drugs to F9 protein.

Compound Autodock Vina score H-bond interactions Hydrophobic interactions

DB00269 -6.4 LYS98, SER195 TYR99

DB00947 -7.7 LYS98, SER190 LYS98, TYR99, SER190, CYS191, SER214, TRP215, CYS220

DB01357 -7.3 SER190 SER190, CYS191, TRP215, CYS220

DB02715 -8.0 SER190 TYR99, CYS191, TRP215,

DB03742 -8.2 SER190 ALA95, LYS98, TYR99, CYS191, TRP215
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Figure 7: Molecular docking and dynamics simulation. (a) Surface binding of compound DB03742 to F9 protein. (b) 2D diagram of
interaction between compound DB03742 and F9 protein. (c) 3D diagram of interaction between compound DB03742 and F9 protein. (d)
RMSD of F9 protein skeleton during 100 ns molecular dynamics simulation. (e) RMSF of F9 protein skeleton during 100 ns molecular
dynamics simulation. (f) Binding diagram of compound DB03742 to F9 protein during 100 ns molecular dynamics simulation.
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Th2 cells was detected from the mice with CCR4 knock-out
in parallel with major Treg migration impairment. Study
showed that such a phenomenon was related to higher pro-
inflammatory and osteoclastogenic cytokine levels and
increased inflammatory bone loss [41]. At present, most
genes have not been reported to play a role in osteoporosis.
Moreover, the prediction performance of 7 genes model was
not very good, probably because of the sample size. These
results suggested that these genes may play an important
role in the development of osteoporosis and provided evi-
dences for further research.

In this work, we analyzed the gene expression profile of
the scRNA-seq data, the results of which improved our
understanding of the heterogeneity of osteoporosis at the
single-cell level and provided a 7-gene-based diagnostic
model and therapeutic agent. However, there are some lim-
itations to this study. First, the sample size was relatively
small. Secondly, functional experiments and potential
molecular mechanisms of these 7 genes need to be studied.

By the analysis of scRNA-seq, we analyzed the heteroge-
neity of osteoporosis at the single-cell level and determined a
7-gene diagnostic model that could accurately diagnostic
patients with osteoporosis.

Data Availability

The datasets analyzed in this study could be found in
GSE35959 at [https://www.ncbi.nlm.nih.gov/geo/query/acc
.cgi?acc=GSE35959], GSE7158 dataset at [https://www.ncbi
.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7158], GSE13850
dataset at [https://www.ncbi.nlm.nih.gov/geo/query/acc
.cgi?acc=GSE13850], and GSE7429 dataset at [https://www
.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7429].
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