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Brain metastases: A Society for Neuro-Oncology (SNO) 
consensus review on current management and future 
directions
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Abstract
Brain metastases occur commonly in patients with advanced solid malignancies. Yet, less is known about brain 
metastases than cancer-related entities of similar incidence. Advances in oncologic care have heightened the im-
portance of intracranial management. Here, in this consensus review supported by the Society for Neuro-Oncology 
(SNO), we review the landscape of brain metastases with particular attention to management approaches and on-
going efforts with potential to shape future paradigms of care. Each coauthor carried an area of expertise within 
the field of brain metastases and initially composed, edited, or reviewed their specific subsection of interest. After 
each subsection was accordingly written, multiple drafts of the manuscript were circulated to the entire list of au-
thors for group discussion and feedback. The hope is that the these consensus guidelines will accelerate progress 
in the understanding and management of patients with brain metastases, and highlight key areas in need of fur-
ther exploration that will lead to dedicated trials and other research investigations designed to advance the field.
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Brain metastases are common among patients with ad-
vanced solid malignancies and represent a significant source 
of morbidity and mortality.1–3 Although the true incidence 
of brain metastases has been challenging to determine, it is 
estimated that approximately 10–40% of patients with solid 
tumors will develop brain metastases, translating to an esti-
mated incidence of brain metastases in the United States of 
70 000–400 000 cases per year.1,4 With expanding availability 
and utilization of magnetic resonance imaging (MRI), as well 
as improving systemic therapy for extracranial control with 
lagging intracranial efficacy, the incidence of brain metas-
tases has increased over time.1,5

Given the heterogeneous penetration of most systemic 
therapies into the microenvironment of brain metastases, 
the historical management of brain metastases has largely 
consisted of local, brain-directed therapy involving stereo-
tactic radiation or large field radiation therapy and, when 
indicated, neurosurgical resection.6,7 In recent years, ad-
vances in systemic therapy have led to a paradigm shift 
for certain patients with brain metastases, with systemic 
therapy as monotherapy now a first-line consideration 
for subgroups of asymptomatic patients.8–10Although the 
prognosis for many patients with brain metastases re-
mains guarded, it does seem to be improving.2,11

Despite the high incidence of brain metastases, which ri-
vals that of primary breast, colorectal, lung, and prostate 

cancer in the United States, a relative dearth of oncologic 
research devoted to patients with brain metastases exists 
(Figure 1). As a result, heterogeneity in practice exists 
among different centers and individuals.12 The focus of this 
consensus statement is to provide a comprehensive out-
line regarding the epidemiology, pathogenesis, diagnosis, 
and treatment of brain metastases, as well as highlight fu-
ture directions in investigative efforts and clinical care that 
may improve the outlook and management of patients with 
brain metastases. This work is part of a series of articles sup-
ported by SNO seeking to provide context regarding optimal 
oncologic treatment and highlight areas of needed research 
of common neurologic entities; this article complements 
recently published recommendations from ASCO-SNO-
ASTRO.13 Of note, leptomeningeal disease will be addressed 
by a separate, future effort.

Epidemiology

Incidence

The exact incidence of brain metastases has historically 
been difficult to elucidate. This has, in part, been due to a 
lack of mandated reporting of brain metastases to local 
and federal registries, such as the Central Brain Tumor 
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Fig. 1 Incidence and research output as measured by ASCO abstracts (annual meeting) and active/completed prospective trials based on 
clinicaltrials.gov among patients with brain metastases versus other oncologic entities of similar incidence. (Abbreviations: ASCO, American 
Society of Clinical Oncology; CRC, colorectal cancer; US, United States).
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Registry of the United States.14,15 In 2016, the Surveillance 
Epidemiology and End Results (SEER) program released 
data regarding the presence versus absence of brain me-
tastases among patients with extracranial primaries at 
the time of primary cancer diagnosis.16 Thereafter, Cagney 
et  al. reported the first population-based epidemiologic 

study of brain metastases in the United States using 
SEER data (Table 1).16 However, because most consensus 
guidelines, such as those published by the National 
Comprehensive Cancer Network (NCCN), only favor 
screening imaging of the brain for specific malignancies/
stages of disease, including select patients with small cell 

  
Table 1 Incidence Proportion of Brain Metastases in the United States at Diagnosis of Malignancy by Primary Site. Reproduced with permission 
from Lamba et al., Neuro-Oncology, 20213

Primary Site Sub-Site Incidence Proportion Among Entire 
Cohorta 

Incidence Proportion Among 
Subset with Metastatic Diseaseb 

Breast

 HR+/HER2- 0.22 5.46

 HR+/HER2+ 0.61 7.98

 HR-/HER2+ 1.09 11.45

 Triple negative 0.68 11.37

Head and Neck All 0.20 5.06

Gastrointestinal

 Esophagus 1.66 5.31

 Gastric 0.64 1.96

 Hepatobiliary 0.36 1.77

 Pancreatic 0.41 0.82

 Colorectal 0.27 1.36

 Anal 0.11 1.58

 Other gastrointestinal 0.68 2.08

Genitourinary

 Renal 1.48 10.84

 Bladder 0.25 3.45

 Prostate 0.07 1.47

 Testicular 0.88 7.61

 Other genitourinary 0.23 2.88

Gynecologic

 Ovarian 0.24 0.94

 Endometrial 0.22 3.40

 Cervical 0.38 2.94

 Other gynecologic 0.21 2.19

Lung

 Small cell 15.83 23.46

 Squamous cell 5.29 15.86

 Adenocarcinoma 14.44 26.82

 Bronchioloalveolar 2.31 15.47

 Nonsmall cell not otherwise spe-
cified

12.81 25.56

Melanoma Any 0.65 28.16

Sarcoma Any 0.74 4.44

Thyroid Thyroid 0.12 5.86

All others All others 1.73 9.94

aIncidence proportion was defined as the number of patients diagnosed with brain metastases and a specific primary cancer divided by the total 
number of individuals diagnosed with that primary cancer.
bIncidence proportion was defined as the number of patients diagnosed with brain metastases and a specific primary cancer divided by patients with 
de novo metastatic disease to any distant site.
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lung cancer (SCLC), non-small cell lung cancer (NSCLC), 
melanoma, testicular cancer, alveolar soft parts sarcoma, 
angiosarcoma, and left-sided cardiac sarcoma, but not 
other cancers such as breast cancer, renal cancer, gastro-
intestinal primaries, head/neck cancer, and most other can-
cers, the reported incidence for unscreened malignancies 
may be underestimated.17

A significant proportion of patients free from brain 
metastases at initial diagnosis will develop intracranial 
disease later in their clinical course.18,19 Unfortunately, 
recurrence-based information after initial management 
is not available in SEER, although promising claims-
based techniques to abstract such data now exist.20 Data 
depicting the cumulative incidence of brain metastases 
can be obtained for select patients from other sources. For 
example, among patients in the adjuvant HERA trial who 
died, approximately 50% of patients with HER2-positive 
breast cancer develop intracranial metastases by the time 
of death.18 These data led to the activation of prospective 
studies evaluating the role of screening MRI of the brain in 
patients with advanced, metastatic, or inflammatory breast 
cancer (NCT04030507, NCT03881605). Among patients with 
SCLC, autopsy series have indicated that approximately 
80% of patients will develop brain metastases.21 For many 
cancers, the role of surveillance imaging of the brain after 
an initially unremarkable scan has not been elucidated by 
prior investigations or delineated by consensus guidelines. 
Given the high proportion of patients at risk for develop-
ment of intracranial disease after initial cancer diagnosis, 
characterization of the incidence/outcomes of brain metas-
tases among this population is critical.

Prognosis

Prior studies of prognosis in patients with brain metas-
tases led to the development, validation, and widespread 
utilization of two major prognostic indices, namely the re-
cursive partitioning analysis (RPA) and the more contem-
porary diagnosis-specific graded prognostic assessment 
(DS-GPA).22–26 The DS-GPA is based on aggregated data 
from patients with brain metastases across multiple insti-
tutions and has identified significant prognostic factors, 
within each major primary tumor site, including Karnofsky 
performance status (lung, melanoma, renal cell, breast, and 
gastrointestinal primaries), age (lung, breast), presence of 
extracranial metastases (lung), and number of brain me-
tastases (lung, melanoma, and renal cell).22,27–30 More re-
cent versions of these scores have also included molecular 
covariates, such as EGFR and ALK alterations in lung ade-
nocarcinoma (lung-molGPA),31 estrogen/progesterone and 
HER2-receptor status for breast cancer (breast-GPA),29 and 
BRAF status in melanoma (melanoma-molGPA).30

Compared to GPA-based indices, population-based delin-
eations of survival among patients with brain metastases, 
using validated claims-based techniques,20 have displayed 
more concerning prognostic estimates (Table 2). A  SEER-
Medicare study of 9882 older patients with brain metastases 
demonstrated median survival times of <4 months across all 
primary sites (lung, breast, melanoma, kidney, esophageal, 
and colorectal) with the exception of a smaller cohort of pa-
tients with ovarian primaries.11 In a separate SEER study 

of adult patients of all ages harboring brain metastases at 
the time of diagnosis of the primary, a median survival of 
≤12 months across nearly all primary sites was noted.16

Epidemiological studies of brain metastases are essen-
tial to characterize evolving trends in incidence, identify 
at-risk populations, inform screening paradigms, guide 
treatment strategies, and facilitate trial design. Efforts 
should be made to collect this data more routinely in 
national and state registries.

Biology and Molecular Pathogenesis

Pathogenesis

Multiple theories regarding the pathophysiology of in-
tracranial metastatic disease have been postulated. 
Cancer cells spread as a result of epigenetic and prolifer-
ative changes, including growth of preexisting or devel-
opment of new blood vessels,32,33 followed by vascular 
invasion.34 Cancer cells reaching the brain must trav-
erse the blood–brain barrier (BBB) and adhere to brain 
endothelia potentially via upregulation of genes related 
to mitogenesis and extracellular matrix destruction, 
such as vascular endothelial growth factor and matrix 
metalloproteinases, activation of signaling pathways that 
permeabilize the BBB, and increased expression of pro-
teins allowing for proteolysis, extravasation, and tumor 
cell colonization.4,33,35–37 Once inside the brain, tumor cell 
interactions with brain endothelia can promote adhesion 
within the intracranial parenchyma, via upregulation of 
particular cell surface proteins and growth factors.38,39 
Finally, complex interactions between the tumor cells 
and brain cells, including formation of tumor-astrocyte 
gap junctions and subsequent secretion of inflammatory 
chemokines, promote tumor cell motility, invasion, and 
survival (Figure 2).4 Examples of specific metastasis–
brain interactions underlying the pathogenesis of brain 
metastases demonstrated via in vitro and mouse models 
include estradiol-induced activation of brain-derived 
neurotrophic factor in astrocytes interacting with TrkB 
receptors on breast tumor cells, synaptic formation be-
tween cancer cells and glutamergic neurons allowing 
for N-methyl-D-aspartate receptor (NMDAR) activation, 
loss of PTEN expression among cancer cells once in the 
brain microenvironment, driven by signals from resident 
astrocytes and leading to chemokine-mediated prolifer-
ation of the metastatic cells, and cancer cell cooption of 
a pro-metastatic program driven by STAT3 in reactive 
astrocytes.40–43 Targeting of these pathways offers sub-
stantial promise in inhibiting the successful proliferation 
of brain metastases.

Although a similar set of processes must occur regard-
less of primary tumor type, studies have implicated distinct 
genes involved with brain metastasis formation by primary 
site. For example, cyclooxygenase 2 (COX2), epidermal 
growth factor (EGFR) ligand HBEGF, and the membrane 
glycosyltransferase ST6GALNAC5 facilitate the develop-
ment of breast cancer brain metastases, while lymphoid 
enhancing-binding factor 1 (LEF1), Cadherin 2, and Kinesin 
Family Member C1 (KIFC1) are strongly associated with lung 
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Table 2 Prognosis of Brain Metastases in the United States by Primary Site as Derived from SEER, SEER-Medicare, and GPA-based Data.a,b 
Reproduced with permission from Lamba et al., Neuro-Oncology, 20213

Primary 
Site 

Sub-Site Median Survival (Months) 
Based on SEER data 

Median Survival (Months) in Older Pa-
tients Based on SEER-Medicare Datac 

Median Survival (Months) 
Based on GPA Data 

Breast   2.1-4.5 16

 HR+/HER2− 14.0 2.0–4.9  

 HR+/HER2+ 21.0 2.5–6.4  

 HR−/HER2+ 10.0  

 Triple negative 6.0 2.3–3.4  

Head and 
Neck

All 5.0   

Gastroin-
testinal

   8

 Esophagus 4.0 2.3–4.0  

 Gastric 4.0   

 Hepatobiliary 3.0   

 Pancreatic 2.0   

 Colorectal 6.0 2.5–3.0  

 Anal 7.0   

 Other gastrointes-
tinal

4.0   

Genitourinary

 Renal 5.0 1.8–3.5 12

 Bladder 4.0   

 Prostate 12.0   

 Testicular Not reached   

 Other genitouri-
nary

7.0   

Gynecologic

 Ovarian 5.0 7.5–7.7  

 Endometrial 4.0   

 Cervical 4.0   

 Other gynecologic Not reached   

Lung   2.9–3.3  

 Small cell 6.0 3.0–3.6  

 Squamous cell 4.0 2.2–2.8  

 Adenocarcinoma 6.0 3.7–3.8 15

 Bronchioloalveolar 10.0   

 Nonsmall cell not 
otherwise specified

4.0 1.9–2.7  

Mela-
noma

Any 6.0 2.8–3.0 10

Sarcoma Any 4.0   

Thyroid Thyroid 5.0   

All 
others

All others 3.0   

Abbreviations: GPA, Graded Prognostic Assessment; HER2, Human Epidermal Growth Factor receptor 2; HR, Hormone Receptor; SEER, 
Surveillance Epidemiology and End Results.
aEmpty cells reflect missing data.
bFor patients with brain metastases at the time of diagnosis of primary malignancy.
cRange reflects estimates for synchronous (present at diagnosis of systemic malignancy) and metachronous (developed after diagnosis of systemic 
malignancy) brain metastases; limited to patients ≥65 years of age.
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cancer brain metastases.33,38,44,45 Activation/alteration of the 
PI3K/AKT and cyclin-dependent kinase (CDK) pathways have 
also been associated with increased risk of multiple tumors 
to metastasize to the brain.10,46–50 Copy number changes may 
also lead to the formation of brain metastases; for example, 
amplifications in YAP1 and MMP13 contribute to brain me-
tastases in lung adenocarcinoma.50 Characterization of the 
site-specific genes that must be upregulated for brain me-
tastasis formation may allow for novel therapeutic strategies 
to prevent development of intracranial disease. However, 
further exploration is needed to determine the relationship 
between molecular changes, intracranial involvement/out-
comes and specificity for driving brain metastases or meta-
static disease in general.

Heterogeneity

Recent data has demonstrated genomic heterogeneity be-
tween brain metastases and respective primary tumors, 
suggesting that specific transformations allowing cells 
to metastasize to the brain occur, and moreover, that ge-
nomic diversity of brain metastases may contribute to oc-
casionally differing intracranial and extracranial responses 
to systemic therapy.10,51 The significance of genetic hetero-
geneity between primary/extracranial and intracranial sites 
of disease is an area of active clinical investigation.

Non-small cell lung cancer.—Molecular characterization is 
vital to the management of patients with lung adenocarci-
noma. In contrast, among patients with SCLC or squamous 
NSCLC, molecular studies may be less impactful due to a 
far lower incidence of targetable mutations.52,53 In patients 
with lung adenocarcinomas, activating EGFR mutations are 

present in approximately 15–20% and 40–50% of Caucasian 
and Asian patients, respectively, with most patients har-
boring EGFR L858R point mutations or exon 19 deletions 
targetable by EGFR tyrosine kinase inhibitors (TKI).54 While 
some less-common mutations also are sensitive to classical 
EGFR TKIs, others, such as most EGFR exon 20 insertion mu-
tations, are resistant.55 Most patients receiving older (1st 
and 2nd generation) EGFR TKIs eventually acquire resist-
ance through development of the exon 20 point mutation 
T790M; however, multiple other on-target and off-target re-
sistance mechanisms exist.56 A  recent Phase III study and 
post hoc analyses from two Phase II studies assessing in-
tracranial response to osimertinib, a third-generation TKI 
with coverage of T790M, demonstrated high intracranial 
response rates in patients with, at least, extracranial evi-
dence of T790M manifesting on prior 1st and 2nd generation 
TKI therapy.57,58 Mechanisms of resistance to osimertinib 
include both on-target EGFR tertiary mutations/amplifica-
tions, such as exon 20 C797S, as well as off-target/second 
driver mechanisms, such as RAS-MAPK or PI3K pathway ac-
tivation, MET amplification, HER2 amplification, small-cell 
transformation, and RET or ALK gene rearrangements.59

Less common than EGFR mutations are anaplastic lym-
phoma kinase (ALK) rearrangements, which are found in 
4–5% of all NSCLC patients and confer sensitivity to ALK 
TKIs.60,61 Beyond EGFR and ALK-related changes, approx-
imately 25–30% of patients with lung adenocarcinomas 
harbor a mutation/rearrangement/fusion in a potentially tar-
getable abnormality, including ROS1 rearrangements, MET 
mutations/amplifications, RET rearrangements, HER2 mu-
tations, BRAF V600E mutations, NTRK rearrangements, and 
KRAS G12C mutations.62 In addition to broad-based genetic 
testing, an assessment of PD-L1 status and potentially other 
markers of immunotherapy-responsiveness are essential for 
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optimizing treatment choice for patients with NSCLC, espe-
cially for those lacking a targetable abnormality.

Breast  cancer.—The risk of intracranial dissemination 
among patients with breast cancer varies by subtype, with 
lower rates observed in hormone receptor-positive/HER2-
negative disease and higher rates noted in HER2-positive 
or triple negative breast cancer.41 Of note, receptor status 
can change between extracranial and intracranial sites.63,64 
In a meta-analysis of 29 studies assessing receptor con-
version from primaries to paired distant sites, estrogen-
receptor discordance was notably high among brain 
metastases at 20.8%.65 In addition, HER2-positivity can 
be gained or lost, with significant associated therapeutic 
impact.

Melanoma.—Several studies have implicated activa-
tion of the PI3K-AKT pathway in melanoma brain metas-
tases. An initial protein-based interrogation of signaling 
pathways identified increased expression of activation 
markers in the PI3K-AKT pathway in melanoma brain me-
tastases compared to extracranial sites.66 Subsequently, 
analysis of BRAF mutations, NRAS mutations, and loss 
of PTEN (which results in activation of the PI3K-AKT 
pathway) in stage III patients showed that PTEN loss pre-
dicted increased risk of brain metastasis, a finding also 
seen in the RCAS-TVA mouse model of melanoma.49 
Another preclinical study demonstrated that PI3K-AKT 
pathway activation is required for early colonization of 
the brain by melanoma cells.67 Two additional studies 
analyzing melanoma patients with paired extracranial 
and intracranial tissue identified increased activation of 
the PI3K-AKT pathway in all brain metastases.68,69 More 
recently, global analysis of gene expression in brain me-
tastases by RNAseq demonstrated increased expression 
of genes in the oxidative phosphorylation (OXPHOS) 
metabolic pathway and decreased infiltration by multiple 
immune cell populations, including T cells and B cells, 
compared to patient-matched extracranial metastases.70 
Notably, this metabolic change in confirmatory preclinical 
models was observed with cells that were directly injected 
into brain tissue, thus precluding significant selective 
pressure as an explanation, and instead suggesting that 
induction of OXPHOS may stem from interactions of 
tumor cells with the tumor microenvironment of the cen-
tral nervous system (CNS). Consistent with this hypoth-
esis, analysis of brain metastases and patient-matched 
non-CNS tumors in breast, lung, and kidney cancer co-
horts also identified increased OXPHOS, increased PI3K-
AKT activation, and decreased immune infiltrates in brain 
metastases.71 Another study also demonstrated unique 
metabolic features and dependencies of brain metastases 
from melanoma and breast cancer, namely upregulation 
of 3-phosphoglycerate dehydrogenase (PHGDH), the rate 
limiting enzyme for glucose-derived serine synthesis, to 
compensate for the very low levels of nucleotides avail-
able in the brain tumor microenvironment.72 Importantly, 
inhibitors of OXPHOS and PHGDH exhibited greater anti-
tumor activity against brain metastases than against me-
tastases in extracranial sites.70–72

The PI3K-AKT pathway in brain metastases has also 
been implicated in other studies. Preclinical studies 
have demonstrated that chemokine receptor 4 (CCR4) is 
overexpressed in melanoma cells that metastasize to the 
brain via increased activity of the PI3K/AKT pathway.73 
Further, whole exome sequencing of brain metastases 
across primary sites identified new mutations in the PI3K-
AKT pathway in 40–50% of patients.10 However, such fre-
quent differences were not seen in studies comparing brain 
metastases to extracranial metastases.10,74 Both global and 
targeted sequencing have confirmed high concordance for 
BRAF mutations between brain metastases and non-CNS 
tumors. Interestingly, increased OXPHOS metabolism, in-
creased PI3K-AKT pathway activation, and decreased im-
mune infiltration have all been implicated in decreased 
responsiveness to BRAF and MEK inhibitors.75–79 Each of 
these pathways/features has also been implicated in resist-
ance to anti-PD-1-based immunotherapy.80,81

Tumor Sampling and Future Directions

Although the data presented above demonstrates the 
promise of tailoring systemic therapies for patients 
with brain metastases based on molecular characteri-
zation of intracranial disease, one of the inherent chal-
lenges is obtaining tissue. However, non/less-invasive 
methods that allow for genomic profiling of cancers, 
such as the utilization of circulating tumor DNA (ctDNA), 
may prove promising,82 although brain-derived, as op-
posed to extracranially-derived, plasma ctDNA levels 
can be low.83,84 Cerebrospinal fluid (CSF) offers poten-
tial regarding detection of relevant intracranial muta-
tions via ctDNA analyses,83,85,86 suggesting the utility of 
CSF-ctDNA for identification of potential genetic targets 
and mechanisms of resistance, but few institutions can 
perform CSF-based molecular analyses in a reliable and 
reproducible manner; development and implementation 
of such assays has significant potential to advance care. 
In addition, imaging measures to noninvasively assess 
molecular status in patients with brain metastases carry 
promise, such as the use of HER2-targeting PET tracers in 
breast cancer.87,88

Imaging

Background

Imaging represents an essential component of the di-
agnosis and management of brain metastases, as brain 
tumor-directed biopsies are typically not indicated. For 
certain patients at high risk of developing brain metas-
tases, such as those with SCLC, advanced NSCLC, and ad-
vanced melanoma, the initial oncologic work-up includes 
a screening brain MRI.89,90 For most other primary disease 
sites, intracranial imaging is often reserved for the setting 
of neurologic symptomatology. While MRI is preferred, 
computed tomography (CT) may be initially performed 
emergently to exclude acute changes.91,92

For optimal evaluation of brain metastases, MRIs 
should incorporate IV gadolinium-based contrast. Lesion 
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conspicuity/detection can be enhanced using stronger 
magnetic fields (3T vs 1.5T), contrast agents with greater 
relativity, higher contrast doses, delays between in-
jection and image acquisition, and use of T1-weighted 
postcontrast imaging with thin sections/volumetric im-
aging.93,94 While inversion recovery gradient echo pulse 
sequences like MPRAGE give exquisite anatomic detail 
and spatial resolution, with 1  mm isotropic voxels very 
achievable, postgadolinium 3D T1-weighted fast spin echo 
pulse sequences like SPACE, CUBE, or VISTA may be supe-
rior for detection of small metastases.95–99 Further details 
on consensus-recommended imaging for brain metas-
tases, both for clinical trials and for routine clinical use, 
have recently been published.95

Brain metastases commonly appear as well-demarcated, 
contrast-enhancing lesions at the subcortical gray–white junc-
tion; peritumoral vasogenic edema is commonly present.93,100 
Typically, brain metastases appear iso- or hypointense on 
precontrast T1-weighted images; however, the presence of 
associated hemorrhage, common in melanoma and renal/
ovarian/thyroid primaries, can yield hyperintensity on 
T1- and T2-weighted images, and loss of signal on T2*- or 
susceptibility-weighted images (Figure 3).93,95,100 As lesions 
grow, they may become centrally hypointense on T1, with en-
hancement surrounding a nonenhancing core (ie a “cystic” 
metastasis); in other lesions, enhancement often remains 
homogeneous (ie a “solid” metastasis).101,102 Cystic versus 
solid designation can affect radiosensitivity/response to on-
cologic treatment.103,104 It is important to delineate cystic 
from necrotic brain metastases as the response-based prin-
ciples above may not translate to necrotic lesions. In this 
regard, cystic metastases display thin/smooth ring enhance-
ment with a uniformly spherical or elliptical T1 hypointense 
center, while necrotic lesions have irregular enhancing walls 
with non-uniform/irregular centrally T1 hypointense regions; 
such delineations can be challenging however. Also of note, 
brain metastases from SCLC, as well as occasional lesions 
from other underlying primaries, can restrict diffusion, with 
relatively low apparent diffusion coefficients (ADC), due to 
densely cellular histologies.93,105

Differential Diagnosis

Multiple intracranial lesions.—The presence of multiple, 
enhancing intracranial lesions in a patient with a preceding 
cancer diagnosis should raise concern for brain metas-
tases. Yet, mimickers of brain metastases exist, including 
primary CNS neoplasms such as multicentric glioma and 
CNS lymphoma, infection/abscess (eg fungal/atypical 
infections, septic emboli), vascular disease, and/or in-
flammatory processes such as multiple sclerosis, acute 
disseminated encephalomyelitis, or sarcoidosis.106 Like 
brain metastases, abscesses can also be rim-enhancing. 
However, unlike most brain metastases, the central, 
nonenhancing, necrotic portion of abscesses tends to re-
strict diffusion107,108; cystic brain metastases may have 
restricted water diffusion in their relatively hypercellular 
walls but typically not centrally. A history/exam can also be 
useful in distinguishing these entities. Subacute ischemic 
infarcts can also mimic brain metastasis since infarcted 
tissues frequently begin to enhance following the acute 
phase.109 Infarction with enhancement can often be distin-
guished from metastasis by its wedge-like (nonnodular) 
shape involving white matter and often overlying cortex, 
and the lack of surrounding vasogenic edema in the acute 
phase. Surveillance imaging can often differentiate infarct 
(enhancement regresses with time) and tumor (enhance-
ment increases with time without effective treatment).

Single intracranial lesion.—Approximately 20–40% of pa-
tients with brain metastases present with a single intracra-
nial lesion,32 and brain metastases should remain high on 
the differential diagnosis for patients with a single/solitary 
focus of enhancement in the setting of a known extracra-
nial primary. Other etiologies to consider, however, in-
clude primary CNS neoplasms, such as gliomas, primary 
CNS lymphomas, meningiomas, abscesses, and vascular 
malformations.

Follow-up Imaging Regimens

Patients with brain metastases require close radiographic 
follow-up. Generally, it is recommended that brain MRIs 
be performed every 2–3  months for the first 1–2  years 
after initial treatment, although new/worsening symptom-
atology or a history of rapid disease progression should 
prompt earlier scans; continuing brain MRIs regularly be-
yond 1–2 years after initial treatment seems prudent and 
patients with active disease or necrosis well beyond the in-
itial treatment period often require very close radiographic 
follow-up long-term.110 In addition, the high resolution im-
aging provided by 3D T1-weighted postcontrast sequences 
allows for assessments of systemic therapy efficacy at an 
earlier timepoint, often within a few weeks of initiation of 
a new regimen, facilitating earlier implementation of sal-
vage therapy if necessary.111

Imaging after stereotactic radiation therapy may show 
adverse radiation effects, which can be challenging to dif-
ferentiate from tumor progression (Figure 4). In these situ-
ations, advanced imaging techniques, such as magnetic 
resonance spectroscopy (MRS), Dynamic Susceptibility 
Contrast (DSC) and Dynamic Contrast Enhanced (DCE) 

  

Fig. 3 Characteristic MRI of a brain metastasis. T1-weighted 
postgadolinium MRI of a right frontal brain metastasis displaying 
characteristic rim enhancement (left) and associated T2-weighted 
FLAIR sequence showing extensive surrounding vasogenic edema 
(right). (Abbreviations: FLAIR, Fluid Attenuated Inversion Recovery; 
MRI, Magnetic Resonance Imaging).
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perfusion MRI, treatment response assessment maps/con-
trast clearance imaging, and FDG (Fluorodeoxyglucose) 
and amino acid positron-emission tomography (PET), 
among others, can be considered, or closer interval im-
aging may be warranted.112–118 However, the Response 
Assessment in Neuro-Oncology Brain Metastasis group 
states that while advanced imaging techniques may pro-
vide value, the current medical literature is “insufficiently 
robust” to routinely recommend any one particular mo-
dality or approach.119 In clinical practice, serial routine im-
aging, as well as correlation with a patient’s clinical status, 
are often relied upon prior to performing such specialized 
imaging.

Neuro-oncologic Management

Neuro-oncologic management of patients with brain metas-
tases is multi-faceted.120,121 Patients with brain metastases 
are often affected by significant neurologic symptoma-
tology from both underlying intracranial disease as well as 
treatment-related sequelae.122–125 In addition, metastases 
may differentially impact patients neurologically based on 
their location, with the motor strip, brainstem, and thalamus 
being especially sensitive to the impact of brain metastases. 
Such symptomatology often necessitates careful medication 
management, including steroids, antiepileptic drugs, anal-
gesics, and other supportive medications (Figure 5).126–129 

Here, we focus on common brain metastases-related neuro-
oncologic issues, including symptomatic vasogenic edema, 
seizures, venous thromboembolism, radiation necrosis, and 
neurocognitive decline.130,131

Vasogenic Edema

Systemic glucocorticoids play an integral role in the man-
agement of patients with symptomatic brain metas-
tases.132–135 Dexamethasone is typically preferred given 
its relative lack of mineralocorticoid activity.136 For asymp-
tomatic patients, prophylactic corticosteroids are usually 
not indicated,137 although in patients receiving potentially 
edema-exacerbating local therapy, short-term preventative 
corticosteroids are reasonable.138 For moderately sympto-
matic patients, dexamethasone in the 4–8  mg/day range 
given once or twice daily (eg with breakfast and lunch) 
seems appropriate, consistent with prior randomized 
studies suggesting that the therapeutic benefit of dexameth-
asone wanes beyond 4–8 mg/day while toxicity increases 
somewhat linearly.139 For patients with marked symptom-
atology, mass effect, elevated intracranial pressure, and/
or impending herniation, higher doses of dexametha-
sone (eg 16 mg/day) may be warranted.140 Corticosteroids 
therapy duration should be minimized to prevent long-term 
sequealae141 and generally should be tapered rather than 
abruptly discontinued given the gradual improvement of 
edema with oncologic therapy and the potential for adrenal 

  

Initial pre-surgical MRI Post-resection pre-RT

Post-RT exam #1 Post-RT exam #2

Fig. 4 MRI-based appearance of radiation necrosis. A left parietal metastasis is shown prior to resection (top left) and postresection, preadjuvant 
stereotactic radiation (top right). Five years later, the patient developed enhancement at the treated site (bottom left), which enlarged with time 
(bottom right). The patient was taken to the operating room for resection, and the lesion proved to be radiation necrosis. (Abbreviations: MRI, 
Magnetic Resonance Imaging).
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insufficiency in patients having received corticosteroids 
for prolonged periods.142 For patients requiring prolonged 
steroid courses (typically >4 weeks), consideration of pro-
phylaxis against pneumocystis jirovecii pneumonia with 
trimethoprim/sulfamethoxazole, atovaquone, or pentami-
dine may be prudent; prophylaxis against steroid-mediated 
gastritis with a proton-pump inhibitor may also be appro-
priate.143 Although studies are mixed regarding steroid-
mediated inhibition of immunotherapy efficacy, more 
recent data suggests potential for concern, particularly in 
patients with brain metastases.144–147 As such, it seems pru-
dent to restrict/minimize steroids among patients receiving 
immunotherapy where possible, as even doses of dexa-
methasone ≤4  mg/day have been associated with worse 
outcomes.146,148–150

Seizures

Seizures reflect a complication associated with both brain 
metastases, local treatment, and occasionally systemic 
therapy.151,152 Approximately 10–20% of patients with brain 
metastases present with seizures at diagnosis of intra-
cranial involvement.153 In addition, population-based and 
institutional data indicate that approximately 10–11% of pa-
tients free from seizures at diagnosis subsequently develop 
seizures, with greater risk noted in patients with melanoma 

and/or a larger burden of untreated supratentorial dis-
ease.152 Current guidelines suggest that anti-seizure medi-
cations should not be used as primary prophylaxis among 
patients with brain metastases.154–156 These guidelines are 
based on a limited number of randomized studies typically 
involving smaller (N ≤ 100), heterogeneous cohorts of pa-
tients with brain tumors managed with older anti-seizure 
medications that did not identify significant differences 
between patients randomized to anti-seizure medications 
versus not.157,158 Whether primary prophylactic anti-seizure 
medications reduce seizure development among certain 
high-risk subgroups is not clear and should be explored in 
randomized studies. A potential exception to the guideline 
of avoiding prophylactic anti-seizure medications exists in 
the shorter-term among patients undergoing local therapy 
with epileptogenic potential, such as stereotactic radia-
tion, neurosurgical resection, and laser interstitial thermal 
therapy (LITT), although data are conflicting.138,159–163

When anti-seizure medications are utilized, agents that do 
not significantly impact hepatic metabolizing enzymes, such 
as levetiracetam, lacosamide, or lamotrigine are generally 
preferred. There is no compelling evidence to select one drug 
over another.164 Patients with seizures, particularly if recent 
or uncontrolled, should not drive; specific laws regarding 
seizures and driving vary by region. In addition, factors that 
stimulate seizure development should be minimized/man-
aged. In this regard, sleep hygiene, avoidance of drugs/
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Fig. 5 Supportive medication utilization among patients with brain metastases. Retrospective data from a population-based study of 17 957 pa-
tients with brain metastases demonstrating the high prevalence of supportive medication use in the first 30 days following a diagnosis of brain 
metastases (as stratified by race and medication class). Opioids, anti-emetics, headache aids, and appetite stimulants were among the most fre-
quently utilized medications among this patient population. Reproduced with permission from Lamba et al., Neuro-Oncology, 2020.126
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alcohol, and minimization of stress are prudent; medically, 
metabolic derangements should be addressed, intracranial 
pressure should be controlled, and growing intracranial tu-
mors should be definitively managed.165–167

Venous Thromboembolism

Patients with advanced malignancy commonly develop ve-
nous thromboembolism (VTE) with some studies suggesting 
an especially high risk of VTE among patients with brain me-
tastases, potentially due to mobility issues or overlap between 
the tumor types with propensity to both spread to the brain 
and increase the likelihood of VTE.168,169 Anticoagulation with 
either low-molecular weight heparin or direct oral anticoagu-
lants constitutes the mainstay of management for patients 
with cancer and VTE, although concerns regarding intracranial 
hemorrhage (ICH) exist in patients with brain metastases.170–173 
No dedicated trials randomizing patients with brain metas-
tases to anticoagulation versus not have been published and 
few prior retrospective studies on this topic exist. In addition, 
published studies evaluating ICH-risk in patients with brain 
metastases receiving anticoagulation versus not are subject 
to selection bias, which may account for the general conclu-
sion that anticoagulation is safe in such patients.174–178 A recent 
study by Wood et al., however, used a propensity score-based 
matching algorithm, as well as multivariable modeling, and 
a careful pre versus postanticoagulation analysis to demon-
strate an association with modestly increased ICH-risk in pa-
tients with brain metastases who receive anticoagulation, 
particularly among those with melanoma or prior intracranial 
bleeds; anticoagulation should be used cautiously in such pa-
tients.179 Ultimately, until prospective studies are conducted, 
the indication for anticoagulation should be carefully weighed 
against the risk of ICH in patients with brain metastases when 
deciding whether to employ anticoagulation versus not.

Radiation Necrosis

A subset of patients undergoing radiosurgery will develop 
adverse radiation effects, most commonly radiation ne-
crosis, which involves inflammation or injury to the brain. 
Rates of radiation necrosis, although variable, range from 
0% to 30% across studies; the range reflects variation in 
the definition of radiation necrosis and whether neurologic 
symptomatology is present versus absent.180–185 The ini-
tial management of imaging changes related to radiation 
effects often entails observation given that progression 
of radiation-related changes typically ceases, sometimes 
before symptoms develop. In the setting of radiation ne-
crosis, the first-line therapy in symptomatic patients in-
volves glucocorticoids, although prolonged courses/tapers 
are often required. If corticosteroids prove unsuccessful 
in stabilizing radiation necrosis or yield unacceptable side 
effects, definitive therapy such as neurosurgical resection 
and/or laser interstitial thermal therapy (LITT) can be em-
ployed.185–188 Another approach is bevacizumab, which is 
supported by two small randomized studies including a 
smaller, 14 patient crossover study randomizing patients 
with radiation necrosis to bevacizumab 7.5 mg/kg every 3 
weeks (for two initial doses, with two additional doses ad-
ministered if benefit was seen) versus placebo. All patients 

in the intervention arm, as well as control patients who sub-
sequently crossed over to the intervention arm, displayed 
improvement of both imaging findings and symptoma-
tology.189 A  larger study of bevacizumab (5  mg/kg every 
2 weeks for 4 doses) versus methylprednisolone (500 mg 
IV daily for three days followed by a prednisone taper for 
approximately 2  months) for radiation necrosis devel-
oping after treatment for nasopharyngeal cancer showed 
better radiographic/clinical control with bevacizumab than 
corticosteroids.190 Practical limitations of bevacizumab in-
clude diagnostic uncertainty in delineating necrosis from 
tumor progression (corticosteroids may be appropriate 
for either scenario; bevacizumab is often only appropriate 
for necrosis, although this varies by underlying primary), 
toxicities of bevacizumab, and concerns regarding wound 
healing should patients require resection. Other, less-
common management approaches for radiation necrosis 
include anticoagulation, hyperbaric oxygen, vitamin E, and 
pentoxifylline, but robust supporting data are lacking.191–193 
Ultimately, further prospective studies evaluating ther-
apeutic options/sequencing for radiation necrosis are 
warranted.

Neurocognitive Decline

Decline in neurocognitive function (NCF) occurs in up to 
90% of patients with brain metastases,194 affecting quality 
of life by interference with job function, relationships, 
motor vehicle operation,195 and self-care.196–198 Brain me-
tastases can directly cause NCF-deficits but side effects 
of treatments including resection,199 radiation,200 che-
motherapy,201 and immunotherapy202 also contribute 
significantly.203

Treatments for cognitive symptoms in patients with brain 
metastases have typically been conducted in patients with 
different types of brain tumors, with mixed results.204 An 
acetylcholinesterase-inhibiting medication (donepezil) has 
been evaluated in various brain tumor populations, though 
only one study included a substantial proportion of brain me-
tastases.205 Administered after radiation, slight benefits on 
one metric of recognition memory compared with placebo 
were noted, suggesting efficacy for patients with a specific 
pattern of cognitive impairment (eg recent memory). Studies 
of agents that enhance attention (methylphenidate) or wake-
fulness (modafinil) in brain tumor patients also included few 
patients with brain metastases. Early single-arm open-label 
studies suggested some improvement in attention,206 but 
randomized placebo-controlled trials found no improvement 
in fatigue.207 Memantine is reviewed in the radiation therapy 
section. Cognitive rehabilitation, a nonpharmacological 
intervention, is well-established in patients with brain tu-
mors208,209 and involves development of compensatory strat-
egies and “cognitive exercise” paradigms; such approaches 
have shown positive results.210,211

As treatments for cancer continue to improve survival, si-
multaneous advances in the prevention and management 
of neurocognitive deficits are important. Further refine-
ments in radiation techniques (eg sparing the genu of the 
corpus callosum [NCT03223922] and using SRS for up to 
15-20 brain metastases [NCT03075072, NCT03550391]) are 
being investigated, as are trials of novel neuroprotectant 
agents (eg porphyrin BMX-001 [NCT03608020] and 



Aizer et al. SNO brain metastasis consensus guidelines 1624

Ganglioside-Monsialic Acid [NCT04395339]) and 
neuroplasticity techniques.212

Surgical Resection and Laser Interstitial 
Therapy Therapy

Surgical resection plays an important role in the man-
agement of patients with brain metastases. Standardly-
accepted indications for craniotomy include: (1) diagnostic 
uncertainty, based on imaging, where observation is not 
viable, (2) brain metastases causing symptoms refrac-
tory to steroids, (3) bulky metastases (typically >3–4 cm in 
maximal unidimensional size), and (4) solitary brain me-
tastases (ie one brain metastasis in the absence of extra-
cranial disease).213,214 Considerations regarding diagnostic 
uncertainty are provided in the imaging section. Among 
most patients with neurologic symptoms caused by brain 
metastases despite the use of steroids, neither radiation 
nor systemic therapy can reliably and quickly decompress 
affected areas and improve symptomatology before more 
permanent sequelae/decline develop. Consequently, sur-
gery is typically indicated. However, it should be noted 
that for radiosensitive tumors such as SCLC, select germ 
cells tumors, select liquid malignancies, and Merkel cell 
carcinoma, radiation in lieu of surgery can be considered. 
Similarly, for select cancer subtypes with a known, target-
able driver mutation for which effective CNS-penetrant 
systemic therapies exist, such as EGFR-mutant NSCLC, 
ALK-rearranged NSCLC, or BRAF-mutant melanoma, sys-
temic therapy, with initial deferral of surgery and close 
monitoring, may prove to be viable.215–217 For patients har-
boring bulky tumors, the stereotactic radiation dose that 
can be safely administered is limited due to constraints 
imposed by the surrounding brain,181,218 often compro-
mising control; therefore, surgery is typically indicated. 
Lastly, among patients with solitary brain metastases, neu-
rosurgical resection may prove helpful, as retrospective/
hypothesis-generating evidence suggests associations be-
tween combined modality local therapy (ie resection and 
cavity radiation) and longer-term survival relative to ster-
eotactic radiation alone even among small foci of disease, 
although prospective studies are lacking.214

Three randomized studies have assessed the role of neu-
rosurgical resection in addition to WBRT versus WBRT alone 
in patients with a single brain metastasis (Table 3).6,219–221 

Two of the three studies showed an overall survival advan-
tage with neurosurgical resection; subset analyses of these 
studies suggested that the benefit associated with neurosur-
gical resection may be most significant among patients with 
stable/controlled extracranial disease given a lower com-
peting risk.6,219–221 In the modern era, adjuvant WBRT has 
been largely replaced by adjuvant stereotactic radiosurgery 
for patients with a limited number of brain metastases.222–225

One adverse effect associated with craniotomy is 
pachymeningeal seeding (also called nodular lepto-
meningeal disease), a phenomenon in which tumor 
cells dispersed by surgical intervention recur along the 
pachymeninges beyond the adjuvant stereotactic radia-
tion field (Figure 6).226,227 Pachymeningeal seeding after re-
section was not commonly seen in the adjuvant WBRT era 
given the potential for WBRT to control micrometastatic 
disease. In the postoperative stereotactic era, however, 
approximately 6–12% of craniotomies are complicated by 
pachymeningeal seeding.226 Multiple publications have 
now described this phenomenon.226,227 Unlike classical lep-
tomeningeal disease, hydrocephalus requiring CSF diver-
sion is uncommon in pachymeningeal seeding and either 
WBRT or stereotactic radiosurgery can be employed as 
salvage (as pachymeningeal seeding does not involve the 
CSF), with little role for intrathecal chemotherapy given 
the penetration concerns into lesions greater than sev-
eral millimeters.228 Conversely, in classical leptomeningeal 
disease, imaging typically shows linear subarachnoid de-
posits along cranial nerves, cerebellar folia, supratentorial 
sulci, and/or ventricular surfaces (Figure 7).229 In addition, 
hydrocephalus risk is greater, and WBRT/intrathecal che-
motherapy can be considered while there is little role for 
stereotactic radiation. Consequently, clinical/radiographic 
delineation of pachymeningeal seeding from classical lep-
tomeningeal disease is critical (Table 4).

MRI-guided laser interstitial thermal therapy (LITT) 
is a minimally-invasive surgical technique with efficacy 
in treating brain lesions (Figure 8).230,231 LITT involves a 
3–5 mm twist drill hole in the skull through which a cath-
eter is navigated to the target; laser-derived thermal en-
ergy is used for ablation. The most established role of LITT 
is for radiation necrosis although LITT-based treatment 
for recurrent tumor after prior radiation is a considera-
tion as well. A prospective, single-arm, multicenter study 
involving postradiation LITT demonstrated 12 week local 
progression-free survival of 100% versus 54% in patients 
with necrosis versus recurrent tumor.187 Neurological 

  
Table 3 Randomized Studies Comparing Neurosurgical Resection + Whole Brain Radiation Relative to Whole Brain Radiation Alone in the 
Management of a Single Brain Metastasis

Study Years of Enroll-
ment 

N Arms Local Recur-
rence 

Overall 
Survival 

Functional Status 

United States6 1985–1988 48 WBRT + biopsy vs WBRT + surgery Surgery 
better

Surgery 
better

Surgery better

Dutch213 1985–1990 66 WBRT +/− surgery N/A Surgery 
better

Trend to favoring surgery

Canadian215 1989–1993 84 WBRT +/– surgery N/A No differ-
ence

No difference

Abbreviations: N, Number; N/A, Not Applicable; WBRT, Whole Brain Radiation Therapy.
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complications of LITT were seen in 7/42 patients, mainly 
relating to weakness/hemiparesis, neglect, headache, and 
hemorrhage. Consequently, among patients with radiation 
necrosis and perhaps recurrent tumor who are not candi-
dates for other approaches, LITT can often achieve intra-
cranial disease control with a reasonable toxicity profile.

Future studies relating to surgical resection and 
LITT  should investigate surgical techniques that may de-
crease the likelihood of pachymeningeal seeding. In ad-
dition, ongoing clinical trials exploring preoperative, 
rather than postoperative, stereotactic management and 
the risk of pachymeningeal seeding, among other out-
comes, are being pursued (NCT03741673, NCT04422639, 

NCT04474925, NCT03750227). Immunogenic effects of LITT 
are being explored; in this regard, a study combining LITT 
with PD-1 inhibition is ongoing (NCT04187872). Finally, 
emerging techniques such as focused ultrasound may have 
potential applications for novel drug delivery, sonodynamic 
therapy, and immunomodulation (NCT04559685).232

Radiation

Radiation therapy represents the historical mainstay of 
therapy for patients with brain metastases given concerns 
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Fig. 6 Pachymeningeal seeding. Pachymeningeal seeding after neurosurgical resection of a brain metastasis. Note the multifocal 
pachymeningeal recurrences (red) occurring in the absence of a cavity recurrence (green).
  

  

Fig. 7 Classical leptomeningeal disease. Classical leptomeningeal disease as noted by linear enhancement along the cerebellar folia (A), 
supratentorial sulci (B), and cranial nerves VII/VIII bilaterally (C, red circles).
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regarding the limited intracranial efficacy of many sys-
temic therapies. External beam radiation encompasses 
two primary forms of treatment: (1) WBRT with or without 
hippocampal avoidance and (2) stereotactic radiation. 
Nonstereotactic partial brain radiation is less commonly 
utilized and will not be reviewed.

Whole Brain Radiation Therapy

Historically, WBRT represented the primary management 
modality for patients with multifocal intracranial disease. 
An older, small randomized study in the pre-CT/MRI era 
suggested a 4-week survival advantage with WBRT over 
steroids alone.233 Subsequent seminal work in the 1990s 
established a role for adjuvant WBRT among patients with 
a single, resected brain metastasis, demonstrating a sig-
nificant improvement in intracranial recurrence rates and 
neurologic death with surgical resection plus adjuvant 
WBRT compared to surgical resection alone.234 Although 
effective against both visible and microscopic intracranial 
disease, WBRT carries a significant short and long-term 
toxicity profile, including fatigue, anorexia, xerostomia, 
nausea, and alopecia in the short term, and cognitive dys-
function, balance problems, and hearing loss in the longer 
term.235,236 It is important to note that WBRT should be 
used cautiously in patients with a significant extracranial 
disease burden and limited systemic options given the de-
creased likelihood that intracranial management will im-
pact prognosis, as seen in the QUARTZ study.237

Multiple strategies to mitigate the neurocognitive im-
pact of WBRT exist. In RTOG 0614, memantine (used 
for 24 weeks including a 4-week uptitration period), an 
N-methyl-D-aspartate (NMDA) receptor antagonist, was 
evaluated against placebo in a randomized trial among 
patients receiving WBRT,238 with a trend towards preser-
vation in delayed recall at 24 weeks (primary endpoint) 
and significantly longer time to any measure of cognitive 
decline noted among patients receiving memantine.238 
Consequently, memantine serves as a useful adjunctive 
therapy for patients receiving WBRT.

The observation that a potential driver of radiation-
induced cognitive toxicity from WBRT, specifically 

memory loss, was dose deposition to neural stem cells 
within the subgranular zone of the hippocampal dentate 
gyrus239,240 led to development of hippocampal-avoidance 
WBRT (HA-WBRT), Figure 9.241–243 NRG CC001 demon-
strated lower rates of cognitive failure with HA-WBRT 
and memantine as opposed to traditional WBRT and 
memantine, establishing HA-WBRT and memantine as 
standard in most patients devoid of brain metastases 
in/near (5  mm) the hippocampi or leptomeningeal dis-
ease.244,245 Of note, relapse rates near the hippocampus 
were comparable with 11 and 16 relapses in the HA region 
in the HA-WBRT and traditional  WBRT arms, respec-
tively, dispelling the concern that hippocampal avoidance 
would substantially increase the risk of peri-hippocampal 
recurrence.

Stereotactic Radiation Therapy

Stereotactic radiation therapy can be delivered as either a 
single fraction of highly conformal, high-dose treatment 
(stereotactic radiosurgery [SRS], generally 18–24 Gy) or 
as multiple, moderately-dosed fractions (stereotactic ra-
diotherapy [SRT], commonly 20 Gy in 2 fractions, 24–27 
Gy in 3 fractions, or 25–40 Gy in 5 fractions, also known 
as fractionated SRS), with a planning target volume 
(margin for uncertainty) of 0–2  mm.133 Of note, the no-
menclature used to describe such treatment has varied in 
the literature; we will use the terminology/abbreviations 
noted above for consistency throughout the manuscript. 
Randomized studies of SRS alone versus SRS plus WBRT 
in patients with 1–4 metastases have been conducted 
(Table 5), collectively demonstrating higher intracranial 
failure (both locally and in the uninvolved brain) with SRS 
alone, but without an overall survival benefit with WBRT. 
Contemporary trials utilizing sensitive cognitive batteries 
have demonstrated worse neurocognition with the addi-
tion of WBRT.222–224,247 Based on these results, stereotactic 
radiation alone as initial treatment, with close MRI sur-
veillance, salvage SRS/SRT for limited distant intracranial 
failure, and deferral of WBRT for widespread intracranial 
recurrence has become widely adopted for patients with 
limited intracranial metastases.

  
Table 4 Etiology, Natural History, and Management of Pachymeningeal Seeding Relative to Classical Leptomeningeal Disease in Patients with 
Brain Metastases

 Pachymeningeal Seeding Classical Leptomeningeal Disease 

Etiology Postsurgical Usually not surgical

Natural history Likely reflective of a one-time event Ongoing process

Imaging Pachymeningeal/dural nodular recurrences 
often near surgical cavity and potentially in 
more distant sites

Linear subarachnoid deposits along cranial 
nerves, cerebellar folia, supratentorial sulci, 
and/or ventricular surfaces

Hydrocephalus risk Usually not Sometimes

Whole brain radiation utilized for 
management

Sometimes Often

Stereotactic radiation utilized for 
management

Sometimes Usually not

Intrathecal chemotherapy utilized 
for management

Usually not Sometimes

  



N
eu

ro-
O

n
colog

y
Aizer et al. SNO brain metastasis consensus guidelines 1627

Stereotactic Radiation Among Patients with >4 
Brain Metastases

The lower rate of cognitive loss associated with SRS/SRT 
without a decrement in survival compared to WBRT led to in-
terest in exploring stereotactic approaches for patients with 
>4 brain metastases. A  large, multi-institutional observa-
tional experience of SRS in patients with up to 10 brain me-
tastases suggested relatively comparable outcomes among 
patients receiving SRS for 2–4 as opposed to 5–10 lesions, al-
though fewer than expected patients with 5–10 brain metas-
tases enrolled, as noted by the authors, raising the possibility 
of selection bias.248 There are now multiple ongoing phase 
III studies comparing HA-WBRT to SRS among patients 
with >4 brain metastases (NCT03075072; NCT04277403; 
NCT03550391), all with potential to significantly impact care.

Recent data relating to immune checkpoint inhibitors 
and receptor tyrosine kinase inhibitors have demon-
strated relatively high intracranial response rates in select 
subpopulations, often leading to an approach of deferring 
SRS/SRT in certain subpopulations. The broad justification 
for this approach stems from the contention that SRS/SRT 
may not improve survival in patients with >1 lesion,7 and 
that it can always be employed as salvage. This may be 
reasonable in some subsets, but prospective randomized 
data supporting this practice are lacking.

Adjuvant Stereotactic Radiation in Patients with 
Resected Brain Metastases

Among patients with resected brain metastases, the his-
torical standard of care was to utilize adjuvant WBRT 

  

Pre-op

A

B

Intra-op 2 weeks

3 months

Fig. 8 Laser interstitial therapy. LITT technique showing stereotactic laser fiber insertion to the target through a skull anchoring bolt (A) and 
MRI-based assessments before, during, and after LITT procedure (B). In Part (B), images reveal: (left) T1 and T2-weighted MRI showing regrowth 
of brain metastasis 12 months after radiosurgery; (left middle) intraoperative images displaying laser inserted into lesion; (right middle) 2-week 
post-LITT MRI showing postlaser ablation lesion increased in size but FLAIR signal improved; (right) MRI revealing resolution of lesion at 3 months 
post-LITT. (Abbreviations: FLAIR, Fluid Attenuated Inversion Recovery; LITT, Laser Interstitial Thermal Therapy; MRI, Magnetic Resonance 
Imaging).
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but randomized data now support the use of SRS/SRT, 
ideally within 4 weeks of surgery, in patients with a lim-
ited number of additional brain metastases.223,225,249–252 
However, the 1-year cavity recurrence rate in prospective/
randomized studies after surgery plus stereotactic radia-
tion remains high, ranging from 28% to 40%; in contrast, 
cavity recurrence rates with adjuvant WBRT are substan-
tially lower.223,225,234,249 This underscores the need for sig-
nificant improvement in stereotactic approach/technique. 
In this regard, cavity SRS is being compared to cavity SRT 
in an ongoing randomized trial (NCT04114981). In addi-
tion, contouring guidelines may improve delineation of the 
target.253 Of note, pachymeningeal relapse can occur in a 
significant percentage of patients managed with adjuvant 
SRS/SRT, with impact on patient morbidity/mortality.226,254 
Postoperative SRS/SRT is also associated with a relatively 
high rate of necrosis, given the typically large associ-
ated volumes, generous expansions, and interdigitation 
of the target with normal brain.254 Consequently, mul-
tiple prospective trials are evaluating the role of preop-
erative stereotactic radiation prior to resection of a brain 
metastasis (NCT03741673, NCT04422639, NCT04474925, 
NCT03750227) with the objective of decreasing recurrence, 
pachymeningeal seeding, and necrosis rates.

Stereotactic Radiation Therapy in Patients with 
Small Cell Lung Cancer

Historically, WBRT has been the mainstay of treatment for 
patients with SCLC and brain metastases given concern for 

widespread micrometastic intracranial disease. Patients with 
SCLC have been excluded from nearly all prospective evalu-
ations of omission of WBRT.222–225,234,247 However, SRS/SRT-
based outcomes in SCLC appear encouraging.255,256 As such, 
ongoing prospective trials (NCT03391362, NCT04516070, 
NRG CC009) are evaluating the viability of stereotactic ap-
proaches among patients with SCLC and a limited burden of 
intracranial disease. The treatment paradigm for brain metas-
tases in patients with SCLC will likely continue to evolve as 
the results of ongoing trials become available.

Toxicities Associated with Stereotactic 
Radiation Therapy

Given the limited radiation fields/volume inherently asso-
ciated with SRS/SRT, relative to WBRT, acute side effects 
secondary to SRS/SRT tend to be more modest in nature. 
However, the higher biologic dose of radiation utilized can 
lead to posttreatment inflammatory changes among other 
rare effects, as well as long-term adverse radiation effects, 
including radiation necrosis.163,257 Generally developing 
3 months to 3 years after treatment,183,258 radiation necrosis 
(when confirmed histopathologically) involves inflammation 
or injury to the brain approximating the SRS/SRT site. Given 
the variation in SRS/SRT delivery patterns across institutions 
and inconsistent diagnostic criteria, the reported incidence 
of radiation necrosis after SRS/SRT varies considerably, ran-
ging from 5% to 35% in various retrospective series; the wide 
range may reflect inconsistencies in the definition of radia-
tion necrosis and that some investigators combine radiation 
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Fig. 9 Hippocampal-sparing whole brain radiation in a patient with brain metastases. The right and left hippocampi are contoured in blue and 
pink, respectively. The top and bottom panel shows the planning magnetic resonance imaging and computed tomography scans, respectively. 
The red, orange, yellow, and green dose-based shading depict the 33 Gy, 30 Gy, 27 Gy, and 16 Gy isodose lines, respectively.
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necrosis with more transient, imaging-based adverse radia-
tion effects.182,258–260 Factors predictive of radiation necrosis 
include a larger volume of brain receiving doses >10–12 Gy 
(V10/V12), prior brain radiation, use of concurrent systemic 
therapies including immunotherapy, tumor histology, and 
inherent radiosensitivity.181,261–263 In terms of location, the 
brainstem, thalamus, and optics display the greatest risk of 
radiographic to symptomatic conversion.261 The diagnosis 
and management of radiation necrosis is reviewed in the im-
aging and neuro-oncology sections, respectively.

Deciding Between Whole Brain Versus 
Stereotactic Radiation

Historically, the majority of patients with brain metastases 
received WBRT; upfront SRS/SRT has now become the pre-
dominant upfront strategy, especially for patients with lim-
ited intracranial disease.153 This shift has been motivated 
by cognitive dysfunction associated with WBRT, as meas-
ured by sensitive neurocognitive test batteries in prospec-
tive clinical trials.224,225

Other factors may influence the decision to proceed with 
SRS/SRT versus HA-WBRT/WBRT as well. In patients with 
extensive extracranial disease with effective therapeutic 

options, SRS/SRT permits a more rapid transiition back 
to systemic therapy.237 Geriatric patients may experience 
greater cognitive decline with WBRT/HA-WBRT, poten-
tially supporting stereotactic approaches in this patient 
group.264 Patients with so called “radioresistant” tumors 
(eg melanoma) may benefit from SRS/SRT, due to greater 
fractional cell kill from higher-dose radiation delivered with 
each treatment. Conversely, in patients with significant 
intracranial disease burden driven by a larger number of 
brain metastases (eg >4 tumors based on published ran-
domized data but particularly >10–20 tumors), as well as 
those with a greater brain metastasis velocity (BMV, ie the 
cumulative number of new brain metastases that develop 
over time after SRS/SRT),265 WBRT/HA-WBRT remains 
more standard, in part given the limited randomized data 
for SRS.222–225 Ultimately, until further prospective trials are 
published, such as NCT03075072 and NCT03550391, selec-
tion of SRS/SRT versus WBRT may depend upon the above 
factors as well as a nuanced patient-provider discussion.

Brachytherapy

Brachytherapy involves the intraoperative placement of 
radioactive isotopes within a resection bed, allowing for 
highly conformal delivery of high-dose radiation.266 While 

  
Table 5 Randomized Trials Evaluating Local Treatment with/Involving Whole Brain Radiation Therapy vs Local Treatment Alone in the Management 
of Brain Metastases

Study N Number 
of BM 

Arms Years of 
Accrual 

Intracranial 
Recurrence 
with WBRT 

OS with 
WBRT 

QoL with 
WBRT 

Neurocognition 
with WBRT 

Patchell/multi-
center246

95 1 1. Surgery  
2. Surgery + WBRT

1989–
1997

Lower No differ-
ence

N/A N/A

Japanese Radiation 
Oncology Study 
Group 99-1236

132 1–4 1. SRS  
2. SRS + WBRT

1999–
2003

Lower No differ-
ence

N/A Limited data

MD Anderson 
Cancer Center216

58 1–3 1. SRS 
2. SRS + WBRT

2001–
2007

Lower Worse No differ-
ence iden-
tified

Worse

European Organi-
zation for Research 
and Treatment of 
Cancer 22952217

359 1–3 1. Local Therapy  
2. Local Therapy + 
WBRT

1996–
2007

Lower No differ-
ence

Trend to 
worse

N/A

North Central 
Cancer Treatment 
Group N0574218

213 1–3 1. SRS  
2. SRS + WBRT

2002–
2013

Lower No differ-
ence

Worse Worse

Japan Clin-
ical Oncology 
Group 0504240

271 1–4 1. Resection + Sal-
vage SRS  
2. Resection + WBRT

2006–
2014

Lower No differ-
ence

N/A Generally worse 
in some do-
mains

Polish241 59 1 1. Resection + SRS  
2. Resection + WBRT

2011–
2015

No difference Better Mixed re-
sults

No difference

Alliance/North 
Central Cancer 
Treatment Group 
N107C242

194 1–4 1. Resection + SRS  
2. Resection + SRS + 
WBRT

2011–
2015

Lower No differ-
ence

No signifi-
cant differ-
ence

Worse

MD Anderson 
Cancer Center238

72 4–15 1. SRS  
2. WBRT

2012–
2019

– No differ-
ence

– Worse (possible 
trend)

Abbreviations: N, Number; N/A, Not Applicable; OS, Overall Survival; QoL, Quality of Life; SRS, Stereotactic Radiosurgery; WBRT, Whole Brain 
Radiation Therapy.
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brachytherapy is uncommonly utilized in patients with brain 
metastases, it represents an effective salvage therapy for 
some patients with multiply (locally) recurrent tumors.267 
A recent review of 23 studies evaluating brachytherapy in 
the treatment of brain metastases demonstrated local con-
trol rates of 80–100% across most studies, although fol-
low-up was <12 months in the majority of investigations.268 
Despite promising local control rates, the use of brachy-
therapy for brain metastases has been limited, primarily 
because it is resource intensive and more subject to special-
ized expertise in comparison to external beam techniques. 
Further, concerns regarding radiation necrosis, observed in 
legacy glioblastoma brachytherapy trials, have tempered 
enthusiasm.268 Randomized studies to more definitively 
evaluate the role of brachytherapy in the management of 
resected brain metastases are underway (NCT04690348).

Systemic Therapy

The evolving landscape of systemic therapy has signif-
icantly changed the management of brain metastases. 
Historically, the limited activity of systemic agents in the 
CNS effectively mandated local brain-directed therapy 
for nearly all patients.269 However, increasingly effec-
tive systemic agents now exist for many extracranial 
malignancies.270,271 In addition, unlike in glioma, where 
tumor cells infiltrate the underlying brain, brain metas-
tases tend to form discrete tumor masses with potential 
breakdown of the BBB, allowing for some penetration of 
systemic agents into the tumor microenvironment, even 
if minimal penetration across an intact BBB is possible. 
As a result, for some patients with untreated, asympto-
matic, or minimally symptomatic brain metastases, or 
those with progressive brain metastases despite local 
therapy, systemic therapy alone, with close intracranial 
surveillance, may prove reasonable. Here, we review 
systemic therapy considerations among the extracranial 
primaries that harbor a predisposition for intracranial 
dissemination, but which also have potentially viable 
systemic options, namely NSCLC, breast cancer, and 
melanoma. When relevant, the integration of systemic 
therapy and local, brain-directed therapy is discussed.

Non-small Cell Lung Cancer

Increasingly, the systemic management of brain metas-
tases in patients with NSCLC, particularly adenocarcin-
omas, is contingent on the presence versus absence of 
targetable mutations or gene rearrangements, as many 
current small-molecule, targeted drugs achieve some de-
gree of intracranial penetration (Table 6). Approximately 
33–45% of lung adenocarcinomas harbor such genetic 
changes in the United States, with even higher rates seen in 
nonsmokers.9,272–280 It should be noted that, even in the ab-
sence of targetable genetic changes, anti-PD1 agents, par-
ticularly in patients who are PD-L1 positive or who harbor 
other biomarkers for immunogenicity, or pemetrexed 
(among patients with adenocarcinomas) may yield intracra-
nial disease control in some patients, although responses 

can be limited in magnitude and duration.281–285 Of note, in-
tervention studies stipulating local, brain-directed therapy 
prior to administration of novel systemic agents can make 
estimates of intracranial efficacy difficult to determine.286

Most patients with EGFR alterations harbor exon 19 de-
letions or exon 21 L858R substitutions, which account for 
approximately 90% of mutations in EGFR-mutated NSCLC; 
such patients are sensitive to EGFR-targeting TKIs.287 
Patients with uncommon EGFR mutations may also re-
spond to licensed 1st–3rd generation EGFR TKIs; however, 
most exon 20 insertions are not sensitive to such agents.288 
Among patients with common and uncommon EGFR mu-
tations and brain metastases, prospective studies involving 
erlotinib, gefitinib, or afatinib, mainly in patients with 
asymptomatic brain metastases, have generally indicated 
intracranial response rates between 70% and 88%.28,289–291 
However, the current standard of care for patients with 
brain metastases secondary to EGFR-mutant lung cancer 
is the 3rd generation inhibitor, osimertinib. In this regard, 
the first-line FLAURA study comparing the first-genera-
tion EGFR TKIs erlotinib and gefitinib to osimeritinib dem-
onstrated prolonged progression-free and overall survival 
with osimertinib.292 In addition, a trend to improved intra-
cranial response rate with osimertinib was noted (68% vs 
91%, respectively).292 Osimertinib can also yield intracra-
nial responses in patients who received other EGFR-TKI 
therapy and manifest a T790M resistance mutation.57,58 
Table 7 displays the intracranial efficacy of osimertinib. It 
is notable that most patients in these studies had stable, 
asymptomatic, and/or radiated brain metastases. For pa-
tients with EGFR exon 20 insertions, amivantamab, a 
bispecific monoclonal antibody has recently been licensed, 
although data relating to intracranial efficacy are lacking.288 
Of note, neratinib, a dual inhibitor of HER2 and EGFR, may 
have activity in select patients with EGFR mutations.293

Patients with ALK-rearranged NSCLC also have multiple 
systemic options for intracranial disease control. With the 
possible exception of the first-generation drug crizotinib, 
ALK targeting agents such as alectinib, ceritinib, brigatinib, 
and lorlatinib have generally displayed high rates of in-
tracranial disease control in prospective trials (Table 
8).272,294,296–306 Lorlatinib may also be effective after progres-
sion on a second-generation ALK inhibitor, such as ceritinib, 
alectinib, or brigatinib.307 The unique side effect profile of 
lorlatinib, which includes hyperlipidemia, central nervous 
system effects such as mood, cognitive, and speech 
changes, weight gain, edema, peripheral neuropathy, and 
gastrointestinal effects, and its potential for utility in later-
line settings, has proven challenging with regard to first-
line use among patients with ALK rearrangements.308–310

Whether to add radiation to the management of pa-
tients with targetable NSCLC remains an area of active 
controversy. Select multi-institution retrospective and 
hypothesis-generating data may support combined mo-
dality therapy,311 but biases inherent to retrospective de-
signs can impact such analyses. Randomized studies 
evaluating the role of local brain-directed radiation in pa-
tients receiving TKI-based therapy for targetable NSCLC 
are ongoing (NCT03769103, NCT04634110). However, as 
consolidation radiation at the point of maximal response 
to systemic therapy becomes more established for extra-
cranial disease in advanced NSCLC, in order to limit 
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development of acquired resistance, the same logic in 
the CNS may also need to be formally explored in addi-
tion to simply studying the role of drugs in deferring CNS 
radiation.

Breast Cancer

Viable systemic options vary by breast cancer subtype, with 
HER2+ patients having the most options for intracranial 
disease control. The backbone of first-line systemic man-
agement for extracranial disease involves trastuzumab, 
pertuzumab, and either paclitaxel or docetaxel (THP).17 
Despite excellent systemic efficacy, the intracranial pene-
tration and disease control of THP is guarded, even when 
high doses of trastuzumab are used.312 The PATRICIA trial 
demonstrated an intracranial response rate of 11% with 
high dose trastuzumab (6 mg/kg) and pertuzumab in pa-
tients who had progressed on prior trastuzumab as well 
as radiotherapy, although 51% achieved clinical benefit 
at 6 months. Trastuzumab emtansine (T-DM1) offers more 

potential for intracranial disease control. In the KAMILLA 
study of T-DM1 in patients with advanced or metastatic 
HER2+ breast cancer in which patients had received prior 
HER2-based therapy along with chemotherapy, the best 
overall response (CNS and extracranial disease) was 
21%; CNS objective responses were observed in 33% of 
patients who had most recently received CNS-directed 
radiation ≥30  days prior, and in 49% of radiation-naïve 
patients.313 Among responders, the median duration of 
exposure to T-DM1 was 9.5  months. Lapatinib, a small 
dual tyrosine kinase inhibitor of HER1/HER2, when used 
with capecitabine in newly diagnosed, radiation-naïve 
patients, demonstrated an intracranial response rate of 
66% in the LANDSCAPE study.314 The CNS response rates 
were lower (~20%) in patients who had progressed after 
radiotherapy.315 Neratinib, an irreversible pan-HER TKI, 
displayed intracranial response rates of 33–49% (based 
on prior lapatinib versus not) when used with capecita-
bine, in a population who had largely progressed after ra-
diation.316 More recently, regimens based on tucatinib (a 

  
Table 6 Incidence Proportions and Potentially Viable Systemic Options for Targetable Alterations in Non-small Cell Lung Cancer

Alteration Incidence Proportion Among Non-small Cell Lung 
Cancer (Adenocarcinoma) in United States 

Potential Therapeutic Agents 

ALK rearrangements 4–5% Alectinib, ceritinib, brigatinib, lorlatinib, 
crizotinib

BRAF V600E mutations 1–3% Dabrafenib+trametinib

EGFR (common and uncommon 
mutations)

15–20% Osimertinib, erlotinib, gefitinib, afatinib, 
dacomitinib

EGFR exon 20 insertion mutations 1–2% Amivantamab

HER2 Exon 20 insertion mutations 1–3% Trastuzumab, afatinib, ado-trastuzumab 
emtamsine, trastuzumab deruxtecan

KRAS G12C mutations 10–12% Sotorasib

MET exon 14 skip mutations/
high-level amplification

2–3% Capmatinib, tepotinib, crizotinib

NTRK rearrangements 0–1% Larotrectinib, entrectinib

RET rearrangements 1–2% Selpercatinib, pralsetinib

ROS1 rearrangements 1–2% Entrectinib, crizotinib, lorlatinib, ceritinib,

  

  
Table 7 Intracranial Response and Duration of Efficacy for Patients with EGFR-Mutant Non-small Cell Lung Cancer Managed with Osimertinib on 
Prospective Trialsa

Study Drug Higher Level Entry Criteria Years of 
Accrual 

N Median Intracranial 
Response Duration 

CR PR SD PD N/A 

AURA exten-
sion/AURA256

Osimertinib Asymptomatic, stable BM with 
prior EGFR therapy, T790M 
mutant

2014–
2015

50 Not reached 12% 42% 38% 6% 2%

AURA355 Osimertinib Asymptomatic, stable BM with 
prior EGFR therapy, T790M 
mutant

2014–
2015

30 8.9 months 7% 63% 23% 3% 3%

FLAURA262,284 Osimertinib Asymptomatic, stable, or 
symptomatic/ unstable but 
radiated BM

2014–
2016

22 15.2 months 23% 68% 5% 0% 5%

Abbreviations: BM, Brain Metastases; CR, Complete Response; N, Number; N/A, Not Applicable/Available; PD, Progressive Disease; PR, Partial 
Response; SD, Stable Disease.
aWhere possible table focuses on patients with measurable disease.
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more selective HER2-targeting TKI) have demonstrated 
more promise for intracranial disease control in patients 
with HER2+ breast cancer and brain metastases. The 
HER2CLIMB study, which randomized patients who previ-
ously received trastuzumab, pertuzumab, and T-DM1 to the 
regimen of tucatinib, capecitabine, and trastuzumab versus 
capecitabine and trastuzumab alone, identified an overall 
intracranial response rate with tucatinib, among patients 
with both measurable and active brain metastases, of 47% 
with a median duration of response of 6.8  months; re-
spective estimates in patients only receiving capecitabine 
and trastuzumab were 20% and 3.0 months, respectively. 
Overall survival, PFS, and CNS–PFS were all significantly 
better with tucatinib.317 Early data suggesting CNS effi-
cacy of the novel antibody-drug-conjugate, trastuzumab 
deruxtecan, also exists. In the DESTINY-Breast01, in 
heavily pretreated patients (median = 6 prior regimens), 24 
patients with treated/asymptomatic brain metastases were 
included, with an overall response rate of 58% and CNS 
response rate of 41%. Importantly, the median duration of 
response was 18.1 months.318 An ongoing study (DESTINY-
Breast12) will enroll up to 250 patients with stable or pro-
gressive HER2+ breast cancer brain metastases to further 
define the intracranial activity of trastuzumab deruxtecan.

The optimal sequencing of HER2-targeted agents in pa-
tients with or without brain metastases remains an area 
of active investigation, as does the utility of dual-agent 
HER2-based therapy. In this regard, ongoing clinical trials 
are testing novel combinations of HER2-targeting sys-
temic agents (such as tucatinib plus T-DM1 [NCT03975647], 
T-DM1 plus neratinib [NCT01494662], and trastuzumab 
deruxtecan plus tucatinib [NCT04539938]).

Among patients with triple negative breast cancer 
(TNBC) and brain metastases, systemic options for in-
tracranial disease control are limited. Few prospective 
trials of systemic agents exist. Sacituzumab govitecan, an 
antibody-drug conjugate consisting of an anti-Trop-2 anti-
body linked with an active metabolite of irinotecan, SN-38, 
was evaluated in the ASCENT study of patients with TNBC, 
including those with stable brain metastases. Despite sys-
temic efficacy, the intracranial response rate and clinical 
benefit rate were 3% and 9%, respectively, though interpre-
tation of these results is limited by the exclusion of patients 
with active brain metastases.319 An ongoing SWOG trial 
is evaluating the CNS activity of sacituzumab specifically 
in patients with active brain metastases (NCT04647916). 
Immunotherapeutic agents such as atezolizumab, which 
is often combined with nab-paclitaxel or carboplatin/

  
Table 8 Intracranial Response and Duration of Efficacy for Patients with ALK-Rearranged Non-small Cell Lung Cancer Managed with Targeted 
Agents on Prospective Trialsa

Study Drug Higher Level Entry Criteria Years of 
Accrual 

N Median Intracranial 
Response Duration 

CR PR SD PD N/A 

ASCEND-1287 Ceritinib Asymptomatic, stable BM, 
mostly pretreated with ALK 
inhibitor

2011–2013 36 8–11 monthsb 0% 42% 19% 17% 22%

ASCEND-2288 Ceritinib Asymptomatic, stable BM, 
prior platinum + crizotinib

2012–2013 20 N/A 10% 35% 35% 15% 5%

ASCEND-4289 Ceritinib Asymptomatic/stable BM, 
largely chemo naïve

2013–2015 35 17 monthsc 11% 60% 17% 6% 6%

AF-002JG292 Alectinib Asymptomatic BM, prior 
crizotinib

2012–2013 9 N/A 0% 56% 22% 22% 0%

Multisite 
global290

Alectinib Stable or asymptomatic 
BM, prior crizotinib

2013–2014 35 10 months 20% 37% 29% 9% 3%

Multisite North 
American291

Alectinib Stable, asymptomatic BM, 
prior crizotinib

2013–2014 16 11 months 25% 50% 25% 0% 0%

ALEX292 Alectinib Asymptomatic BM 2014–2017 15 Not reached 33% 20% 27% 13% 7%

ALUR294 Alectinib Asymptomatic or symp-
tomatic but ineligible for 
radiation

N/A 24 Not reached 4% 50% 25% 13% 8%

Multisite Amer-
ican/ Spanish293

Brigatinib Stable BM, largely 
pretreated with crizotinib

2011–2014 15 19 months 7% 47% 33% 13% 0%

ALTA295 Brigatinib Asymptomatic, stable BM, 
prior crizotinib

2014–2015 44 Not reached 5% 48% 32% N/A N/A

ATLA-1L296 Brigatinib Asymptomatic or stable BM 2016–2017 18 Not reached 28% 50% N/A N/A N/A

Multisite 
Global297

Lorlatinib Asymptomatic BM 2015–2016 81d 14.5 months 20% 43% 25% 9% 4%

CROWN263 Lorlatinib Asymptomatic BM 2017–2019 17 Not reached 71% 12% N/A N/A N/A

Abbreviations: BM, Brain Metastases; CR, Complete Response; N, Number; N/A, Not Applicable/Available; PD, Progressive Disease; PR, Partial 
Response; SD, Stable Disease.
aWhere possible, table focuses on patients with measurable disease.
bVariable based on receipt of ALK therapy vs not.
cAmong patients with unirradiated brain metastases.
dExcludes treatment-naïve patients (N = 3).

  



N
eu

ro-
O

n
colog

y
Aizer et al. SNO brain metastasis consensus guidelines 1633

gemcitabine in patients with PD-L1 positive TNBC, may 
have potential activity against brain metastases in TNBC 
but supporting data are lacking.320

Patients with hormone receptor-positive, HER2-
negative breast cancer also have limited options for 
intracranial management. Although CDK 4/6 inhibi-
tion combined with hormonal therapy represents the 
first-line approach for patients with metastatic disease, 
intracranial responses are guarded; a phase II study of 
abemaciclib in patients with brain metastases secondary 
to hormone receptor-positive breast cancer identified 
a response rate of 5% (HER2-negative patients) and 
0% (HER2-positive patients), although the clinical ben-
efit rate was 11–24%.321 In patients with PIK3CA muta-
tions, alpelisib may have intracranial efficacy based on a 
smaller case series322; consequently molecular profiling 
of this population may be important.

Among patients with any subtype of breast cancer, 
BRCA mutations, and brain metastases, limited reports 
supporting the potential viability of PARP inhibitors have 
been published but prospective studies demonstrating 
significant intracranial efficacy are limited.323 Carboplatin/
bevacizumab may have some utility in patients with 
breast cancer and brain metastases, although regulatory 
approval for bevacizumab in metastatic breast cancer 
is lacking in the United States.324 Other potential options 
in patients with HER2-negative breast cancer include 
eribulin,325 capecitabine,326 anthracyclines, and other hor-
monal (if hormone receptor-positive) and conventional 
chemotherapeutic agents, although supporting data and 
efficacy remain guarded. Consequently, for patients with 
HER2-negative breast cancer and brain metastases, uti-
lization of local therapies for intracranial disease control 
remains an important consideration. Ultimately, in all sub-
types of breast cancer, but particularly within triple nega-
tive or hormone receptor-positive/HER2 negative subsets, 
development of more promising systemic agents with po-
tential for intracranial efficacy represents a key priority.

Melanoma

Advances in systemic approaches, including immuno-
therapy and, for patients with actionable mutations (par-
ticularly BRAF), targeted therapy, have revolutionized the 
management and prognosis of patients with melanoma and 
brain metastases, with a significant percentage achieving 
durable disease control/cure with immunotherapeutic ap-
proaches. The optimal systemic management of patients 
with melanoma and brain metastases is dependent on nu-
merous considerations including age, comorbidities, per-
formance status, intracranial/extracranial disease burden, 
trajectory of disease pretreatment, prior treatment, steroid 
requirements, and the presence of targetable mutations 
in genes such as BRAF, NRAS, and KIT, among other fac-
tors. Among the 40–50% of melanoma patients harboring 
a BRAF mutation, those presenting with an intracranial 
or visceral oncologic crisis secondary to bulky or rap-
idly progressive disease may benefit from upfront BRAF/
MEK inhibitors (in addition to possible local therapy) due 
to the possibility of a rapid and profound initial response 
to these agents.327 In a prospective study of dabrafenib 

plus trametinib in patients with BRAF V600 mutant mela-
noma (COMBI-MB study), the intracranial response ranged 
from 44% to 59% based on subset; the intracranial disease 
control rate was as high as 75–88%. However, the me-
dian intracranial progression-free survival (PFS) ranged 
from 4.2 to 7.2  months and was reduced almost by half 
compared to reported PFS in patients without brain me-
tastases (11.1  months).327,328 Other BRAF/MEK regimens, 
including encorafenib plus binimetinib or vemurafenib 
plus cobimetinib, may be viable options for patients as 
well, although prospective data in this population are 
lacking.329,330 Of note, for patients with melanoma, brain 
metastases, and NRAS mutations, limited data support the 
use of MEK inhibitors such as binimetinib in achieving a 
limited and sometimes shorter term response.331 Toxicities 
of BRAF/MEK inhibition include fevers, diarrhea, asthenia, 
headache, nausea, diarrhea, arthralgias, myalgias, ele-
vated liver enzymes, musculoskeletal toxicities, and der-
matologic toxicities, including rashes, cardiomyopathies, 
and QTc prolongation.327,332

In patients with a targetable BRAF mutation harboring 
a less-pressing need to achieve rapid disease control, 
immunotherapeutic approaches have appeal, given con-
cerns regarding the sustainability/durability of responses 
to targeted therapy and challenges in converting BRAF/
MEK therapy to immunotherapy given the possibility of 
rapidly progressive disease after cessation of BRAF/MEK 
agents.111 Immunotherapy also represents the first-line sys-
temic treatment in patients lacking a BRAF alteration. Early 
data regarding the role of immunotherapy in the manage-
ment of patients with melanoma and intracranial involve-
ment stemmed from a single-arm phase 2 trial involving 
ipilimumab in which disease control was achieved in 24% 
and 10% of patients who were devoid of neurologic symp-
toms/steroid requirements versus not, respectively.147 
More impressively however, relatively few patients who 
were alive at 12 months died thereafter, indicating dura-
bility of response. Subsequent trials involving PD-1 inhibi-
tion as monotherapy also yielded promising results, with 
intracranial response rates of approximately 20%, which 
was notably lower than the extracranial response rate of 
35–40%.281,333

The currently preferred immunotherapeutic regimen for 
patients with melanoma and brain metastases involves 
concurrent ipilimumab and nivolumab followed by main-
tenance nivolumab. Data supporting dual-agent immu-
notherapy stem from two landmark trials (Table 9): (1) 
CheckMate 204, a single-arm phase II study of combina-
tion ipilimumab/nivolumab in patients with melanoma and 
active/unirradiated brain metastases who were devoid of 
(Cohort A) or who harbored (Cohort B) symptoms/steroid 
requirements and (2) the ABC study, a randomized study of 
patients with asymptomatic/unirradiated brain metastases 
secondary to melanoma assessing ipilimumab/nivolumab 
(Cohort A) versus nivolumab (Cohort B), along with a single-
arm cohort (Cohort C) of patients with progressive disease 
after local therapy, leptomeningeal disease, or neurologic 
symptoms managed with nivolumab monotherapy.8,146,333,334 
In patients on Cohort A  from either CheckMate 204 or the 
ABC study, the intracranial response/clinical benefit rate was 
approximately 50–60%, with an encouraging duration of re-
sponse noted in addition to significant correlation between 
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intracranial and extracranial efficacy. As a result, ipilimumab 
plus nivolumab forms the backbone of management for pa-
tients with melanoma and asymptomatic brain metastases. 
Unfortunately, intracranial responses with dual-agent immu-
notherapy in patients who are either symptomatic or on sig-
nificant doses of steroids are more limited; CheckMate 204 
identified an intracranial response rate of only 16.7% in such 
patients (Cohort B) and, concerningly, patients were only per-
mitted to receive a maximum daily dose of dexamethasone 
(or equivalent) of 4  mg, suggesting the potential for even 
lower response rates in patients with greater steroid require-
ments.145,333,335 It is important to note that immunotherapy 
can carry a significant risk of side effects. In CheckMate 204, 
55% of patients experienced a grade 3–4 adverse effect that 
was felt to be related to study treatment.8 Adverse effects of 
dual-agent immunotherapy include immune-related pneu-
monitis, hepatitis, colitis, nephritis, pancreatitis, arthritis, 
myositits, dermatologic changes, neurologic toxicities, 
cardiac inflammation, decreased blood counts, fatigue, 
and infusion reactions.336 It should be noted however, that 
the toxicity profile in patients with brain metastases was 
identical to that in patients without brain metastases, and 
there were no unique or novel side effects observed in this 
population.

Whether to combine local, brain-directed therapy along 
with dual-agent immunotherapy remains unresolved. 
Multi-modality therapy offers potential synergy between 
immunotherapeutic, surgical, and radiotherapeutic ap-
proaches.337,338 Radiation, for example, appears to be more 
effective when concurrent immunotherapy is administered, 
although supporting evidence remains largely retrospec-
tive.338 In addition, neurosurgical management can quickly 
decompress bulky or symptomatic brain metastases, po-
tentially rendering patients less steroid-dependent and 
facilitating effective combination immunotherapy.339 
Consequently, in patients who are symptomatic or steroid-
dependent, interdigitation of local, brain-directed therapy 

along with dual-agent immunotherapy seems reasonable. 
Concerns about multi-modality therapy largely center 
around toxicity, including pachymeningeal seeding in pa-
tients undergoing a craniotomy and radiation necrosis 
in patients undergoing stereotactic, brain-directed radi-
ation.226 Consequently, the role of local, brain-directed 
therapy in patients with asymptomatic disease remains 
unclear.185,226 A  randomized study of ipilimumab plus 
nivolumab with or without brain-directed stereotactic ra-
diation among patients with melanoma and asymptomatic 
brain metastases is underway (NCT03340129).

Future directions in the management of melanoma 
and brain metastases include evaluating combinations 
such as novel immunotherapeutic agents with or without 
bevacizumab or VEGF-targeting TKIs and the develop-
ment of biomarkers to identify which patients are most 
likely to respond to immunotherapy. In addition, among 
patients with targetable BRAF mutations, combination 
studies of BRAF-targeted and immunotherapeutic ap-
proaches are being conducted (NCT04511013); such ap-
proaches may allow patients to benefit from the typically 
rapid responses to targeted therapy while also providing 
the opportunity to attain long-term disease control via im-
munotherapy. Furthermore, evaluation of BRAF/MEK in-
hibitors with improved CNS penetration are now being 
explored in phase I studies (NCT04543188, NCT03332589, 
NCT04190628).

Advancing Clinical Trials

Compared with other oncologic entities of similar in-
cidence, such as breast, prostate, lung and colorectal 
cancer, relatively few ongoing or completed brain 
metastases-related prospective studies exist (Figure 1). 
In addition, brain metastasis trials are often difficult to 

  
Table 9 Prospective Trials of Dual-agent Immunotherapy in the Management of Patients with Melanoma and Active Brain Metastases

 CheckMate 204 (Cohort 
A)8,144 

CheckMate 204 (Cohort B)8,144 ABC Study (Cohort A)324 

High-level eligibility ≥1 unirradiated brain me-
tastasis (0.5–3.0cm in size), 
asymptomatic

≥1 unirradiated brain metastasis (0.5–3.0cm in 
size), symptomatic or on steroidsa

Asymptomatic brain metastasis, naïve 
to local, brain-directed therapy

Sample size 101 18 35

Median follow-up (months) 20.6 5.2 14

Years of enrollment 2015–2017 2015–2017 2014–2017

Treatment Ipilimumab + nivolumab Ipilimumab + nivolumab Ipilimumab + nivolumab

Intracranial response rate 54% 22% 46%

Intracranial PFS, median 
(months)

Not reached 1.2 Not reached

Extracranial response rate 49% 22% 63%

Extracranial PFS, median 
(months)

Not reached 2.2 14

Overall survival, median 
(months)

Not reached 8.7 Not reached

Abbreviations: PFS, Progression-Free Survival.
a≤4 mg/day of dexamethasone (or equivalent).
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execute, complete, and interpret, in part due to heter-
ogeneous patient populations, selection bias, effect of 
prior treatment, dropout, and difficulties with selection 
of a suitable primary endpoint. With regard to patient 
heterogeneity, study participants often vary with regard 
to underlying cancer type (particularly for local therapy 
studies), molecular alterations, underlying disease trajec-
tory, intracranial and extracranial disease burdens, prior 
therapy, viable systemic options, prognosis, and func-
tional status.223,340,341 Patient heterogeneity contributes to 
effect modification and challenges in real-world applica-
tion. For trials of novel systemic therapies among patients 
with brain metastases, patients with neurologic symptom-
atology or bulky intracranial disease have often been ex-
cluded, leading to estimates of response and recurrence 
that may only apply to patients with stable/treated brain 
metastases, asymptomatic disease, and a modest intra-
cranial disease burden.9,299 For example, in CheckMate 
204, the intracranial response rate to dual-agent immu-
notherapy in nonsteroid dependent patients with asymp-
tomatic brain metastases secondary to melanoma was 
54%; the respective rate in an expansion cohort consisting 
of symptomatic or steroid-dependent patients was only 
22%.146 In addition, prior treatment, notably radiation, can 
confound interpretation of systemic response given the 
potential for radiation to durably control intracranial dis-
ease, and due to complexities in ascertaining which intra-
cranial lesions have been radiated versus not. Moreover, 
obtaining Food and Drug Administration (FDA) approval 
for novel systemic therapies can ultimately be challenging 
given the historical need to show both intracranial and 
extracranial efficacy. Conversely, in local, brain-directed 
therapy studies, patient dropout can be significant,238 
leading to decreased power, difficulty obtaining study as-
sessments, and a potentially compromised opportunity to 
identify a statistically significant benefit related to a novel 
intervention.

Regarding primary endpoint generation, the competing 
risk of systemic death and salvage options available for 
intracranial progression can compromise the viability of 
selecting overall survival as a primary endpoint, particu-
larly for local therapy studies. Progression-free survival 
may also be of limited utility; for example, in studies 
examining omission of WBRT in lieu of stereotactic ap-
proaches among patients with a limited number of brain 

metastases, progression-free survival was nearly always 
better with WBRT even though stereotactic approaches 
now constitute the preferred approach.223–225,247 The use 
of alternative survival-based outcome measures, such 
as neurologic survival, can be difficult to apply and in-
terpret, in part due to a lack of a validated/accepted def-
inition of this endpoint. In addition, local response and 
local recurrence can be challenging to delineate in the 
context of immunotherapy-related pseudoprogression,342 
bevacizumab/TKI-mediated blunting of contrast enhance-
ment,343 or necrosis related to stereotactic radiation,187,262 
each of which can cloud such delineations. Investigations 
centered on quality of life or neurocognitive function offer 
promise in characterizing key functional endpoints rel-
evant to patients with brain metastases; although such 
outcomes may be especially relevant given that many pa-
tients cannot be cured and that a primary goal of treat-
ment relates to maintaining/sustaining function and 
quality of life, such assessments can be especially chal-
lenging to obtain in patients who are impacted most by 
neurologic symptomatology, oncologic disease, and/or 
treatment leading to bias with regard to missing data. As a 
result, for some studies related to brain metastases, there 
may not be a “best” primary outcome measure.

Efforts to improve clinical trials relating to brain metas-
tases are underway. The Response Assessment in Neuro-
Oncology-Brain Metastasis (RANO-BM) working group has 
advanced the assessment of intracranial tumor response 
and delineation of study-related end points, including 
among patients managed with immunotherapy and local, 
brain-directed therapy (Table 10).119,344,345 RANO-BM criteria 
is distinguished from RECIST by establishing the brain as a 
separate compartment and accounting for steroid use and 
clinical deterioration346; in addition to use within the domain 
of clinical trials, RANO-BM criteria have applicability for 
routine clinical care.347 With regard to imaging, consensus 
guidelines outlining standardization of imaging protocols 
for patients in brain tumor-related trials have been pub-
lished.95 Moreover, the Food and Drug Administration has 
recently released recommendations regarding clinical trial 
eligibility for patients with brain metastases, emphasizing 
the importance of including patients with brain metastases 
on trials where feasible, defining enrollment parameters 
based on extent of CNS disease (treated/stable vs active vs 
leptomeningeal disease), and proposing specific situations 

  
Table 10 RANO-BM Criteria for Response Assessment

Parameter Complete  
Response 

Partial Response Stable Disease Progressive Disease 

Target lesions No evidence of 
disease

≥30% decrease in sum of 
longest diameter of target 
lesions

Response between <30% decrease to 
<20% increase in sum of longest diam-
eter of target lesions

≥20% in sum of 
longest diameter of 
target lesions

Nontarget le-
sions

No evidence of 
disease

Stable/improved Stable/improved Unequivocal radio-
graphic progression

Steroids None Stable/reduced Stable/reduced Not applicable

Clinical status Stable/improved Stable/improved Stable/improved Deterioration

Abbreviations: RANO-BM, Response Assessment in Neuro-Oncology - Brain Metastases.
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where exclusion may be justified.348,349 In addition, sys-
temic therapy-based trials are enrolling patients with active/
unirradiated brain metastases.8,317,334,350–352 Lastly, quality 
measures to monitor and improve the care of patients with 
brain metastases have been proposed.353

Multiple ongoing or recently completed prospective studies 
are pushing the historical boundaries of brain metastasis-
related investigations. For example, increasingly, brain 
metastases-related trials are being focused on select subsets 
of patients, often linked by a histology or even specific mo-
lecular alterations. In this regard, NCT03994796 is a cooper-
ative group study in which patients with specific mutations 
(CDK, PI3K/mTOR, NTRK/ROS1) are stratified and then re-
ceive alteration-specific targeted agents. A recently published 
randomized trial of tucatinib, capecitabine, and trastuzumab 
compared to capecitabine, trastuzumab, and placebo among 
patients with HER2+ breast cancer demonstrated an overall 
survival benefit to the tucatinib arm; this study enrolled pa-
tients with active intracranial disease, representing a shift 
from many prior studies.317 The use of neurologic death as a 
primary endpoint is being explored via a tribunal approach 
in NCT03391362 (a phase II study of stereotactic radiation for 
SCLC) with neurologic death defined as marked, progres-
sive radiographic progression in the brain accompanied by 
corresponding neurologic symptomatology in the absence 
of systemic disease progression/systemic symptoms of a 
life-threatening nature; this study will determine whether a 
consistent definition of neurologic death can be reproducibly 
applied among independent reviewers. In addition, all MRIs 
for the clinical course of a given patient are registered to min-
imize error related to patient positioning and generate greater 
inference regarding necrosis versus progression-based delin-
eations (Supplemental Figure 1).

Although significant progress has been made with 
regard to the design and implementation of brain 
metastases-related prospective trials, numerous hurdles 
persist, as noted above. However, increasing recogni-
tion of the impact of brain metastases on a patient- and 
systems-level has reinvigorated efforts to advance the care 
of this population in need. Minimization of patient hetero-
geneity, refinement of eligibility criteria, improvements in 
primary endpoint generation, and advances in study con-
duct have potential to transform the management of pa-
tients with brain metastases.

Summary

Brain metastases have garnered increasing attention 
among patients, providers, investigators, and health care 
systems, resulting in significant progress in manage-
ment over recent years. Yet, significant challenges remain. 
Ongoing efforts have potential to further improve out-
comes for this increasingly relevant population of patients.

Supplementary Material

Supplementary material is available at Neuro-Oncology 
online.
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