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Introduction

Tuft cells (TC) were identified over 60 years ago by 
Rhodin & Dalhamn while investigating tracheal epithe-
lial structure using transmission electron microscopy 
(TEM).1,2 TC were identified using morphological crite-
ria alone (i.e., the presence of rare bottle-shaped cells 
with “tuft-like” brush apical microvilli) in multiple tissues 
including airways, nasopharyngeal cavities, and the 
intestine,1,3–6 and they have since been described as 
cholinergic chemosensory epithelial cells that play a 
role in signal transduction across epithelia.7,8 Moreover, 
TC have been shown to regulate innate immune 
responses to various microbial stimuli,9–11 to help mod-
ulate tissue repair,12,13 and host-defense responses.14,15 
While these studies provide some understanding of TC 
features and function, these cells remain understudied 
in all organs, particularly salivary glands where they 
have only been identified by a single research group in 
excretory ducts of rat salivary glands.16 Thus, the cur-
rent paper seeks to identify TC in salivary glands from 
several species (i.e., mouse, pig, and human) to more 

widely establish their presence in the salivary glands. 
For this purpose, we employed transmission electron 
microscopy and confocal immunofluorescent analysis 
for POU class 2 homeobox 3 (POU2F3), which is con-
sidered to be a master regulator of TC identity because 
knocking out its gene leads to a complete lack of 
TC.11,17–21 This combination of ultrastructural analysis 
and confocal microscopy provides the gold standard for 
unambiguous identification of TC,22,23 whereas previ-
ous studies have shown poor recognition of this rare 
cell type by the more commonly chosen method of 
hematoxylin and eosin (H&E) staining.24
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Summary
Tuft cells are bottle-shaped, microvilli-projecting chemosensory cells located in the lining of a variety of epithelial tissues 
and, following their identification approximately 60 years ago, have been linked to immune system function in a variety 
of epithelia. Until recently, Tuft cells had not been convincingly demonstrated to be present in salivary glands with their 
detection by transmission electron microscopy only shown in a handful of earlier studies using rat salivary glands, and no 
follow-up work has been conducted to verify their presence in salivary glands of other species. Here, we demonstrate 
that Tuft cells are present in the submandibular glands of various species (i.e., mouse, pig and human) using transmission 
electron microscopy and confocal immunofluorescent analysis for the POU class 2 homeobox 3 (POU2F3), which is 
considered to be a master regulator of Tuft cell identity. (J Histochem Cytochem 70: 659–667, 2022)
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Materials and Methods

Materials

Rabbit anti-mouse/human POU class 2 homeobox 3 
(POU2F3) antibody (e.g., to detect this protein in mouse 
and human tissues) was obtained from Mybiosource 
(Vancouver, Canada). Rabbit anti-pig POU2F3 antibody 
(e.g., to detect this protein in pig tissue) was obtained 
from Sigma (St. Louis, MO). Mouse anti-mouse/pig/
human cytokeratin-7 antibody (ductal marker) was 
obtained from Abcam (Cambridge, MA). Alexa Fluor 
488-conjugated anti-rabbit IgG, Alexa Fluor 568-conju-
gated anti-mouse IgG, phosphate buffered saline 
(PBS), 4′,6-diamidino-2-phenylindole (DAPI), triton 
X-100, sodium citrate, xylene and ethanol were pur-
chased from Thermo Fisher Scientific (Waltham, MA).

Animals

Three female C57BL/6J mice from Jackson Laboratory 
at 5-6 weeks of age were euthanized with CO2 (30% per 
minute) followed by abdominal exsanguination and 
removal of the submandibular glands (SMG). All animal 
management and procedures were approved by the 
Animal Care and Use Committee of the University of 
Missouri. Submandibular glands from two female pigs at 
3 years of age were purchased from Zyagen (San Diego, 
CA) and processed, as detailed below. Finally, small 
intestine sections from all species herein evaluated were 
purchased from Zyagen for use as a positive control.

Human Subjects

Three human SMG from female subjects (average 
age: 76.3 years old) were obtained from the University 
of Missouri, Department of Otolaryngology, Head and 
Neck Surgery. Note that tissues are healthy subman-
dibular gland tissue from head and neck cancer 
patients undergoing neck dissections that would oth-
erwise be discarded. Usage of all human specimens 
was conducted under the guidelines and with the 
approval of the University of Missouri Health Sciences 
Institutional Review Board and informed consent was 
obtained for each patient.

Transmission Electron Microscopy

Mouse, pig, and human SMG were fixed using 2% 
(v/v) glutaraldehyde and 2% (v/v) formaldehyde (pre-
pared from paraformaldehyde) in 0.1 M cacodylate 
buffer, pH 7.2, overnight at 4°C. Fixed specimens were 
then rinsed four times for 10 min each with 30 mM 
HEPES, pH 7.2, 70 mM NaCl, and 6% (w/v) sucrose, 
rinsed three times with 20 mM Tris, pH 7.2, containing 

120 mM NaCl and 5 mM CaCl2, postfixed with osmium 
tetroxide 1% (w/v) OsO4, 70 mM NaCl, 5 mM CaCl2, 
30 mM HEPES buffer, pH 7.4, for 10 min, and rinsed 
three times for 10 min each with distilled water. Fixed 
samples were stained overnight in aqueous 0.5% 
(w/v) uranyl acetate, pH 6.0, at room temperature and 
infiltrated with Epon-Araldite epoxy resin (Electron 
Microscopy Sciences, Hatfield, PA). The infiltrate was 
placed in fresh resin in ballistic electron-emission 
microscopy (BEEM) embedding capsules and polym-
erized at 60°C. Sections of 70 nm thickness were cut 
on a Leica ultra-cut microtome (UCT) and stained with 
5% (w/v) uranyl acetate and Sato’s triple lead salt stain 
consisting of 1% (w/v) lead citrate, 1% (w/v) lead ace-
tate, 1% (w/v) lead nitrate, and 2% (w/v) sodium citrate. 
Samples were viewed and photographed with a Japan 
Electro Optics Laboratories (JEOL 1400) transmission 
electron microscope.

Immunofluorescence

Mouse, pig, and human SMG were fixed in 10% (v/v) 
formalin for 24 hr at room temperature and later trans-
ferred to 70% (v/v) ethanol. Next, SMG were dehy-
drated through a series of graded ethanol baths, 
embedded in paraffin, and cut into 5 µm sections. 
SMG paraffin-embedded slides from all species (i.e., 
mouse, pig, and human) were then deparaffinized by 
washing three times for 5 min in 100% xylene. Slides 
were then washed for 5 min in xylene: ethanol (1:1), 
twice for 5 min in 100% ethanol, followed by 5 min 
washes once each in 95%, 80%, 70%, and 50% (v/v) 
ethanol and twice in distilled water. Then, deparaf-
finized tissue sections were incubated with sodium 
citrate buffer, 10 mM sodium citrate, 0.05% (v/v) Tween 
20, pH 6.0, at 95°C for 30 min for antigen retrieval. 
Next, samples were rinsed twice with distilled water 
and permeabilized with 0.1% (v/v) Triton X-100 in PBS 
at room temperature for 45 min. Sections were then 
blocked with 5% (v/v) goat serum in PBS at room tem-
perature for 1 hr and incubated with rabbit anti-
POU2F3 antibody (1:500) for mouse and human SMG 
and (1:500) for pig SMG as well as mouse-anti-cyto-
keratin-7 (1:100, ductal marker) for all samples at 4°C 
overnight. Then, specimens were washed three times 
with PBS and incubated with Alexa Fluor 488-conju-
gated anti-rabbit IgG (1:500; A-11008, ThermoFisher) 
at room temperature for 1 hr. Finally, sections were 
washed three times with PBS and counterstained with 
DAPI iodide at room temperature for 15 min (1:1,000 
dilution) and images were captured with a 63× objec-
tive and analyzed using a confocal Stellaris 5 Leica 
microscope. Finally, positive controls from all species 
were processed as detailed above and are shown in 
Supplemental Fig. 1.
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Results

Identification of Tuft Cells in Submandibular 
Glands Using Ultrastructural Analysis
Using TEM, we were able to identify structures consis-
tent with TC in mouse, pig and human SMG. In mice, 
we observed bottle-shaped cells lacking secretory 
granules with a distinct cluster of microvilli at the nar-
row apical surface (Fig. 1A and B, yellow dotted area). 
Notably, the apical microvilli were thicker and longer 
than those observed in neighboring cells (Fig. 1B, 
green arrow), consistent with the presence of TC in 
mouse SMG epithelia. Moreover, multiple apical vesi-
cles were observed in the supranuclear cytoplasm (Fig. 

1C, red arrow), while TC were likewise noted to be 
present in the striated ducts of mouse SMG but absent 
in other related structures (i.e., in the acinus, interca-
lated duct and excretory duct). As for pig and human 
tissues (Figs. 2A and B and 3A and B, yellow dotted 
areas), we observed similar TC features as in mouse 
SMG, except that the apical microvilli surface was less 
developed (i.e., shorter) (Figs. 2B and 3B, green 
arrows). Finally, multiple apical vesicles were detected 
in the supranuclear cytoplasm from pigs and human 
tissues (Figs. 2C and 3C, red arrows). Together, these 
results indicate that mouse, pig and human SMG dis-
play a cell type consistent with TC in striated ducts with 
remarkable similarity across these species.

Figure 1. Fine structure of Tuft cells (TC) of mouse SMG. Shown is a transmission electron micrograph of TC in a mouse SMG  
striated duct (A). Note the bottle-like cell shape at the nucleus with narrow apical and basal portions consistent with TC morphology 
(B). There are numerous apical vesicles in the supranuclear cytoplasm (C). The yellow dotted line indicates a TC while the green and 
red arrows denote characteristic apical microvilli and tubulovesicular system, respectively. Scale bars represent 10 (A), 2 (B), and 2 (C) 
µm, respectively. Abbreviations: SMG, submandibular glands.

Figure 2. Fine structure of Tuft cells (TC) of pig SMG. Shown is a transmission electron micrograph of TC in a pig SMG striated duct 
(A). Note the bottle-like cell shape at the nucleus with narrow apical and basal portions consistent with TC morphology (B). There 
are numerous apical vesicles in the supranuclear cytoplasm (C). The yellow dotted line indicates a TC while the green and red arrows 
denote apical microvilli and the tubulovesicular system. Scale bars represent 5 (A), 5 (B) and 2 (C) µm, respectively. Abbreviations: SMG, 
submandibular glands; TC, Tuft cells.
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Identification of Tuft Cells in Submandibular 
Glands Using Confocal Analysis

While the results above showed cells consistent with TC 
morphology within mouse, pig and human SMG, we 
confirmed their identity using a specific TC marker. Our 
results indicate that striated ducts of mouse (Fig. 4, white 

arrow), pig (Fig. 5, white arrow), and human (Fig. 6, white 
arrow) SMG display positive staining for POU class 2 
homeobox 3 (POU2F3, herein employed as a master 
regulator of TC identity as detailed above).11,17–21 
Together, these results indicate for the first time the pres-
ence of TC in striated ducts of SMG in mice, pigs and 
humans.

Figure 3. Fine structure of Tuft cells (TC) of human SMG. Shown is a transmission electron micrograph of TC in a human SMG striated 
duct (A). Note the bottle-like cell shape at the nucleus with narrow apical and basal portions consistent with TC morphology (B). There 
are numerous apical vesicles in the supranuclear cytoplasm (C). The yellow dotted line indicates a TC while the green and red arrows 
denote characteristic apical microvilli and the tubulovesicular system. Scale bars represent 5 (A), 2 (B), and 1 (C) µm, respectively. 
Abbreviations: SMG, submandibular glands; TC, Tuft cells.

Figure 4. TC are present in mouse SMG. Five microns of a paraffin embedded SMG section were stained with rabbit anti-POU2F3 
and mouse anti-cytokeratin-7, followed by anti-rabbit Alexa Fluor 488 (green) and anti-mouse Alexa Fluor 568 IgG (red) secondary 
antibodies and counterstained with 4,’6-diamidino-2-phenylindole (blue). Images were analyzed using a Stellaris microscope at low (A) 
and high (B) magnifications. Yellow dotted lines indicate area that was magnified. White arrow denotes TC in SMG duct. Images are 
representative of n = 3 specimens. Scale bars from low and high magnification represent 100 and 50 µm, respectively. Abbreviations: 
SMG, submandibular glands; TC, Tuft cells.
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Figure 5. TC are present in pig SMG. Five microns of a paraffin embedded SMG section were stained with rabbit anti-POU2F3 and 
mouse anti-cytokeratin-7, followed by anti-rabbit Alexa Fluor 488 (green) and anti-mouse Alexa Fluor 568 immunoglobulin G (red) 
secondary antibodies and counterstained with 4’,6-diamidino-2-phenylindole (blue). Images were analyzed using a Stellaris microscope at 
low (A) and high (B) magnifications. Yellow dotted lines indicate area that was magnified. White arrow denotes TC in SMG duct. Scale 
bars from low and high magnification represent 100 and 50 µm, respectively. Abbreviations: SMG, submandibular glands; TC, Tuft cells.

Figure 6. TC are present in human SMG. Five microns of a paraffin embedded SMG section were stained with rabbit anti-POU2F3 
and mouse anti-cytokeratin-7, followed by anti-rabbit Alexa Fluor 488 (green) and anti-mouse Alexa Fluor 568 immunoglobulin G (red) 
secondary antibodies and counterstained with 4’,6-diamidino-2-phenylindole (blue). Images were analyzed using a Stellaris microscope at 
low (A) and high (B) magnifications. Yellow dotted lines indicate area that was magnified. White arrow denotes TC in SMG duct. Images 
are representative of n = 3 specimens. Scale bars from low and high magnification represent 100 and 50 µm, respectively. Abbreviations: 
SMG, submandibular glands; TC, Tuft cells.
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Discussion

We demonstrated the presence of TC in striated ducts of 
mouse, pig, and human SMG. To the best of our knowl-
edge, this is the first study showing TC in salivary glands 
of these species and encourages further investigation of 
TC function in salivary glands. In other epithelia, TC 
have been shown to regulate immunomodulatory path-
ways via chemosensory signaling. Studies have shown 
that TC express taste receptor (TasR) signaling genes, 
including α-gustducin,25 transient receptor potential cat-
ion channel subfamily M member 5 (Trpm5),26,27 and 
phospholipase Cβ2 (Plcβ2).28 Moreover, TC modulate 
the expression of neuronal and inflammatory gene path-
ways (e.g., enzymes and are involved in the biosynthe-
sis of acetylcholine [Ach]29 and eicosanoids30,31 as well 
as interleukin ([IL]-25).9–11 Other studies in epithelial tis-
sues have demonstrated that TC respond to stimuli via 
activation of taste receptors and their downstream sig-
naling molecules, leading to the release of effector pro-
teins that activate neighboring epithelial cells and 
sub-epithelial immune and non-immune cells.32–34 
Additionally, TC have been shown to be the primary 
source of IL-25 in the intestine whose release increases 
in response to parasites.9–11 Specifically, IL-25 stimulates 
innate lymphoid cells to release IL-13, which provokes 
epithelial remodeling as evidenced by expansion of TC 
and goblet cells that ultimately leads to parasite removal 
through the increased production of mucus.9–11 
Additionally, deletion of Pou2f3 results in complete abla-
tion of intestinal TC and defective immune responses to 
parasites,11 while airways of Pou2f3 knockout mice like-
wise display and absence of TC17,18 together with 
decreased leukotrienes and IL-25 secretion.35,36 Despite 
the clear evidence of TC contribution to immune func-
tioning presented above, the functional role of TC 
remains poorly understood in salivary glands. To begin 
filling this gap in the oral health literature, we postulate 
that activation of chemosensory receptors in TC regu-
late both innate and adaptive immune responses within 
the salivary gland as occurs in other epithelial tis-
sues.28,37 Based on our findings of the existence of TC 
within striated salivary glands of mouse, pigs, and 
humans, future studies are needed to determine whether 
the primary role of TC is to regulate chemosensory and 
immunomodulatory pathways in these salivary glands.

Regarding specific secretory functions, previous 
studies have shown that TC produce and secrete 
Ach.15,38,39 Since Ach release in airway epithelia pro-
motes antimicrobial peptide secretion,14,40 we postulate 
that TC in salivary glands release Ach to regulate the 
antimicrobial peptide (e.g., defensins, cathelicidins, 
and histatins) composition of saliva.41,42 Considering it 
is well-established that salivary gland fluid secretion is 
mediated by activation of muscarinic receptors via the 

release of neuronal Ach,43–45 it is possible that TC in 
salivary glands also promote Ach-mediated saliva 
secretion from salivary acinar epithelial cells, which 
would represent a novel TC function. Therefore, future 
studies should assess the role of TC in the regulation 
of saliva quantity and quality that could be relevant to 
the treatment of salivary gland hypofunction as seen in 
the autoimmune disease Sjögren’s syndrome46 and 
radiation-induced damage of salivary glands caused 
by radiotherapy for head and neck cancers.47

In summary, this study demonstrates for the first 
time that TC are present in the striated ducts of salivary 
glands of mouse, pigs, and humans (Fig. 7), which 
incentivizes future investigation on the role of salivary 
TC in oral health and disease. Based on these and pre-
vious findings, we postulate that salivary TC play a role 
in the regulation of saliva secretion and innate and 
adaptive immunity, which warrants further elucidation.
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Figure 7. Diagram representing the localization of Tufts cells 
in salivary glands based on the findings obtained in this study. 
Salivary gland structure consists of secretory acini and ducts (i.e., 
intercalated, striated and excretory). In this diagram, Tuft cells 
were depicted by their distinct bottle-shaped morphology and 
well-developed “tuft-like” microvilli at the apical surface. As for 
their location, these cells were restricted to striated ductal epi-
thelia. Created using Biorender.com.
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