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Abstract

Frozen sections provide a basis for rapid intraoperative diagnosis that can guide surgery, but 

the diagnoses often challenge pathologists. Here we propose a rule-based system to differentiate 

thyroid nodules from intraoperative frozen sections using deep learning techniques. The proposed 

system consists of three components: (1) automatically locating tissue regions in the whole slide 

images (WSIs), (2) splitting located tissue regions into patches and classifying each patch into 

predefined categories using convolutional neural networks (CNN), and (3) integrating predictions 

of all patches to form the final diagnosis with a rule-based system. To be specific, we fine-tune 

the InceptionV3 model for thyroid patch classification by replacing the last fully connected 

layer with three outputs representing the patch's probabilities of being benign, uncertain, or 

malignant. Moreover, we design a rule-based protocol to integrate patches’ predictions to form 

the final diagnosis, which provides interpretability for the proposed system. On 259 testing 

slides, the system correctly predicts 95.3% (61/64) of benign nodules and 96.7% (148/153) of 

malignant nodules, and classify 16.2% (42/259) slides as uncertain, including 19 benign and 16 

malignant slides, which are a sufficiently small number to be manually examined by pathologists 

or fully processed through permanent sections. Besides, the system allows the localization of 

suspicious regions along with the diagnosis. A typical whole slide image, with 80, 000 × 60, 

000 pixels, can be diagnosed within 1 min, thus satisfying the time requirement for intraoperative 

diagnosis. To the best of our knowledge, this is the first study to apply deep learning to diagnose 

thyroid nodules from intraoperative frozen sections. The code is released at https://github.com/

PingjunChen/ThyroidRule.
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1. Introduction

Intraoperative frozen sections are very useful for rapid pathology-based diagnosis that 

can guide further surgical decisions [1], but making diagnoses from frozen sections is 

very challenging even for experienced pathologists: the quality of frozen sections is lower 

compared to formalin fixed paraffin embedded tissue, the samples may contain artifacts, 

and they must be diagnosed within 20 min of receipt. Well-trained pathologists who are 

qualified to make diagnoses from frozen sections are less common [2], and a net gap of 

5700 pathologists is expected by 2030 in the USA alone [3]. The shortage of pathologists 

is particularly severe in developing countries, such as sub-Saharan Africa [4,5]. China has 

a similar number of pathologists as the USA (approximately 20,000) but three times the 

population [6,7].

One potential solution to the challenges of making rapid, accurate diagnoses for frozen 

sections is a type of artificial intelligence called deep learning, which has found substantial 

applications and success within medicine [8-11] as well as outside [12-14]. Following its 

success in image recognition [15], semantic segmentation [16], object detection [17], etc., 

deep learning is rapidly introduced into the medical domain. For example, deep neural 

networks can classify skin lesions with accuracy similar to that of dermatologists [18], and 

they can detect diabetic retinopathy and macular edema in retinal fundus photographs with a 

sensitivity of 97.5% and specificity of 93.4% [19]. Moreover, deep learning has been applied 

to digital pathology and has shown promising results in multiple applications. As early as 

2014, Wang et al. start to use convolutional neural networks (CNN) to extract features to 

detect mitoses to assist breast cancer grading [20]. They combine the handcrafted features 

with CNN features to maximize the detection performance. In 2015, Ertosun et al. propose 

an ensemble of CNNs for automated gliomas grading [21] and achieve a classification 

accuracy of 96% for the task of GBM vs. LGG classification. Since 2016, deep learning 

has been widely used and achieved optimal performance in many tasks of digital pathology, 

such as detection of invasive breast cancer [22] and lymph node metastases [23], epithelial 

and stromal regions segmentation and classification [24], tumor content and cellularity of 

prostate cancer estimation [25], nucleus/cell detection, segmentation, and retrieval [26-30], 

etc.

In this study, we investigate for the first time whether deep learning can diagnose thyroid 

nodules from intraoperative frozen sections. Thyroid nodules are one of the most common 

specimens requiring intraoperative consultations in current clinical practice. However, 

the sensitivity for diagnosing thyroid nodules from frozen sections is only around 75% 

[31,32]. Nevertheless, frozen sections are needed to confirm malignancy suspected from 

fine-needle aspiration cytology, and such sections should always be prepared in the case of 

supracentimetric isolated nodules, to determine the surgical strategy [33]. We reason that 

diagnosing thyroid nodules could be a feasible task for deep learning because analysis of 

frozen sections can be reduced to a three-category classification problem (benign, uncertain, 

or malignant) based on the guidance requirements for the following surgery decisions. Also, 

the most frequent thyroid malignancy, papillary thyroid carcinoma (PTC), shows distinct 

characteristic patterns [34,35].
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Because digitized frozen section slides have very high resolution, which can be up to size 

100,000 × 100,000 pixels, the computation cost would be prohibitive if directly dealing 

with them. Whereas large scale down-sampling would seriously lose the details, resulting 

in the slide to be blurry to the extent that cannot be diagnosed. Splitting the WSI into 

patches to conduct analysis and then fusing patches’ prediction is the most common solution 

for histopathology WSI analysis [36-39]. In the study of Hou et al. [36], they formulate a 

novel Expectation-Maximization (EM) based method to automatically locates discriminative 

patches. In their approach, patches labels are iterative inferred and refined, thus is free 

from region annotation. However, the overall computation cost would be expensive because 

of the iterative refinement procedure. Along with Hou's study, Wang et al. [40] propose a 

weakly supervised approach to maximize the use of available WSI-level labels. Furthermore, 

they explore context-aware block selection and feature aggregation strategies to generate 

globally holistic WSI descriptor. But the performance of patch-based classifier is not 

satisfactory under the weakly supervised manner. Maximilian et al. [41] formulate the 

whole slide image diagnosis as a multiple instance learning (MIL) problem and propose 

to learn the Bernoulli distribution of the patch label where the patch label probability is 

fully parameterized by neural networks. This study is theoretically graceful but it basically 

does not consider the diagnosis preference of certain categories in practical diagnosis. Wei 

et al. [38] adopt a sliding window approach to generate small patches on the whole slide, 

and classify each patch with a residual neural network. They use a heuristic manner to 

determine predominant and minor histologic patterns for the whole slide. This method is 

very straightforward and the label of different regions can be obtained during the inference 

of slide diagnosis. In addition, the heuristic manner can be robust to artifacts as well as 

single-patch classifications.

In this study, we take the applicability and interpretability of the proposed system as our 

main motivation. With this motivation, we first propose a tissue localization algorithm to 

segment tissue regions in the slide, thus reducing the overall slide diagnosis time cost as well 

as the interference of irrelevant regions. Then we split located tissue regions into patches 

and separately predict the category of each patch. The final diagnosis of thyroid nodules 

is performed as integration of patch predictions using a rule-based protocol. The proposed 

system can not only diagnose the category of thyroid lesion, but it also can locate suspicious 

lesions, which pathologists can manually examine as needed. Furthermore, the rule-based 

protocol allows for the interpretability of the proposed system, making the diagnosis to be 

more trustworthy. An overview of the proposed approach is shown in Fig. 1. The main 

contributions of this paper can be summarized as follows:

• We develop a rule-based diagnostic system to differentiate thyroid nodules from 

intraoperative frozen sections based on deep learning techniques.

• Tissue localization is applied first in the whole slide diagnosis to locate thyroid 

tissue regions for the reduction of the overall time cost.

• The rule-based system considers the conservative diagnosis manner of the 

practical thyroid frozen section diagnosis, thus to be a more safe system.
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• The automated diagnostic system obtains a precision of benign and malignant of 

thyroid nodules with 95.3% and 96.7% as well as 100% sensitivity of uncertain 

category.

2. Slides collection and categorization

We collect thyroid frozen sections and their permanent slides from Peking Union Medical 

College Hospital (Beijing, China) with a cohort of patients having suspected thyroid nodules 

admitted between January 2017 and October 2017. The hospital's Ethics Review Board 

approves the study. All collected slides are de-identified before the analysis. Collected 

frozen sections are independently reviewed by two certified pathologists, who then resolve 

disagreements through discussion. Permanent sections are considered as the gold standard, 

and used to assist the definite diagnosis of frozen sections.

Thyroid frozen sections are categorized as benign, uncertain, or malignant, based on the 

requirements for developing surgery plans. Fig. 2 shows the morphology of typical thyroid 

slides of three categories.

Table 1 presents the subtypes and surgery plan for each diagnosis. Benign lesions include 

normal thyroid tissue, nodular hyperplasia, multinodular goiter, lymphocytic thyroiditis, 

Hashimoto thyroiditis, and granulomatous thyroiditis. The patient who is diagnosed as 

having benign lesions do not need additional surgery. Malignant lesions include papillary 

thyroid carcinoma, widely invasive follicular carcinoma, medullary carcinoma, poorly 

differentiated thyroid carcinoma, and thyroid lymphoma. Those diagnosed with malignancy 

need to conduct further resection, such as lobectomy or total thyroidectomy, with or 

without lymph node sampling or cervical lymph node dissection. Lesions that are difficult 

to diagnose or whose diagnosis requires sufficient sampling of the nodular capsule 

(follicular adenoma, minimally invasive follicular carcinoma) are defined as uncertain. 

Patients diagnosed as having uncertain lesions are subjected to further tissue sampling, and 

permanent sections are prepared and used to make a definitive diagnosis.

3. Methods

In this section, we first describe the patch preparation and classifier selection for the patch 

classification model training. Then we present the three steps involved in the proposed 

thyroid frozen section diagnosis system in detail.

3.1. Patch classification

3.1.1. Region annotation and patch cropping—We employ supervised learning to 

train thyroid patch classification model, which requires sufficient annotation data. To reduce 

the annotation burden, we adopt the region of interests (ROI) based manner to annotate 

three kinds of regions. Two pathologists label all the region annotations. One pathologist 

first annotates the ROIs as well as their categories on all the training and validation slides. 

Then another pathologist checks and refines the annotations. Based on these annotations, 

patch images are randomly cropped from them and used as samples for deep neural network 

training. The label of each cropped patch is set as the same with the cropped ROI.
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Fig. 3 shows annotation examples for three slides, where the region demarcated with the 

mask is the annotated ROI. All regions on benign slides are considered as benign, and 

regions from these slides are randomly selected as benign regions. We design the annotated 

uncertain regions on uncertain slides to include some pixels beyond the uncertain borders, 

while annotated malignant regions on malignant slides to be conservative to include regions 

that are highly likely to be malignant. Benign regions on uncertain and malignant slides 

are also annotated and used in training to increase the diversity of benign patches. To note 

that some background (non-tissue) regions on frozen sections of all three categories are also 

annotated as benign regions to train the patch model to avoid classifying background patches 

as uncertain or malignant.

We set the size of the cropped patch as 2392 × 2392 pixels on level 0 slide image, 

corresponding to 0.598 × 0.598 mm2 based on a pixel scale of 0.25 μm at scanning 

magnification of × 40. We randomly select the center coordinates for each patch and crop 

the patch based on the center coordinates. We only retain the patches in which at least 75% 

of pixels lying inside the annotated regions.

3.1.2. Patch classification model—Currently, there are several popular CNN 

classification architectures along the deep learning development, including VGG [42], 

Inception [43], ResNet [13], etc. We choose the InceptionV3 as the patch classification 

model for the diagnosis of thyroid nodules. The main reason to choose InceptionV3 

is because of its wide adoption in medical imaging applications, such as skin cancer 

classification [18] and diabetic retinopathy detection [19], and its demonstrated superior 

performance. Based on the three-category classification for the thyroid nodule diagnosis, we 

replace the last fully connected layer of InceptionV3 from 1000 to 3 outputs, to represent 

benign, uncertain, and malignant, respectively.

Although we can generate more than 120,000 patches for classifier training, we still train 

the thyroid patch model via transfer learning from a pre-trained model on the ImageNet 

recognition task. With a pre-trained model for initialization, the patch classifier can obtain 

better performance, which will be shown in the experiment part.

3.2. Tissue localization

With the patch-based model, we can predict the category of all the patches inside the slide. 

However, before the patch-wise prediction, we need to locate the real tissue regions in 

the testing slide to avoid background (non-tissue) regions. As background regions not only 

increase the computational time but also affect the WSI diagnosis [44].

We combine a series of image processing techniques to locate tissue regions by taking 

advantage of the fact that the intensity value of the tissue regions is lower than the 

background. We perform tissue localization on the 4th level slide image, which has a width 

and height only 1/16 of the original WSI, which can significantly reduce the time cost for 

tissue localization. Firstly, the slide image is loaded from the 4th level of the whole slide 

image, then we convert the low-level image from RGB color space to grayscale. Gaussian 

filtering with a kernel size of 9 is applied to smooth the gray image. Then we inversely 

binarize the smoothed gray image using a preset threshold value of 0.82. Next, we apply 

Li et al. Page 5

Artif Intell Med. Author manuscript; available in PMC 2022 October 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



hole filling and small object removal to refine the binary image. The refined foreground 

regions are considered as real tissues. Fig. 4 shows the tissue localization pipeline with 

intermediate results generated on each step.

Fig. 5 shows two examples of tissue localization, in which the blue covered regions are the 

localized tissue regions. Parts of boundary regions can be added or missed, but this should 

have negligible effects on the thyroid nodule diagnosis.

3.3. Patch splitting and prediction

After tissue localization, we can easily identify the tissue contours and their circumscribed 

rectangles. To keep the split patches with the same size as the training patches for the 

InceptionV3 model, we partition patches with the size of 2392 × 2392 pixels from the 

circumscribed rectangles in a grid-by-grid manner. To speed up the diagnosis, we set 

no overlap between adjacent patches in the patch splitting process. As the circumscribed 

rectangle covers more regions than the real tissue, there exists some patches outside or 

intersected with the localized contours. We keep those patches with at least 75% of pixels 

inside the localized tissue region for thyroid slide diagnosis.

With all the split patches from the localized tissue regions, the fine-tuned InceptionV3 

model is used to make predictions on them. Each patch's probabilities belonging to the three 

categories are inferred and used for the subsequent patch fusion.

3.4. Fusion of patch predictions

Different from natural image classification, categories cannot always be treated equally 

in the medical diagnosis task. Taking the diagnosis of thyroid nodules as an example, 

predicting malignancy to be uncertain can cause less harm than the reverse, as the thyroid 

resection is irreversible. Therefore, pathologists tend to make a conservative diagnosis 

when dealing with a complicated case. Based on this prior knowledge, we fuse the patch 

predictions based on following two criteria: (1) the patch is predicted as malignant only 

when it is highly likely to be malignant; (2) the slide is predicted as malignant only when the 

predicted malignant region is larger than a preset threshold. For criterion 1, we predict the 

patch to be malignant only when its predicted malignant probability is higher than 0.96. The 

patch with predicted benign probability higher than 0.40 and the value is the biggest among 

the three categories will be classified as benign. The rest patches are considered as uncertain.

With all patches’ predicted categories, we propose a rule-based protocol to fuse all the 

predictions, which is mainly based on criterion 2. After classifying all the patches in 

the WSI, three binary maps are generated to represent benign, uncertain, and malignant, 

respectively. We apply hole filling to uncertain and malignant binary maps as post-

processing. When the uncertain binary map contains more than 36 connected uncertain 

patches, the slide is diagnosed as uncertain without considering other binary maps. Next, 

if the malignant binary map contains more than 30 connected malignant patches, the 

slide will be considered as malignant. However, if the number of connected malignant 

patches is between 8 and 30, the slide is also diagnosed as uncertain to follow the 

conservative diagnosis principle. The rest slides are diagnosed as benign. This diagnosis 

rule is formulated as follows:
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Rule(slide) =

Uncertain if Nu ≥ 36
Malignant otherwise Np ≥ 30
Uncertain otherwise Np ≥ 8
Benign otherwise

(1)

where Nu stands for the maximum connected number of uncertain patches in the uncertain 

binary map and Np stands for the maximum connected number of malignant patches in 

the malignant binary map. Fig. 6 shows the proposed rule-based protocol for thyroid slide 

diagnosis.

All the parameters, including the probability cut-offs and patch number thresholds of 

different categories, are set mainly based on two factors. Firstly, we try to conform to the 

conservative diagnosis manner (prefer to diagnose malignant slides as benign or uncertain 

to avoid the non-reversible resection) adopted by pathologists used in practical diagnosis. 

Secondly, with the guidance of conservative diagnosis as the basis, we take advantage 

of the validation thyroid dataset to determine the values of these parameters based on 

the performance on the validation dataset. Based on this protocol, malignant and benign 

slides would tend to be classified as uncertain, which is demonstrated in the slide-level 

performance part. The main advantage of the proposed fusion method is that it can provide 

interpretability for the slide diagnosis. The user can know why the diagnosis is made and 

where those uncertain or malignant regions are located, which is very important for medical 

applications and makes the diagnosis to be trustworthy. Fig. 7 shows the entire thyroid 

frozen section diagnosis flow chart.

4. Experimental results

4.1. Dataset

We collect two batches of thyroid frozen sections for the system training and evaluation. The 

first collection contains 349 thyroid frozen sections (benign, 117; uncertain, 50; malignant, 

182), is used for model construction, which is randomly divided into training and validation 

sets in a 4:1 ratio. Nearly all these sections came from a consecutive series of patients, 

except 42 slides classified as uncertain that are specifically chosen to help reduce the 

imbalance among the three categories. The second collection contains 259 frozen sections 

(benign, 85; uncertain, 7; malignant, 167), and is used for the evaluation of the proposed 

system.

Based on the patch cropping method, 67,031 benign, 25,843 uncertain, and 32,020 

malignant patches are cropped from the training slides for model training. A further 12,487 

benign, 5150 uncertain, and 7038 malignant patches are cropped from validation slides and 

used for classification model evaluation and selection.

4.2. Implementation details

For the patch classifier, we also train VGG16BN and ResNet50 to compare with 

InceptionV3 in both fine-tuning and training from scratch manner. The RMSprop [45] is 

used for the optimization of model parameters. The initial learning rate is set as 0.01 for 
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training from scratch and 0.001 for fine-tuning, and it decays every two epochs with a 

ratio of 0.8 for both manners. Image augmentation techniques, including rotation, flipping, 

and color jittering, are used to improve the model's generalization ability. We train the 

network with a batch size of 32 and a weight decay of 0.0005 for 20 epochs. We evaluate 

the trained model after each epoch on all cropped validation patches. All three models 

with two different initialization manners are separately trained five times to compare their 

performance. The model with the best accuracy on validation patches is selected for the 

diagnosis of thyroid nodules. All the implementation are based on Python3.6, and open-

soured in https://github.com/PingjunChen/ThyroidRule. We take advantage of openslide-

python and scikit-image for whole slide image loading and basic image processing. We use 

deep learning framework PyTorch 0.4.0 to implement all the CNN models. The GeForce 

GTX 1080Ti GPU with 11 GB memory is used for CNN model training and evaluation. It 

takes about 6.4 h, 4.3 h, and 4.9 h to train the InceptionV3, VGG16BN, and ResNet50 for 20 

epochs on both training from scratch and fine-tuning from the ImageNet pre-trained model.

4.3. Patch-based classification

Patch classification model's performance on validation patches are shown in Fig. 8. Among 

the three experimented CNN models, their performance with fine-tuning training mode is 

very close, with InceptionV3 showing narrow lead. Whereas comparing the fine-tuning and 

training from scratch, it is evident that fine-tuning models achieve superior performance. 

These results validate the selection of InceptionV3 model via transfer learning for thyroid 

patch classification.

However, even for the best-performed InceptionV3 model, the classification accuracy on 

validation patches is lower than 0.80, which cannot be treated as prominent for a three-

category classification task. The main reason lies in the coarse ROI-based annotation. As the 

ROI covers a vast region, the label of the cropped patch can be different from the category 

of the ROI. Thus there exists noise in the patches’ labels. Nevertheless, directly annotating 

patches is too time-consuming, the current ROI-based annotation is the sub-optimal solution.

4.4. Slide-level performance

The diagnosis of the testing slides is based on the best-performed InceptionV3 model and 

the rule-based protocol. Table 2 shows the confusion matrix of the diagnosis of thyroid 

nodules on 259 testing thyroid frozen sections. Of the 85 benign thyroid lesions, 61 are 

predicted to be benign, 19 uncertain, and 5 malignant. Among 167 malignant thyroid 

slides, 148 are predicted as malignant, 16 uncertain, and 3 as benign. All 7 uncertain 

slides are correctly predicted. Both benign and malignant categories obtain high precision, 

which is 95.3% (61/64) and 96.7% (148/153), respectively. The uncertain category shows 

a high sensitivity of 1.0. Based on the conservative diagnosis manner, benign precision, 

malignant precision, and the uncertain sensitivity are the most interested metrics, which all 

obtain prominent performance. The overall three-category classification accuracy is 83.4% 

(216/259). However, this underestimates the practical diagnosis accuracy, pathologists will 

further examine those slides classified as uncertain, and perhaps additional tissue would be 

prepared or fixed permanently. If we exclude those slides that are incorrectly classified as 

uncertain, we can attain an overall classification accuracy of 96.4% (216/224).
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Besides the performance analysis on the all testing slides, we also conduct statistical 

analysis for the performance evaluation. In the statistical analysis, we randomly select 

80% testing slides in each experiment. For each trial, we mainly calculate four interested 

metrics, including benign precision, malignant precision, uncertain sensitivity, and the 

overall accuracy. We conduct the trials on randomly selected slides for 100 times and 

draw the box plot of the results in Fig. 10. The lowest value of benign precision and 

malignant precision is higher than 0.925 and 0.950, respectively. As no uncertain cases 

are misclassified to other categories with this proposed system; thus, the sensitivity of the 

uncertain category is 1.0. These results satisfy the requirement of the conservative manner in 

thyroid frozen section diagnosis.

With the patch-based slide diagnosis, corresponding regions for each category are also 

generated along with the patch classification. Examples of suspicious region localization are 

shown in Fig. 9, which combines three binary maps.

The time needed for the system to diagnose slides is mainly depended on the number of 

patches that need to be predicted within each slide. Thus, the width and height of the WSI 

and the area of tissue regions within the slide are the primary factors for the computational 

time cost. The diagnosis of testing slides is carried out using a GeForce GTX 1080Ti Nvidia 

GPU. On the 259 testing slides, it takes 220 min in total, giving an average time of 51 s per 

slide.

5. Discussion

5.1. Benign misclassified as malignant

In the patch fusion process, we impose demanding conditions for the system to diagnose 

individual patches as well as slides to be malignant. These requirements emulate the 

tendency of pathologists to lean towards a diagnosis of uncertain when they have any 

doubt, to trigger further consultation or preparation of a permanent tissue section before 

undertaking potentially unnecessary surgery. As a result of these strict criteria, most 

misclassified slides are predicted to be uncertain.

Nevertheless, there are still five benign slides in the testing set that are misclassified as 

malignant. The results may reflect, in part, inadequate exposure to the variety of histological 

variations, even though the model is trained and evaluated with more than 300 frozen 

sections. It also reflects that benign lesions share some features with malignant ones. The 

case of lymphocytic thyroiditis (Fig. 11(A)) and the case of Hashimoto thyroiditis (Fig. 

11(D)) may have been misclassified as malignant because they show focally enlarged 

nuclei similar to nuclei in papillary thyroid carcinoma [33]. The other three misclassified 

cases (Fig. 11(B), (C) and (E)) are multinodular goiters that show fibrosis, hemosiderin 

deposition, or fibrotic encapsulation. These degenerative features also occur in malignant 

lesions [46]. These misclassifications also demonstrate the complexity of diagnosing thyroid 

frozen sections.
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5.2. Patch size selection

The performance of the proposed system is mainly based on the prediction accuracy of 

the patch classification model, which is affected by the size of the cropped patch to a 

large extent. Here we choose a patch size of 2392 × 2392 pixels as a trade-off between 

the advantages and disadvantages of smaller and larger patches. A larger patch size means 

fewer patches in the slide, which can speed up diagnosis but reduce the diversity of samples 

from which the patch classification model can learn. Furthermore, since the input image 

size for InceptionV3 is 299 × 299 pixels, a larger patch size leads to a significant loss 

of image information. As for smaller patch size, it will prolong computations and reduce 

the amount of contextual information needed for diagnosis. With the chosen patch size, 

we can directly load slide image with the size 299 × 299 from the 3rd level of the slide, 

which corresponds to image patch size of 2392 × 2392 in original level 0 slide. In addition, 

the chosen patch size allows the model to diagnose a single thyroid slide within 1 min 

for most cases, satisfying the time requirements. More importantly, pathologists can obtain 

enough information on this patch size to make confident diagnoses. From the viewpoint of 

simulating pathologists’ way to make a diagnosis, this patch size should also be feasible for 

the CNN model.

5.3. Patch model improvement

The accuracy of the current patch classification model is lower than 0.8, which requires 

further improvement. The following three measures can be helpful to improve patch model 

performance. First, there exist noisy labels in the patches cropped through ROI-based 

annotations. On the one hand, we can refine the ROI annotations to be more precise. On 

the other hand, we can check the cropped patches and validate its labels. However, both 

methods are very time-consuming. Second, we can continue to collect more slide samples to 

improve model's robustness and generalization ability, especially uncommon frozen sections, 

such as Hashimoto thyroiditis, granulomatous thyroiditis, medullary carcinoma, poorly 

differentiated thyroid carcinoma, and thyroid lymphoma; and cases with atypical features 

or diagnostic challenges, such as multinodular goiter with prominent fibrosis or papillary 

structures (papillary hyperplasia), and thyroiditis with cytological atypia. Third, with the 

aim of applying the system to clinical settings, it may be possible to supplement this initial 

training with “feedback” training in which the model is confronted with the slides that are 

misclassified and thus used to refine the classification model accordingly.

5.4. Transferring to other tissues

Deep learning is a data-driven approach that discriminative features of patches can be 

learned when sufficiently diverse samples are collected. In this study, we transfer the 

parameters learned from the natural image to the thyroid frozen sections. Despite the 

difference between natural images and digital frozen sections, the experiments demonstrate 

the effectiveness of transfer learning. Because frozen sections of different tissues appear 

more similar compared with natural images, other frozen section tissue models can be 

transferred from the thyroid patch classification model instead of being transferred from the 

model trained from ImageNet, which may help reduce the required number of annotations 

and facilitate the development of automatic diagnosis system for other tissues.
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For histopathology tissue diagnosis, it is essential to clearly define diagnostic categories 

before the collection of slides. For thyroid nodules, the possible categories are relatively 

well-defined (benign, uncertain, and malignant). Other tissue with more complex situations 

may require greater effort and guidance from pathologists and surgeons.

5.5. Assistant to pathologists

Here we demonstrate that deep learning can contribute to the diagnosis of thyroid nodules 

from intraoperative frozen sections, which may allow more reliable and faster decision-

making about the best surgical strategy to follow. We envisage that the proposed deep 

learning-based diagnosis system can be a valuable assistant to pathologists. Instead of 

diagnosing based on the slide alone, the pathologist may refer to the automatic diagnosis 

and focus on suspicious areas flagged by the model. The system may identify regions that 

the pathologist missed, and it may reinforce the pathologist's thinking by providing complete 

information for the more reliable diagnosis, and even lead the pathologist to seek a second 

opinion. This system may be particularly useful in environments where suitably qualified 

pathologists are lacking. At this stage, deep learning can complement, but not replace, a 

certified pathologist.

6. Conclusions

In this paper, we present a patch-based system to automatically diagnose thyroid nodules 

from intraoperative frozen sections using deep learning techniques. With all patches’ 

predictions using the InceptionV3 model, we develop a rule-based protocol to fuse all 

predictions for the diagnosis of thyroid nodules, which allow for interpretability for the 

diagnosis. The proposed system achieves high precision on benign and malignant categories 

of thyroid nodules of 95.3% and 96.7%, respectively. In addition, a typical whole slide 

image can be diagnosed within 1 min. These results demonstrate the accuracy and efficiency 

of the proposed system. In future work, we will refine the system for thyroid nodule 

diagnosis mainly by improving the patch classification performance and extend to frozen 

sections of other organs, such as lung nodules and ovarian tumors.
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Fig. 1. 
The pipeline of training and testing the model for diagnosis of thyroid nodules from frozen 

sections. Module (A) shows how patches of three categories are cropped from annotated 

slides. Uncertain patches and malignant patches are cropped from uncertain and malignant 

slides, respectively. Benign patches are cropped from benign regions in each of the three 

slide types. All cropped patches are used to fine-tune the deep learning model in module 

(B). In the testing stage, the trained model is applied to all patches inside localized tissues 

in testing slides. All patch predictions are integrated to form the final diagnosis according to 

a rule-based protocol. Note: “N” stands for negative, namely benign patch; “U” stands for 

uncertain patch; and “P” stands for positive, namely malignant patch.
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Fig. 2. 
Frozen section examples of (A) benign, (B) uncertain, and (C) malignant thyroid nodules.
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Fig. 3. 
Image patch cropping from annotated frozen sections. Contours are annotated and validated 

by certified pathologists. All regions in the benign slide are considered as benign. A few 

white background regions are specifically set as benign regions. Benign regions can also 

exist on uncertain and malignant slides. Benign, uncertain, and malignant patches are 

randomly cropped from these annotated regions with corresponding categories. The number 

of cropped patches is set to be proportional to the area of the annotated region.
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Fig. 4. 
Thyroid tissue localization pipeline. Tissue localization is applied at the 4th level of the 

whole slide image to eliminate background regions that are irrelevant to slide diagnosis, 

thereby speeding up the automatic diagnosis process. Color space conversion, image 

smoothing, inverse binarization, and binary image refinement are successively applied to 

generate the thyroid tissue mask.
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Fig. 5. 
Thyroid whole slide image tissue localization examples. The first row shows two sample 

whole slide images. The second row shows tissue localization results (marked in blue).
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Fig. 6. 
The proposed rule-based protocol for the diagnosis of thyroid frozen sections based on patch 

classification results.
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Fig. 7. 
The flow chart of the proposed rule-based diagnosis system for the thyroid frozen section. 

The main components in the system contains tissue region localization, patch splitting and 

category prediction based on CNN, and the rule-based slide diagnosis protocol.
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Fig. 8. 
Comparison of three different classifiers, including InceptionV3, VGG16BN, and ResNet50, 

on thyroid patch classification via fine-tuning and training from scratch.
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Fig. 9. 
Example predictions of patch-based classification of thyroid frozen sections. The first row 

shows benign, uncertain, and malignant input slides. The second row shows corresponding 

patch-based predictions. Three predicted binary maps (benign, uncertain, and malignant) are 

combined into a single image, in which green represents benign; blue, uncertain; and red, 

malignant.
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Fig. 10. 
Statistical analysis of the four most interested metrics in thyroid frozen section diagnosis. 

Four interested thyroid diagnosis metrics, including benign precision, malignant precision, 

uncertain sensitivity, and overall accuracy, are computed via slides random sampling from 

the whole testing slides.

Li et al. Page 24

Artif Intell Med. Author manuscript; available in PMC 2022 October 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 11. 
Five benign slides that the proposed system misclassifies as malignant. Those regions 

demarcated using the red bounding boxes, appear very similar to the malignant regions on 

malignant thyroid slides.
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Table 2

Confusion matrix of 259 testing slides for diagnosing frozen sections of thyroid nodules. The overall accuracy 

of all testing slides is 83.4%. Both benign and malignant categories have high precision, which is 95.3% and 

96.7%, respectively, while the sensitivity of uncertain category is 100%.

Ground truth Prediction

Benign Uncertain Malignant Overall Sensitivity

Benign 61 19 5 85 71.8%

Uncertain 0 7 0 7 100%

Malignant 3 16 148 167 88.6%

Overall 64 42 153 259 –

Precision 95.3% 16.7% 96.7% – –
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