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Abstract

Antibiotic resistance is a major cause of treatment failure and leads to increased use of 

broad spectrum agents, which begets further resistance. This vicious cycle is epitomized by 

uncomplicated urinary tract infection (UTI), which affects 1 in 2 women during their life and is 

associated with increasing antibiotic resistance and high rates of prescription for broad spectrum 

second-line agents. To address this, we developed machine learning models to predict antibiotic 

susceptibility using electronic health record data, and built a decision algorithm for recommending 

the narrowest possible antibiotic to which a specimen is susceptible. When applied to a test cohort 

of 3,629 patients presenting between 2014 and 2016, the algorithm achieved a 67% reduction in 

the use of second-line antibiotics relative to clinicians. At the same time, it reduced inappropriate 

antibiotic therapy, defined as the choice of a treatment to which a specimen is resistant, by 18% 

relative to clinicians. For specimens where clinicians chose a second-line drug but the algorithm 

chose a first-line drug, 92% (1066/1157) of decisions ended up being susceptible to the first-line 

drug. When clinicians chose an inappropriate first-line drug, the algorithm chose an appropriate 

first-line drug 47% (183/392) of the time. Our machine learning decision algorithm provides 

antibiotic stewardship for a common infectious syndrome by maximizing reductions in broad 

spectrum antibiotic use while maintaining optimal treatment outcomes. Further work is necessary 

to improve generalizability by training models in more diverse populations.
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ONE SENTENCE SUMMARY

Machine learning models for predicting antibiotic resistance could reduce the use of broad 

spectrum antibiotics in urinary tract infection.

INTRODUCTION

Uncomplicated urinary tract infection (UTI) refers to bacterial infection of a structurally 

normal lower urinary tract in a healthy female. It is an extremely common diagnosis that 

affects more than 1 in 2 women in their lifetime(1) and accounts for over 13 million 

outpatient and emergency room visits(2). It is the third most common indication for 

antibiotic treatment in the United States(3) resulting in 4.7 million prescriptions annually(4). 

Fluoroquinolone antibiotics such as ciprofloxacin and levofloxacin are the most commonly 

prescribed antibiotic class for uncomplicated UTI, despite being second-line agents(4). This 

may reflect the impact of increasing antibiotic resistance(5–7), which leads clinicians to 

choose broad spectrum therapies in order to minimize the risk of treatment failure.

Reducing the unnecessary use of fluoroquinolones has been a target for antimicrobial 

stewardship programs due to the well documented risks of serious adverse events that 

include secondary infection with Clostridioides difficile(8), selection of multidrug resistant 

organisms(9), tendinopathies(10), and aortic dissection(11). National practice guidelines 

published by the Infectious Diseases Society of America (IDSA)(12) provide a treatment 

algorithm that avoids the use of fluoroquinolones for uncomplicated UTI, but adherence 

is low(13–15), partly because they are designed to be broadly applicable across many 

populations, leaving the task of personalizing treatment decisions to the clinician(16, 

17). Thus, a data-driven clinical decision support tool to identify candidates for the first-

line therapies nitrofurantoin and trimethoprim-sulfamethoxazole (TMP-SMX) could greatly 

reduce harm to patients by avoiding exposure to fluoroquinolones, while still maintaining 

optimal treatment outcomes.

Computer algorithms have been employed for clinical decision support in the management 

of infectious diseases since the 1970s(18). More recently, machine learning has been used to 

predict antibiotic resistance in bloodstream infections(19–21), UTI(22), and from pathogen 

genomic data(23). These approaches can provide new insights into clinical phenomena(24, 

25) but have not yet been widely adopted due to their difficulty integrating into clinical 

workflows, lack of interpretability, and an absence of evidence proving their generalizability 

and their utility in actual clinical settings.

Here, we use the syndrome of uncomplicated UTI to propose a solution to the challenge of 

antibiotic prescription in the era of resistance. We applied machine learning to data in the 

electronic health record (EHR) to predict the probability of antibiotic resistance to first- and 

second-line therapies. We then developed a decision algorithm that translates probabilities 

into recommendations designed to select the antibiotic of the narrowest possible spectrum 

while still achieving clinical cure, and benchmarked its performance relative to clinicians 

and a best-case adaptation of the national practice guidelines. We structured our algorithm 

with the intention of its deployment as an interpretable and personalized decision support 
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tool embedded in the EHR to provide robust antimicrobial stewardship for a common 

outpatient diagnosis. Future efforts will focus on increasing the diversity of our sample to 

ensure robust recommendations across diverse race/ethnicities and socioeconomic strata.

RESULTS

Design and evaluation of a machine learning decision algorithm

We conducted this study in three parts. The first part consisted of building machine 

learning models to predict the probability of non-susceptibility to antibiotics used to treat 

uncomplicated UTI. Models were trained on data from 10,053 patients (11,865 specimens) 

with uncomplicated UTI presenting between January 1 2007 to December 31 2013 to 

Massachusetts General Hospital and Brigham & Women’s Hospital. We then developed 

a decision algorithm that translated probabilities into susceptibility phenotypes and chose 

the treatment of the narrowest spectrum among those that were susceptible. Last, we 

retrospectively evaluated the performance of our algorithm versus clinicians on a test set 

consisting of 3,629 patients (3,941 specimens) with uncomplicated UTI who presented to 

the same hospitals between January 1 2014 to December 31 2016. We also compared 

performance against an adaptation of the national practice guidelines designed to allow 

clinicians the use of second line antibiotics in a given percentage of decisions. Figure 1 

outlines the analytic protocol.

Few patients with uncomplicated UTI have known risk factors for antibiotic resistance

Baseline characteristics for the combined, training and test cohorts are shown in Table 1. 

Mean age was 34 years (SD 10.9 years) and 64.2% of patients self-identified as white. 

Patients in the test set presented more frequently in the emergency room and had a higher 

prevalence of resistance to ciprofloxacin and levofloxacin. Test set patients were more likely 

to receive treatment with nitrofurantoin, reflecting a shift in prescribing patterns after the 

dissemination of the updated IDSA guidelines in 2010. Time trends for major features are 

located in fig. S1. The prevalence of resistance in our cohort to fluoroquinolones was lower 

than national estimates taken from a cross-sectional survey performed in 2012 (5.8% versus 

10.6%) (5). Conversely, the prevalence of resistance to nitrofurantoin in our sample was 

higher (12.1% versus 3.3%). Among patients with antibiotic resistance, the majority had no 

observed risk factors for drug resistance (75.5%, 2,747 specimens in the training set; 80.5%, 

1,000 specimens in the test set), defined as a prior resistant organism or antibiotic exposure 

in the previous 90 days.

Accuracy of prediction models for antibiotic susceptibility is influenced by prior antibiotic 
exposure and prior antibiotic resistance

For each patient in our cohort, we constructed a feature vector containing demographics, 

microbiology, antibiotic exposures, comorbidities, procedures, and basic laboratory values. 

We additionally constructed two population-level features: colonization pressure, which is 

the population-level prevalence of resistance in urine specimens to an antibiotic in the 

90 days preceding specimen submission, and hospital-wide antibiotic consumption. Major 

features except for colonization pressure were summarized 7, 14, 30, 90, and 180 days prior 

to the date of collection for a urine specimen. Additional features were added to indicate 
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the presence of antibiotic non-susceptibility or antibiotic exposure at any previous point in 

time. We excluded any data that would not be present at the time of an empiric treatment 

decision. We then trained logistic regression, decision tree, and random forest models to 

predict the probability of non-susceptibility, defined as the likelihood an isolate would be 

called ‘intermediate’ or ‘resistant’ by the clinical microbiology laboratory, to first- and 

second-line treatments. The models were trained on patients presenting between 2007 and 

2013 and tested on patients presenting between 2014 and 2016.

Logistic regression was selected for prediction of non-susceptibility to all four antibiotics, 

based on validation performance and interpretability. In the held-out cohort, the area under 

the receiver operator curve (AUROC) for nitrofurantoin and TMP-SMX were 0.56 (95% CI, 

0.53–0.59) and 0.59 (95% CI, 0.57–0.62), respectively. For ciprofloxacin and levofloxacin 

the AUROCs were identical at 0.64 (95% CI, 0.60–0.68). Limiting prediction to the subset 

of patients with prior antibiotic resistance or antibiotic exposure in the past 6 months 

improved all AUROCs but had the greatest impact for the fluoroquinolones (Table 2). Model 

hyperparameters, ROC curves and calibration plots are located in table S1, fig. S2 and S3, 

respectively.

A decision algorithm is able to reduce use of second-line therapies relative to clinicians 
and matches a best-case implementation of the treatment guidelines

We next translated probabilities of non-susceptibility into phenotypes that fed into a decision 

algorithm designed to select the narrowest possible effective antibiotic. We achieved this 

by setting a threshold above which probabilities were phenotypically classified as ‘non-

susceptible’ and below which they were phenotypically classified as ‘susceptible’. For 

each specimen, a set of four distinct thresholds was used on each of the four treatment 

choices and the algorithm subsequently recommended the antibiotic of narrowest spectrum 

among those predicted to be susceptible as the optimal treatment, making no decision if 

the specimen was predicted to be non-susceptible to all treatments. We then calculated 

our primary outcomes, which were the proportion of recommendations for second-line 

antibiotics and the proportion of recommendations that resulted in inappropriate antibiotic 

therapy (IAT), defined as the use of an antibiotic to which the organism has in vitro 
resistance. We repeated this analysis sequence for 1,331 threshold sets in total, and chose a 

final set that met a prespecified target of minimizing IAT while allowing second line usage 

in 10% of decisions in the validation set, which represented a realistic lower bound for 

clinicians in real-world settings (Fig. 2).

Using this process, we determined that the optimal thresholds for achieving our prespecified 

target were predicted probabilities of non-susceptibility of >13% for nitrofurantoin, 

>18% for TMP-SMX, >26% for ciprofloxacin, and >24% for levofloxacin (Fig. 3). A 

decision algorithm applied to the test data utilizing these thresholds was able to make a 

recommendation in 99% of specimens and chose ciprofloxacin or levofloxacin for 11.0% 

(95% CI 10.0% - 12.0%) of specimens. This was a 67% reduction in the selection 

of these antibiotics relative to clinicians (33.6%, 95% CI 32.1% - 35.0%). Algorithm 

recommendations resulted in IAT in 9.8% (95% CI 8.9% - 10.8%) of test specimens, an 

18% reduction compared to clinicians (11.9%, 95% CI 10.9% - 12.9%). The algorithm 
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had similar rates of IAT to a best-case implementation of the national treatment guidelines 

(10.7%, 95% CI 9.7% - 11.7%), where second line usage was capped at 10% (Table 3). 

See Retrospective Evaluation in Materials and Methods for a detailed description of the 

benchmark comparison.

The decision algorithm better differentiates non-susceptibility to first-line therapies 
relative to clinicians

We sought to better understand the factors driving algorithmic and clinical decisions through 

a post-hoc analysis of the test results. The algorithm was able to discern non-susceptibility 

to first line agents better than clinicians. This difference was driven by the proportion of IAT 

with nitrofurantoin and TMP-SMX by clinicians (11.1% and 19.1%, respectively) relative 

to the algorithm (9.6% and 14.3%, respectively) (table S2). For cases where clinicians 

chose a second-line therapy but the algorithm chose a first-line agent, 92% (1066/1157) of 

decisions ended up being susceptible to the first-line agent. For cases where clinicians chose 

an inappropriate first-line therapy, the algorithm correctly chose the appropriate first-line 

agent 47% (183/392) of the time (Fig. 4). We performed a manual review of 18 randomly 

selected charts where the algorithm (but not the clinician) chose the proper first-line agent 

and found that 10 patients (56%) had no prior antibiotic resistance or exposure to first-line 

therapies, 1 patient (6%) had complicated UTI or pyelonephritis, and 2 patients (11%) had 

no clinical documentation. Using regularized logistic regression, we observed that the top 

5 features predicting use of fluoroquinolones by clinicians were prior fluoroquinolone use, 

being of a white race, and being seen in the ER, suggesting that provider preferences rather 

than patient risk factors for resistance may be driving use. Being seen in an outpatient 

clinic and prior resistance to ciprofloxacin were negatively associated with fluoroquinolone 

prescription (table S3).

Algorithm recommendations would be actionable in actual clinical practice

As our model is not able to account for all factors used in treatment decisions, we 

anticipated that a percentage of recommendations would be ignored by clinicians due to 

contraindications. We sought to estimate that percentage and the reasons for contraindication 

through an additional manual review of 20 randomly selected charts. For the scenario 

where clinicians chose a second-line agent when the algorithm correctly recommended a 

first-line agent, 15/20 (75%) of recommendations were actionable and 3/20 (15%) were 

contraindicated due to suspicion of pyelonephritis or the presence of multiple infectious 

syndromes. The actionability of the algorithm could not be determined in 2/20 (10%) 

due to a lack of clinical documentation. Based on this chart review, we performed a 

conservative sensitivity analysis that assumed only 75% of algorithm recommendations 

would be actionable. Second-line use in the test set was 47% lower for the algorithm than for 

clinicians (17.8% versus 33.6%, respectively), while the proportion of IAT was nearly equal 

at 11.3% versus 11.8% for the algorithm and clinicians, respectively.

Antibiotic susceptibility to first-line therapies is influenced by prior resistance and 
antibiotic exposures

Lastly, we characterized the types of features predictive of antibiotic non-susceptibility in 

patients with uncomplicated UTI. We first grouped features into sets corresponding to risk 
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factor domains known to be associated with resistance. We then inferred the importance of 

each feature group by estimating the decline in predictive performance when that set was 

left out of a regularized logistic regression model. Prior antibiotic resistance was the most 

important feature set predicting non-susceptibility to nitrofurantoin and fluoroquinolones, 

whereas both prior antibiotic exposures and resistance were most important for predicting 

non-susceptibility to TMP-SMX. None of the changes in AUROCs reached statistical 

significance (Fig. 5). A description of the ten most important individual features for 

predicting non-susceptibility to each antibiotic is located in table S4.

DISCUSSION

In this study of patients presenting with uncomplicated UTI, we show how data-driven 

prescription strategies can help resolve the tension between maintaining optimal patient 

outcomes and reducing broad spectrum antibiotic use. Using only information passively 

collected in the electronic health record, our decision algorithm was able to reduce 

prescription of second-line agents by 67% while at the same time, also reduce inappropriate 

antibiotic treatment by 18% relative to clinicians. The implementation of this algorithm 

as a point-of-care clinical decision support tool could be a valuable addition to outpatient 

antimicrobial stewardship programs.

Machine learning applied to observational health data was used to predict antibiotic 

resistance in a large cohort of Israeli patients with UTI in a study by Yelin et al(22). Unlike 

the present study, which sought to balance the two competing objectives of reducing IAT and 

reducing broad spectrum antibiotic use, their algorithm had the single objective of reducing 

IAT. Their study also included males, pregnant females, and the elderly, further precluding 

a direct comparison. They achieved a retrospective reduction in IAT by 30% to 40% relative 

to clinicians by always selecting the antibiotic with the highest probability of susceptibility. 

However, since broad spectrum drugs have the lowest rates of resistance, the final model had 

a high rate of selection for fluoroquinolones. In contrast, our work focuses on using machine 

learning to fill an unmet need for antimicrobial stewardship. Therefore, our goal was to 

penalize the use of fluoroquinolones and evaluate model utility under conditions that mimic 

a real-world clinical scenario to the greatest extent possible. This motivated our use of strict 

inclusion criteria for uncomplicated UTI as it was essential to performing a fair evaluation 

that accounts for factors driving clinical decisions.

Across the United States, fluoroquinolones are prescribed in 42% of treatment decisions in 

uncomplicated UTI(4). This is a much higher proportion than what would be expected based 

on criteria set forth in the IDSA treatment guidelines. While the guidelines are intended 

to be a tool to reduce unnecessary use of fluoroquinolones, adherence has been poor. A 

major reason is their lack of personalization to the patient(13, 15) and because there is 

significant variability in tolerating treatment failure between physicians, regardless of prior 

risk of resistance(26). We noted that one in three patients in the test cohort were prescribed 

a fluoroquinolone and the primary drivers for this choice were presentation in the emergency 

room, white race and prior treatment with fluoroquinolones. One possible explanation for 

this is a lower tolerance for the risk of IAT among clinicians practicing in certain clinics or 

encountering specific patient populations. Our algorithm achieved antimicrobial stewardship 
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targets that would be expected under a best-case scenario where guideline adherence leads 

to a second line usage of just 10%. Unlike the guidelines, it is able to do this in a manner 

that provides interpretable recommendations derived from models trained on data from 

the local population. Further research is necessary to determine whether these aspects 

would be sufficient to influence prescribing practices in settings where guidelines have been 

ineffective and tolerance for treatment failure is low.

From model conception through execution and evaluation, our intent was to promote 

generalizability by mimicking the clinical context in which we envisioned the algorithm 

would be deployed. This impacted our analysis in three ways. The first was our choice to 

eschew more sophisticated modeling approaches in favor of model classes that have greater 

interpretability and computational tractability. Second, we elected to use a time-based train/

test split despite the secular trends in our covariates, as this would best recapitulate the 

implementation of our algorithm in clinical practice. Last, our thresholding-based method to 

translate continuous probabilities into categorical decisions represents a value judgment to 

minimize the use of second-line antibiotics at the cost of inappropriate therapy in a subset of 

patients. We believe this approach can be easily translated to identify empiric treatments for 

other infectious syndromes such as hospital acquired pneumonia and bloodstream infection 

by simply adjusting the tradeoff between the two outcomes.

There remain several outstanding questions regarding generalizability. First, as our cohort 

consisted of mostly Caucasians, it is possible that predictions will be biased when applied 

to more diverse populations. We have tried to minimize this by using nationally adopted 

criteria for uncomplicated UTI. Second, given that antibiotic resistance is an important 

predictor, we expect that the model would predict non-susceptibility more often in 

environments where the prevalence of antibiotic resistance is higher than what is seen in 

our training data. This is most pertinent for nitrofurantoin and TMP-SMX as our decision 

algorithm is heavily weighted to favor first-line agents. Increases in the risk of resistance 

to the fluoroquinolones may also indirectly negatively impact model performance because 

it is likely that settings with a high prevalence of resistance to fluoroquinolones also have a 

high prevalence of resistance to first line agents. The impact of antibiotic exposure and prior 

resistance on current antibiotic resistance is well established but quantifying the impact of 

each has been challenging (27). In this study of healthy patients with uncomplicated UTI, 

confounding by indication is unlikely to be an issue and we have assessed temporality by 

using longitudinal data.

In 25% of decisions, algorithm recommendations were non-actionable due to 

contraindications that would be known to clinicians but not to the model. Even in a worst-

case scenario where we ignore 25% of recommendations, the algorithm still maintained 

a rate of IAT that was no worse than clinicians, and maintained a 47% reduction in 

second-line agent use. We anticipate that in clinical practice, the majority of non-actionable 

recommendations will be due to triggering of the decision support tool in patients with 

pyelonephritis and a minority due to allergies or antibiotic intolerance. Only 3% of patients 

are estimated to have an allergy or intolerance to TMP-SMX(28, 29), although that may 

be an underestimate given that documentation of allergies in medical charts is poor. We 

suggest that implementation of the algorithm be accompanied by a means for clinicians to 
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provide feedback on contraindications when rejecting recommendations, thereby providing 

a mechanism for reducing inappropriate deployment. Although not impacting predictive 

performance, future work could also incorporate urinalysis results to further restrict 

deployment for only those patients with pyuria.

In summary, we have developed a decision algorithm for reducing unnecessary broad 

spectrum empiric treatment for patients with uncomplicated UTI. Further work is necessary 

to develop the algorithm into a clinical decision support tool that integrates seamlessly 

into clinical workflows and draws from a continually re-trained machine learning model 

to provide interpretable recommendations with measures of uncertainty in real-time. A 

randomized controlled trial designed to prove the efficacy of such a tool for antimicrobial 

stewardship is critical for adoption into routine practice.

MATERIALS AND METHODS

Study design

This study was designed as a retrospective analysis of 13,682 patients (15,806 specimens) 

with uncomplicated UTI who presented between 2007 and 2016 to the Massachusetts 

General Hospital and the Brigham & Women’s Hospital in Boston, MA. The cohort was 

split into a training dataset with 10,053 patients (11,865 specimens) presenting between 

January 1 2007 to December 31 2013 and a test set consisting of 3,629 patients (3,941 

specimens) who presented between January 1 2014 to December 31 2016. Uncomplicated 

UTI was defined as infection in the lower urinary tract of a non-pregnant female between 

the ages of 18 and 55 years with no abnormalities of the genitourinary tract and no major 

comorbidities. All patients provided urine cultures with an organism burden sufficient to 

warrant antibiotic susceptibility testing (>50,000 colony forming units / ml with at most 

2 organisms present) and received empiric antibiotic treatment with one of the first-line 

agents, nitrofurantoin or TMP-SMX, or one of the second-line agents, ciprofloxacin or 

levofloxacin. The empiric treatment window was defined as 48 hours prior to and up to 

24 hours after specimen collection. We excluded patients with pyelonephritis and did not 

predict for fosfomycin as only 3.4% of specimens underwent susceptibility testing. We 

excluded specimens that did not undergo susceptibility testing for all four target antibiotics 

and any specimens that were prescribed multiple antibiotics during the empiric treatment 

window, as we would not be able to make a clean comparison between our algorithm’s 

recommendation and clinicians. We also excluded from the test set any specimens from 

patients who also submitted specimens in the training set (4.4% of all specimens) to prevent 

data leakage. The selection of patients is shown in fig. S4. This study was approved by the 

Institutional Review Board of Massachusetts General Hospital with a waived requirement 

for informed consent.

Description of model features

Our data were derived from the Boston Infectious Diseases Cohort, a database of 271,827 

patients who submitted a specimen to the microbiology laboratories of Massachusetts 

General Hospital and Brigham & Women’s Hospital between 2000 and 2016. For 

our prediction models, we extracted patient-level microbiology, demographics, antibiotic 
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exposures, comorbidities(30), procedures, and basic laboratory values. Microbiologic data 

included the hospital location of specimen collection and antibiotic susceptibility profiles. 

Breakpoints were applied to the raw susceptibility data as defined in the 27th edition of 

the M100 document published by the Clinical and Laboratory Standards Institute(31) to 

provide uniform interpretations over the course of the study. Specimens coming from the 

same body site and growing the same organism within a 14-day period were dropped. 

Antibiotic exposures, prior resistance, prior organism, laboratories, comorbidities, and prior 

hospitalizations were summarized over the 7, 14, 30, 90, and 180 days before the date of 

a microbiologic specimen. Antibiotic exposures and prior resistance were also summarized 

across all available patient history to capture the 35% of patients in our training set with 

a history of resistance or medication outside of the preceding 180 days. We did not have 

access to dose or duration of antibiotic therapy, urinalysis results, drug allergies, or data for 

patient encounters occurring outside of our two centers.

We incorporated two population-level features into our models. The first was an adaptation 

of colonization pressure(32), which we defined as the prevalence of resistance among 

urinary specimens to an antibiotic over a predefined service area in the previous 90 days. 

We calculated this metric for three hierarchies of service areas, a) the ward (separate 

prevalence for each outpatient clinic or inpatient ward), b) the facility (separate prevalence 

for 5 categories: hospital, general inpatient ward, intensive care unit, emergency room, 

or outpatient) and c) overall (a single prevalence across both hospitals). The second 

incorporated feature was cumulative antibiotic usage across both hospitals normalized by 

total patient volume per quarter. A detailed description of features and the analytic protocol 

is located in table S5 and fig. S5.

Machine learning architecture

We trained logistic regression (LR), decision tree (DT), and random forest (RF) models to 

predict the probability a specimen would be called non-susceptible to nitrofurantoin, TMP-

SMX, ciprofloxacin, or levofloxacin. The term non-susceptible included both intermediate 

and resistant phenotypes. Models were trained on data from patients who submitted 

urine specimens between January 1 2007 and December 31 2013 (the training set). 

Hyperparameters for each combination of model class (LR, DT, RF) and antibiotic were 

tuned by training on 70% of the training data and evaluating the AUROC on the remaining 

30% of the training data, referred to as the ‘validation set’. For each model class we chose 

the hyperparameter set that produced the highest mean AUROC, which was generated by 

averaging across five 70/30 splits of the training data. Using these hyperparameters, we 

then trained each of the three model classes on 20 new 70/30 splits of the training data 

and evaluated the mean AUROC on the validation set. LR performed best for nitrofurantoin 

and TMP-SMX. While RF performed marginally better than LR for ciprofloxacin and 

levofloxacin, LR was chosen for all subsequent analyses for reasons of interpretability.

Decision algorithm

We next translated probabilities output by our predictive models into susceptibility 

phenotypes by performing a sensitivity analysis with various false negative rates (FNRs) 

for each antibiotic. In this context, a false negative corresponds to falsely predicting 
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susceptibility, also referred to as a ‘very major error’. We utilized only logistic regression 

and excluded decision trees and random forests based on their poor validation set 

performance, as well as their relative lack of interpretability.

Using the 20 70% splits of the training data noted above, we set an FNR value and 

identified the probability of non-susceptibility that would result in that value. We then 

used this probability as a threshold and applied it to the corresponding validation dataset 

to bin probabilities into susceptible or non-susceptible phenotypes. A ‘threshold set’ was 

generated by repeating this process for each antibiotic. For each specimen, we next 

selected the antibiotic of narrowest spectrum (nitrofurantoin < TMP-SMX < ciprofloxacin 

< levofloxacin) among those that were considered susceptible as the final treatment 

recommendation. If no antibiotic was considered susceptible, the decision algorithm made 

no choice. Using this set of recommendations, we calculated our primary outcomes, the 

IAT and second-line antibiotic usage rates, in that particular validation dataset. For any 

specimens where the algorithm was unable to make a treatment recommendation, we 

defaulted to the decision made by the clinician at evaluation time.

Due to the extensive time it takes to evaluate the performance of each FNR combination and 

the high correlation between resistance to ciprofloxacin and levofloxacin, we constrained the 

search space to combinations in which both second-line antibiotics had the same FNR. In 

total, we calculated reductions in IAT and second-line usage over 11 FNR values (0.001, 

0.015, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9), one model class (logistic regression) 

and 3 antibiotics (nitrofurantoin, TMP-SMX and the fluoroquinolones combined), yielding 

1,331 different combinations. The optimal threshold set was defined to be the one which 

minimized the mean IAT rate while not exceeding a mean second line antibiotic usage rate 

of 10% on the validation set.

Retrospective evaluation

We estimated the performance of the decision algorithm on a held-out test set of patients 

presenting with uncomplicated UTI between 2014 and 2016. We retrained our best 

performing models with tuned hyperparameters on 100% of the training data, applied the 

optimal threshold set (identified through our sensitivity analysis on the training data) to 

recommend empiric antibiotic treatments, and then calculated primary outcomes over the 

entire test dataset. For specimens where the model was unable to make a recommendation, 

the evaluation defaulted to the choice of the clinician. As our primary benchmark, we 

compared algorithm performance in the test dataset to the empiric treatment decisions made 

by clinicians.

We also sought to compare our performance to a conservative interpretation of the IDSA 

guidelines that preferentially chose the first-line agent to which the patient did not have prior 

antibiotic exposure and resistance in the prior 90 days. It avoided TMP-SMX if local rates 

of resistance were ≥20% and chose a fluoroquinolone only if the patient had exposure or 

resistance to both first-line agents. In our dataset, local rates of resistance to TMP-SMX 

exceeded 20% every year, leading the guidelines to always favor nitrofurantoin over TMP-

SMX. This implementation of the guidelines yielded a 3.2% rate of broad spectrum usage 

in our validation cohort, which we deemed to be an unrealistic benchmark compared to 
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real-world antibiotic prescribing practices(3, 4). It also ignores drug allergies or intolerance 

and prior treatment failures. Thus, we adjusted guideline recommendations to use second 

line agents 10% of the time as this represents a more realistic target for antimicrobial 

stewardship programs. This was done by defaulting to broad spectrum therapy in 18% of 

decisions where the conservative guidelines, but not the clinicians, chose a first line agent. 

This adjusted guideline-based policy represents a best-case scenario for implementation of 

the guidelines in actual clinical practice.

We identified factors driving decisions for clinicians through a post-hoc analysis using 

regularized logistic regression and manual chart review. Models included all of the 

covariates in our prediction models and were fit using the entire test dataset.

Feature importance characterization

A secondary aim of our study was to identify the features predictive of non-susceptibility. 

Based on the known risk factors for antibiotic resistance, we grouped features into 4 

mutually exclusive sets, a) prior antibiotic exposure, b) prior antibiotic resistance and 

organism, c) colonization pressure, and d) hospital-wide antibiotic consumption. To estimate 

the impact of a given feature set, we compared the predictive performance between a full 

model and one where that set was held out. All models were trained in the same fashion as 

the prediction models and all contained demographics, comorbidities, laboratory values and 

hospital encounters.

Statistical analyses

P-values for comparisons of patient characteristics between train and test sets were 

calculated using two sample t-tests when a Shapiro-Wilk test failed to reject normality of 

the test statistic at a significance level of 0.05. Otherwise, p-values were computed using a 

non-parametric randomization test using 100,000 random permutations of the dataset labels 

(i.e, train vs. test set) for each characteristic. We report p-values for descriptive purposes, but 

do not assess statistical significance of these comparisons. Means and standard deviations 

for training set AUROCs were obtained by averaging over 5 70/30 splits for hyperparameter 

tuning and over 20 70/30 splits for model selection. For each of the 1,331 threshold sets, 

we calculated means for primary outcomes over the same 20 70/30 splits generated for the 

training step. For the retrospective evaluation, we calculated mean AUROCs using 1000 

bootstrapped samples drawn with replacement from the test set. Each sample contained the 

same number of specimens as the full test set. 95% CIs for the reported AUROCs were 

calculated as follows:

AUROCb − z0.975 * Stdev AUROCb , AUROCb + z0.975 * Stdev AUROCb

where AUROCb and Stdev(AUROCb) are the mean and standard deviation of the AUROC 

across the 1000 bootstrapped samples, respectively, and z0.975 is the quantile function of the 

normal distribution, approximately equal to 1.96. The 95% CIs for our primary outcomes in 

the test set were calculated using a normal approximation to the binomial distribution, also 
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known as a Wald interval. Given the value of a primary outcome p, the 95% CI was given 

by:

p − z0.975 * p 1 − p
n , p + z0.975 * p 1 − p

n

where n is the sample size of the entire test set. For 95% CIs where sample sizes were <20, 

we computed the Jeffreys interval. All analyses were performed using Python version 3.6 

and R version 3.5.0 (R Project for Statistical Computing).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Schematic of analytic protocol.
(A) We trained decision tree, logistic regression, and random forest models to predict 

non-susceptibility to nitrofurantoin (NIT), TMP-SMX, ciprofloxacin (CIP), and levofloxacin 

(LVX). We selected the logistic regression models for use on our test cohort, which 

consisted of patients presenting between 2014 and 2016. (B) We set a false negativity rate 

and identified the corresponding probability threshold for a given antibiotic. Isolates with the 

predicted probabilities of non-susceptibility (NS) greater than this value were categorized as 

NS while those with probabilities below this threshold were categorized as ‘susceptible’ (S). 

This was repeated for all four antibiotics to yield a set of probability thresholds that could 

be used to bin predicted probabilities into phenotypes for each specimen. We then chose the 

antibiotic of the narrowest spectrum among those considered susceptible and calculated our 

two primary outcomes. This process was repeated for 1,331 sets of thresholds. The optimal 
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threshold set was selected to meet a pre-specified target of minimizing IAT to the greatest 

extent possible while not exceeding a second-line antibiotic usage rate of 10%. (C) We 

evaluated our algorithm by retraining our chosen prediction models from part A on the entire 

training cohort and then performing prediction on the test cohort. Treatment decisions were 

made using the optimal threshold set from part B and the resulting primary outcomes were 

compared to the performance of clinicians and a best-case guideline-based policy.
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Figure 2: Threshold sensitivity analysis.
Primary outcomes for 1,331 unique threshold sets. The final threshold set (indicated by the 

blue dot) had the lowest IAT rate among the 1,331 threshold sets that had less than 10 

percent usage of ciprofloxacin and levofloxacin on the validation set.
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Figure 3: False susceptibility and non-susceptibility rates.
Rates of false susceptibility and false non-susceptibility for prediction models derived from 

the training data. Final thresholds used on the test data are indicated by a black vertical 

line. Isolates with probabilities of susceptibility below the threshold were categorized as 

susceptible and those above were categorized as non-susceptible.

Kanjilal et al. Page 18

Sci Transl Med. Author manuscript; available in PMC 2022 October 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: Post hoc analysis of clinician vs algorithm therapy decisions and appropriateness in 
patients with uncomplicated UTI presenting between 2014 and 2016.
Appropriate therapy was defined as the choice of an empiric antibiotic that has in vitro 
activity against the pathogen, whereas inappropriate therapy was defined as the choice of an 

empiric antibiotic that has no in vitro activity against the pathogen.
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Figure 5: Feature importance characterization.
Data points represent the AUROC of logistic regression models that left out the feature set 

indicated on the x-axis. The red dotted line represents the AUROC for the full model, which 

contains all feature sets. The blue dotted lines represent the 95% CI for the full model. Error 

bars represent 95% CIs for the individual models.
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Table 1:

Demographics, location of specimen collection, microbiologic and treatment characteristics for patients with 

uncomplicated UTI.

Entire cohort (2007 – 2016) Training set (2007 – 2013) Test set (2014 – 2016) P

n (patients) 13,682 10,053 3,629

n (specimens) 15,806 11,865 3,941

Demographics

 Age, mean (SD) 34.0 (10.9) 34.1 (10.8) 33.6 (11.1) 0.007

 Race, n (%)

  White 8,784 (64.2) 6,497 (64.6) 2,287 (63.0)
0.083

  Non-white 4,898 (35.8) 3,556 (35.4) 1,342 (37.0)

Location, n (%)

 Outpatient 11,639 (85.1) 8,655 (86.1) 2,984 (82.2) <0.001

 Emergency room 1,607 (11.7) 1,074 (10.7) 533 (14.7) <0.001

 General inpatient 534 (3.9) 403 (4.0) 131 (3.6) 0.287

 Intensive care unit 17 (0.1) 13 (0.1) 4 (0.1) 0.580

Organism, n (%)

 Escherichia coli 11,901 (87.0) 8,809 (87.6) 3,092 (85.2) <0.001

 Coagulase-negative Staphylococcus spp 670 (4.9) 448 (4.5) 222 (6.1) <0.001

 Klebsiella pneumoniae 667 (4.9) 503 (5.0) 164 (4.5) 0.246

 Enterococcus spp 56 (0.4) 28 (0.3) 28 (0.8) <0.001

 Staphylococcus aureus 53 (0.4) 32 (0.3) 21 (0.6) 0.028

 Other spp 838 (6.1) 628 (6.2) 210 (5.8) 0.322

Current resistance, n (%)

 Nitrofurantoin 1,654 (12.1) 1,236 (12.3) 418 (11.5) 0.219

 TMP-SMX 2,885 (21.1) 2,147 (21.4) 738 (20.3) 0.196

 Ciprofloxacin 792 (5.8) 554 (5.5) 238 (6.6) 0.020

 Levofloxacin 772 (5.6) 533 (5.3) 239 (6.6) 0.004

Prior resistance in the past 90 days, n (%)

 Nitrofurantoin 98 (0.7) 83 (0.8) 15 (0.4) 0.012

 TMP-SMX 153 (1.1) 153 (1.1) 25 (0.7)) 0.004

 Ciprofloxacin 83 (0.6) 65 (0.6) 18 (0.5) 0.260

 Levofloxacin 85 (0.6) 67 (0.7) 18 (0.5) 0.218

Empiric therapy decision, n (%)

 Nitrofurantoin 3,044 (22.2) 1,745 (17.4) 1,299 (35.8) <0.001

 TMP-SMX 5,676 (41.5) 4,459 (44.4) 1,217 (33.5) <0.001

 Ciprofloxacin 5,478 (40.0) 4,247 (42.2) 1,231 (33.9) <0.001

 Levofloxacin 418 (3.1) 377 (3.8) 41 (1.1) <0.001

Patients in the training set presented to Massachusetts General Hospital and Brigham and Women’s Hospital between 2007 and 2013 and those in 
the test set presented between 2014 and 2016. P-values are for differences between the training and test sets and were calculated using two-sample 
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t-tests for normally distributed variables and a non-parametric randomization test derived from random permutations of the dataset labels for 
non-normally distributed variables.
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Table 2:

AUROCs for prediction of antibiotic non-susceptibility in patients presenting with uncomplicated UTI 

between 2014 and 2016.

AUROC (95% CI)
a

Drug
b Full test cohort Prior antibiotic resistance or exposure

 Nitrofurantoin 0.56 (0.53, 0.59) 0.61 (0.55, 0.66)

 TMP-SMX 0.59 (0.57, 0.62) 0.67 (0.64, 0.71)

 Ciprofloxacin 0.64 (0.60, 0.68) 0.76 (0.71, 0.80)

 Levofloxacin 0.64 (0.60, 0.68) 0.77 (0.71, 0.82)

a
AUROC and 95% CI calculated using 1000 bootstrapped samples taken from the test set.

b
Logistic regression was chosen for prediction for all four antibiotics.
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Table 3:

Comparison of primary outcomes for algorithm, clinicians and best-case guideline-based policy in patients 

presenting with uncomplicated UTI between 2014 and 2016.

% (95% CI)
a

Algorithm Clinicians Best-case guidelines

Use of second-line therapy
b

Recommendation cohort
c
 (n =3911) 10.8 (9.8–11.8) 33.5 (32.1.−35.0) 9.5 (8.6–10.4)

Full cohort
d
 (n = 3941) 11.0 (10.0–12.0) 33.6 (32.1 – 35.0) 9.7 (8.8–10.7)

Use of inappropriate antibiotic treatment

Recommendation cohort
c
 (n = 3911) 9.7 (8.8–10.6) 11.8 (10.8–12.8) 10.6 (9.6–11.5)

Full cohort
d
 (n = 3941) 9.8 (8.9–10.8) 11.9 (10.9 – 12.9) 10.7 (9.7–11.7)

a
95% CI was calculated using a normal approximation to binomial distribution.

b
Second-line therapy refers to use of ciprofloxacin or levofloxacin.

c
Recommendation cohort refers to the 99% of specimens for which the algorithm made a treatment recommendation.

d
Full cohort refers to all specimens in the test cohort, including the 1% of patients where the algorithm was unable to make a recommendation. In 

these cases, the evaluation defaulted to the decision of the clinician.
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