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Abstract

During the essential processes of DNA replication and transcription, RNA-DNA hybrid 

intermediates are formed that pose significant risks to genome integrity when left unresolved. 

To manage RNA-DNA hybrids, all cells rely on RNase H family enzymes that specifically cleave 

the RNA portion of the many different types of hybrids that form in vivo. Recent experimental 

advances have provided new insight into how RNA-DNA hybrids form and the consequences to 

genome integrity that ensue when persistent hybrids remain unresolved. Here we review the types 

of RNA-DNA hybrids, including R-loops, RNA primers, and ribonucleotide misincorporations, 

that form during DNA replication and transcription and discuss how each type of hybrid can 

contribute to genome instability in bacteria. Further, we discuss how bacterial RNase HI, HII, HIII 

and bacterial FEN enzymes contribute to genome maintenance through the resolution of hybrids.
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Introduction

In all cells, faithful inheritance of genetic information relies on RNA-DNA hybrid formation 

during the essential processes of DNA replication and transcription (24; 42; 46; 91; 111). 

Essential RNA-DNA hybrids occur predominately as RNA primers, which prime DNA 

polymerase activity during replication, and as R-loops, which form when the nascent 

RNA molecule base pairs with the complementary DNA strand during transcription (46; 

91; 111). Evidence suggests that R-loops can also be converted into RNA polymers with 

a covalent RNA-DNA junction known as “R-tracks”(43). RNA-DNA hybrids also form 

when replicative DNA polymerases make single sugar errors (65; 117), incorporating an 

rNMP in place of the cognate dNMP, or when lower fidelity DNA polymerases incorporate 

ribopatches, short polymers of 4 or more rNMPs, during synthesis (75). Despite the 

necessity and pervasiveness of RNA-DNA hybrid formation, persistent hybrids compromise 
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genome integrity, such that all organisms must be able to resolve the variety of hybrids to 

ensure proper replication and inheritance of genetic information.

To manage the myriad of hybrids that occur in vivo, all cells contain several different 

types of enzymes that help mitigate formation of persistent hybrids (15; 30; 91; 108; 111) 

(Table 1). In all three domains of life, as well as numerous viruses and mobile genetic 

elements, ribonuclease H (hybrid) enzymes specifically incise RNA within RNA-DNA 

hybrids contributing to their removal (35). RNase H enzymes are traditionally classified into 

types 1 and 2, where type 1 refers to RNase HI and type 2 includes RNase HII and RNase 

HIII (72). The presence of RNase HI is pervasive across biology, where these enzymes 

resolve hybrids containing four or more consecutive ribonucleotides, such as RNA primers 

in Okazaki fragments, ribopatches, R-tracks and R-loops (99) (see Table 2). The RNase HI 

domain is also prevalent in the retroviral integrase superfamily (66), which includes diverse 

enzymes important for many nucleic acid processes, including replication of HIV-1 (3; 44; 

67).

The presence of RNase HII is also widespread in biology, where these enzymes specifically 

recognize the RNA-DNA covalent junction, cleaving on the 5' side of the ribonucleotide 

(73; 74; 99). Such activity allows for RNase HII to recognize single ribonucleotide errors 

in otherwise double-stranded DNA, RNA primers in Okazaki fragments, ribopatches, but 

not R-loops, which lack the RNA-DNA covalent junction necessary for activity (73; 74; 

90). Most bacteria that contain RNase HII also have either RNase HI or RNase HIII (37; 

72; 99), while many archaeal organisms have only RNase HII (37). RNase HIII is typically 

classified as a type 2 enzyme based on amino acid and structural conservation with RNase 

HII, however it hydrolyzes the same types of hybrids as RNase HI and does not have 

activity on single ribonucleotide errors (71; 85), with very rare exceptions (53). RNase HIII 

is not widespread and is only present in a subset of bacterial and archaeal organisms that 

predominately lack a chromosomally encoded RNase HI (37; 99).

The structures and enzymology of RNases H enzymes have been studied extensively 

for decades in diverse systems including viruses, bacteria, and mammalian cells and are 

extensively reviewed elsewhere (3; 7; 30; 34). Over the last fifteen years, many studies 

have contributed to our understanding of the contribution of bacterial RNase H enzymes to 

genome integrity. Recent technical advancements have allowed for genome-wide mapping 

of RNA-DNA hybrids (8; 45; 83), replication fork fate (45; 69), and measurement of 

sugar misincorporation errors by replicative DNA polymerases (90; 117), stimulating new 

advancements in our understanding of how RNA-DNA hybrids impact genome integrity. 

The goal of this Review is to discuss how different RNA-DNA hybrids affect genome 

stability, the enzymes involved in the resolution of different types of RNA-DNA hybrids, 

and the consequences that occur to cells when RNase H activity is compromised in bacteria. 

For readers interested in how RNA-DNA hybrids are formed or resolved in eukaryotic cells, 

please see the following excellent reviews (79; 82; 111; 112; 120).
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Genome instability caused by replication-transcription conflicts

R-loops form when nascently transcribed RNA base pairs with the complementary DNA 

strand, forming a stable RNA-DNA hybrid. Due in part to their stability, “collisions” can 

occur between R-loops and the replisome (45; 69) that cause replication fork stalling (13; 

23; 45; 69; 109) and genomic rearrangements in both E. coli and mammalian cells (26). 

In E. coli, R-loops are resolved by RNase HI, encoded by the rnhA gene (33), and loss 

of RNase HI activity is associated with several phenotypes, including constitutive SOS 

induction (41), which could be a result of increased replication-transcription conflicts in 
vivo. Bacterial genomes are typically organized such that highly expressed essential genes 

are encoded on the leading strand, so that progression of RNA polymerase (RNAP) and the 

replisome are oriented co-directionally (86; 92) (Figure 1). Conversely, in genes encoded on 

the lagging strand, RNAP and the replisome encounter each other in the head-on direction 

(86; 92). Experiments in different organisms using various loci have shown that when highly 

expressed genes are oriented head-on to DNA replication encounters between RNAP and 

the replisome result in replication fork movement that is slowed, stalled or arrested, (23; 

45; 62; 69; 97; 109) which can lead to double-strand break formation (12). Replication 

fork progression can also be slowed or stopped in the presence of R-loops (45; 69; 109). 

Therefore, abundant information demonstrates that conflicts between the replisome and 

R-loops (or RNAP) have severe consequences to genome integrity. What remains unclear is 

the types of mutations that result from replication-transcription conflicts that occur in the 

head-on orientation [for recent perspectives (46; 92)].

Head-on conflicts with R-loops

One model suggests that head-on encounters result in a modest increase in mutagenesis, 

which is supported by evidence from engineered reporters, using selection for reversion of 

auxotrophic markers to measure mutagenesis (61; 77). In these experiments, the modest 

increase in mutation rate (~2.5 to 3-fold) is dependent on head-on orientation and highly 

induced gene expression with reporters that select for specific changes in the coding 

sequence (45; 61; 77). Other evidence using reporters that sample a much wider range of 

mutations suggested that deleterious mutations, including insertions and deletions (indels), 

are the main mutations arising from head-on conflict (88; 118). Base-pair substitutions 

(BPSs) were enriched in the promoter region, with no enrichment for BPSs observed in 

coding sequences demonstrating signature mutations for head-on replication-transcription 

conflicts are detrimental to gene function (88; 118).

In contrast to reporter-based experiments, use of mutation accumulation lines, which 

examine genes in their native contexts, suggests that any modest increase in mutagenesis 

observed in gene coding sequences oriented head-on is dependent upon sequence context 

as opposed to gene orientation or gene expression (21; 48; 52; 56; 89; 98). A recent 

study interrogating ~30,000 BPSs in E. coli found no increase in point mutations in genes 

oriented in the head-on direction relative to co-directional genes (21). Collectively, studies 

by multiple groups in different organisms find that the major driver of mutagenesis is 

explained by neighboring sequence context which causes DNA polymerases to become more 
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error-prone (19; 20; 22; 48; 52; 56; 58; 89; 92; 98), with no detectable contribution from 

replication-transcription conflicts in head-on oriented genes (21; 56).

Co-directional conflicts with R-loops

There is also evidence that formation of R-loops in co-directionally oriented genes 

contributes to genome instability (18; 60). While in vitro work examining collisions 

shows that R-loops do not present a block to fork progression in the head-on orientation, 

R-loops can affect fork progression in the co-directional orientation (6). Prior work in B. 
subtilis has shown that highly expressed co-directionally oriented genes require primosome-

dependent reloading of the replisome, which also suggests that co-directional encounters 

are deleterious to fork progression (60). Using an engineered plasmid-based system in E. 
coli, the contribution of gene orientation to double-strand break (DSB) formation was tested 

(18). In this system, RNAP stalls and backtracks (or backslides), which causes a more 

stable association of the R-loop due to increased base pairing between the newly transcribed 

RNA and the template DNA (18). Replisome encounters with a backtracked RNAP result 

in DSBs at the site of the backtracked RNAP (18). Elongation factors GreA, GreB and 

actively translating ribosomes were found to reduce DSB formation at backtracked RNAPs 

by acting as anti-backtracking factors (18; 68). DSBs were detected for co-directional 

conflicts between backtracked RNAP and the replisome (Figure 1), but not for the plasmid 

reporter in the head-on orientation (18). Importantly, expression of RNase HI reduced DSB 

formation, supporting the conclusion that breaks in co-directional genes are caused by 

R-loop formation associated with backtracked RNAP. Therefore, the simplest model is that 

when RNAP backtracks, it creates a longer R-loop that forms a more stable association with 

DNA (18). When the replisome encounters the stable R-loop in the co-directional orientation 

the replisome “skips” over RNAP with synthesis continuing through either re-priming by 

DnaG (primase) or when the mRNA serves to re-prime synthesis ahead of RNAP (6; 80). 

This leaves gaps in the leading strand (6) with DSB formation occurring when successive 

rounds of replication encounter the gap (Figure 1). These studies provide mechanistic insight 

into how DNA breaks occur when the replisome encounters a backtracked RNAP in the 

co-directional orientation (18).

DksA and R-loop removal

In addition to RNAP associated proteins GreA and GreB that affect backtracked RNAP, 

another RNAP associated protein DksA contributes to replisome bypass of encountered 

R-loops. Under the stress condition of amino acid starvation the transcription elongation 

factor DksA is critical for the replisome to complete genome replication (101). Starvation 

induces a rapid arrest of replication fork progression in E. coli in the absence of dksA, 

leading to recruitment of RecA and activation of the SOS response (101). Since the 

effect of DksA on maintaining forks during starvation depends on active transcription, 

this work suggests that DksA helps the replisome navigate conflicts with sites of active 

transcription by reducing pausing of RNAP during elongation (101). Therefore, in addition 

to RNase H enzymes, transcription associated factors including GreA, GreB (18) and DksA 

contribute to maintaining genome integrity (101). A common theme is that RNAP pausing, 

or backtracking, can increase the barrier to replisome progression (18; 101). One possibility 
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is that the barrier is enhanced by stable R-loop formation or a stalled and stable RNAP 

associated with an R-loop (6). Some recent evidence indicates that the transcription coupled 

repair factor Mfd (59) actually helps stabilize R-loop formation leading to an increase 

in mutation rate (81). Therefore, factors associated with RNAP contribute significantly to 

R-loop mediated genome instability, with RNase H enzymes helping to mitigate the effects.

R-loop formation at GC-rich DNA repeats contributes to genome instability

R-loops also contribute to genome instability through the contraction of DNA repeats. The 

base pairing of GC-rich DNA repeats in the template strand with nascently transcribed 

RNA creates stable R-loops due to the stability of rGC base pairs (51). In E. coli, R-loop 

formation is stabilized in GC-rich CTG•CAG repeat tracks. To test whether R-loops at these 

regions affected genome stability, researchers generated two IPTG inducible plasmids with 

98 CTG•CAG repeats on either the leading or the lagging strand and transformed wild-type 

and RNase HI mutant cells with the plasmids (51). This work found that while the repeats 

contracted in RNase HI mutant cells for both orientations, repeats on the lagging strand had 

a much more dramatic contraction, with only 20% of the full length repeat tracts remaining 

by the final growth period. This study also showed that the contraction of the repeat tracts 

was dependent on transcription from the IPTG-inducible promoter, suggesting that repeat 

instability in E. coli is transcription-dependent and R-loop mediated.

Replication initiation from R-loops: Constitutive stable DNA replication

Replication in bacteria is normally initiated at the single origin of replication, oriC, by 

DnaA (31; 32). While each round of initiation at oriC requires newly synthesized proteins, 

mutations in the E. coli rnhA gene, encoding RNase HI, allow for replication initiation in 

the absence of new protein synthesis (27). Further, initiation in RNase HI-defective cells 

can occur in the absence of DnaA and oriC, demonstrating a non-canonical mechanism 

of replication initiation. In RNase HI-deficient cells initiation occurs from R-loops that 

accumulate at sites termed oriK, with oriK sites enriched in the replication terminus (14; 

57). This oriC-independent replication initiation is referred to as constitutive stable DNA 

replication (cSDR) because it occurs in the absence of new protein synthesis (40; 57). 

cSDR initiates from R-loops with the assistance of a suite of enzymes, including RecA, the 

primosome, DNA polymerase I and DNA polymerase III holoenzyme (40; 57) (Figure 2a).

The process of cSDR priming of replication from R-loops can impact genome stability in 

a couple of ways (14). First, replisome recruitment to oriK sites results in a portion of 

the replication forks proceeding in a different direction compared to that of oriC-initiated 

replication forks. As most highly expressed essential genes are encoded co-directionally 

with oriC-dependent replisome progression, the oriK-dependent switch in replication fork 

direction increases replisome-RNAP conflicts. As discussed above, replication-transcription 

conflicts can result in increased genome instability.

Replication initiated at R-loops has also been shown to contribute to genome instability 

through stress-induced mutagenesis (SIM) in non-replicating E. coli cells (113). The 

formation of double-stranded breaks (DSBs), discussed previously in the context of co-
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directional collisions between RNAP and the replisome, is a major contributor to genome 

instability (18). While most mechanisms for the generation of DSBs are hypothesized to 

occur in actively replicating cells, work in starved E. coli cells found that R-loops contribute 

to the formation of DSBs by priming replication fork progression that subsequently 

collapses at independently generated ssDNA knicks, ultimately resulting in formation of a 

double-stranded end (DSE) (113). In attempt to repair the DSEs, induction of SIM in starved 

cells results in genomic alterations through two mechanisms; activation of error-prone DNA 

polymerases, which results in point mutations, and gene amplification, which can result in 

genome rearrangements (113). This mechanism may not be limited to non-replicating cells 

and could underly a portion of the SOS induction that is observed during replication from 

R-loops in proliferating bacterial cells during cSDR when nicks or gaps in the template 

strand are encountered.

For more information on the genetic requirements for cSDR please see the following 

excellent reviews (15; 40).

SSB protein cooperates with RNase HI to remove R-loops

As the replisome separates double-stranded DNA during replication, ssDNA is generated 

and bound by single-stranded DNA binding protein (SSB) to stabilize and prevent 

reannealing to dsDNA (93). In addition to functioning during normal DNA replication, SSB 

has been shown to serve as a “hub” for the recruitment of factors critical for DNA repair (10; 

47), including RNase HI. Recent work also shows that SSB stimulates RNase HI activity 

in vitro (78). The interaction between SSB and RNase HI is formed through docking of the 

C-terminal end of SSB into a binding pocket on RNase HI suggesting that SSB is critical for 

recruitment of RNase HI to substrates in vivo (78; 114).

RNase HI fused to YPet shows an SSB-mediated localization to replication forks when 

compared to β-clamp as a proxy for replisome position (114). Interaction between RNase 

HI and SSB is mediated by K60 in RNase HI (78). Mutation of K60E prevented interaction 

between RNase HI and SSB, abolishing recruitment of RNase HI into foci while still 

maintaining normal levels of RNase HI nuclease activity (78). Wolack and co-workers 

found that localization of RNase HI to the replisome is independent of its function in 

Okazaki fragment processing or removal of R-loops that could allow for oriC and DnaA-

independent DNA replication initiation through cSDR (114). However, it was shown that the 

rnhAK60E had a growth phenotype when combined with disruption of the DNA helicase 

Rep (114). Rep is known to move ahead of the replication fork and aid in replication 

through highly transcribed regions (4; 27). The increase in SOS induction of rnhAK60E 
rep- cells, along with synergistic effects of RNAP variants known to increase or decrease 

R-loop formation (39), shows that RNase HI interaction with SSB is important for removing 

R-loops encountered by the replisome during DNA replication (114). It will be important 

to learn if the SSB interaction with RNase HI contributes to reducing orientation specific 

conflicts or if there are specific loci in E. coli that are more prone to R-loop formation that 

impede replisome progression.

McLean et al. Page 6

Annu Rev Microbiol. Author manuscript; available in PMC 2023 September 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



RNase HI functions in R-loop removal and Okazaki fragment maturation

As described above, RNase HI contributes to genome stability through the removal of 

R-loops reducing replication-transcription conflicts and by preventing persistent R-loops 

from priming replication outside of oriC (15; 46). RNase HI is also involved in RNA 

primer removal during Okazaki fragment maturation, in addition to pol I and, in a subset 

of bacteria, a flap endonuclease/5' to 3' exonuclease (FEN) (discussed in greater detail 

below) (1; 38). The prevailing model is that RNase HI cleaves the RNA portion of the 

Okazaki fragment followed by either strand displacement synthesis by pol I or concomitant 

degradation of the RNA moiety using its flap processing N-terminal domain (54; 70). E. 
coli cells that are pol I deficient contain short fragments with RNA at the 5' end (70). 

The appearance of Okazaki fragments with 5' linked RNA increases in cells that are 

compromised for both RNase HI and pol I activity, with 10 to 30 times more intact RNA 

primer (36). Although RNase HI has an important role in Okazaki fragment maturation, the 

strong phenotypes of rnhA mutants stem from R-loop removal (114), making it challenging 

to separate the role of RNase HI in RNA removal on the lagging strand from R-loop removal 

elsewhere on the chromosome.

Another limitation to the study of the effects of RNase HI (or RNase HIII) deficiencies on 

hybrid removal lies in the current approaches to detect genome-wide RNA-DNA hybrids. 

Recent evidence shows that the antibody S9.6, which is typically used for precipitating 

RNA-DNA hybrids in a the genome-wide RNA-DNA hybrid detection approach, DNA/RNA 

immunoprecipitation followed by sequencing (DRIP-seq), has a strong affinity for double-

stranded RNA (95). When interpreting DRIP-seq, the procedure should include data 

showing that the enrichment is RNase HI-sensitive to ensure that the signal is coming 

from an RNA-DNA hybrid along with other technical considerations (8). Thus, an important 

area moving forward will be to demonstrate where RNA-DNA hybrids form in vivo through 

development of new approaches or by including procedures that require pulldowns are 

specific for RNA-DNA hybrids. Future experiments in bacteria will need to determine 

where RNA-DNA hybrids form and discriminate between RNA-DNA hybrids that are from 

true R-loops and RNA primers used during lagging strand replication to understand the 

importance of RNase H enzymes to removal of each hybrid in vivo.

Contributions of bacterial FEN to hybrid resolution and genome integrity

During lagging strand synthesis the RNA used to prime Okazaki fragment synthesis must 

be replaced with DNA (42). In bacteria, this is accomplished through the combined actions 

of pol I and RNase HI (or RNase HIII) (54; 70; 85). Pol I catalyzes strand-displacement 

synthesis, displacing the RNA primer and creating a bifurcated structure with a single-

stranded 5' overhang, referred to as a flap (54). For complete maturation of the Okazaki 

fragment, this flap must be removed, and the remaining nick sealed by DNA ligase (54). 

The resolution of flapped structures is primarily carried out by a class of structure-specific 

proteins called FENs (1; 103), with involvement from RNase HI or HIII in cleaving RNA 

primers (25). Substrate preference similarities between FENs and RNase Hs has caused 

confusion, as the FEN in T4 bacteriophage was initially identified as an RNase H (85).
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In bacteria, FENs can be found as part of the N-terminal domain of pol I (1) or as a 

stand-alone protein in addition to pol I (1; 103). While they are found in all domains of 

life (55), FENs do not share a well-conserved sequence (1). Rather, this family has essential 

metal-coordinating residues and a conserved structure (103). For Mycobacterium FenA three 

Mn2+ ions are coordinated that are important for catalysis (103). The primary substrate 

associated with FEN activity is the 5' flap described earlier, however, FENs have also been 

shown to interact with nucleic acid structures that are single-stranded, double-stranded, have 

a 5' overhang, a 3' overhang, or are nicked (1; 85). Recently, in vitro assays using bacterial 

FENs have indicated a preference for RNA-DNA hybrids over DNA-only substrates (28; 

85) suggesting that bacterial FENs are important for hybrid resolution (Figure 2). The 

mechanism by which FENs cleave their substrate is less clear (115), but recent studies, 

including crystallography of the T5 bacteriophage FEN bound to substrate, support a 

mechanism by which FEN binds to the substrate and the single-stranded flap is subsequently 

threaded through the enzyme prior to cleavage (2). Importantly, at least one FEN is required 

for bacterial organisms to be viable, highlighting the importance of such proteins to hybrid 

removal during replication (25). Therefore, active, stand-alone FENs clearly contribute to 

genome integrity and some show preference for RNA-DNA hybrid removal. The role of 

these independent FENs and how they work in conjunction with pol I remains unclear. It 

is also unclear if bacterial FENs are primarily responsible for Okazaki fragment maturation 

(85), contribute to repair, (76) or both.

Contributions of RNase HIII to genome integrity

As mentioned earlier, RNase HIII is usually classified as a type 2 RNase H and encoded 

by the rnhC gene (37; 99), but it is sometimes placed in its own group as a type 3 enzyme 

(30). Some RNase HIII enzymes have been shown to cleave at single ribonucleotides 

when complexed with Mn2+, although under most circumstances this activity occurs under 

conditions that are not physiological (53; 84). Therefore, in most instances, RNase HIII 

behaves like RNase HI, cleaving RNA primers during Okazaki fragment maturation, 

ribopatches, and R-loops. RNase HIII is also characterized as having a TATA-binding 

protein-like domain which aids in substrate recognition (9; 63; 71). Unlike RNase HI and 

RNase HII, RNase HIII is rather limited in its phylogenetic distribution. A comparative 

study found that RNase HIII was present in 17% of bacterial genomes and 4% of archaeal 

genomes analyzed (37). For comparison, RNase HII was present in 94% of bacteria and 

100% of archaeal genomes analyzed (37). Bioinformatic studies have suggested that RNase 

HIII and HI are mutually exclusive because active enzymes from each of these classes were 

not found to coincide (37; 72). Recently, a clear exception to this rule was described in the 

wild B. subtilis strain NCIB 3610, which encodes an active RNase HI (RnhP) on a large 

naturally occurring plasmid (69). This study opens the possibility that RNase HI and RNase 

HIII may be more coincident than previously appreciated if one of the genes is carried on a 

plasmid or mobile genetic element allowing for loss, transfer, and reacquisition when needed 

(69).

RNase HIII has received less experimental characterization likely due in part to the more 

limited distribution of this enzyme in prokaryotic genomes. In B. subtilis, deletion of 

the rnhC gene results in strong phenotypes including slow growth, sensitivity to a broad 
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range of DNA damage, and growth inhibition on several stressors including hydroxyurea 

(45; 84; 85). RNase HIII has been suggested to cleave R-loops in vivo (45) due to its 

activity on complementary RNA-DNA hybrid lacking a covalent RNA-DNA junction (71; 

84). Lack of RNase HIII has severe consequences to genome integrity, although the nature 

of these effects is still unclear. Cells with engineered reporter constructs driven from a 

strong promoter in the head-on orientation caused strong growth interference in cells lacking 

RNase HIII, suggesting that RNase HIII is important for the removal of R-loops in the 

head-on orientation in vivo (45).

Recent work shows that RNase HIII works efficiently with pol I for Okazaki fragment 

maturation in vitro (85). Since Okazaki fragments have a covalent RNA-DNA junction, 

RNase HII also cleaves these substrates quite well (85). Therefore, either RNase HII or 

RNase HIII could contribute to removal of RNA from Okazaki fragments in conjunction 

with pol I, allowing for functional overlap (85). Using a linear substrate it was shown that 

RNase HII incision did not stimulate pol I synthesis, whereas RNase HIII incision did 

stimulate pol I on a model Okazaki fragment (85) (Figure 3). This work suggests that the 

internal cleavage of the RNA primer aids in pol I removal and resynthesis providing the 

most efficient pathway for maturation of the lagging strand in vivo (85).

As mentioned above, the “wild” ancestral strain of B. subtilis NCIB 3610 was shown to 

contain RNase HIII (rnhC) on the chromosome along with a newly discovered RNase HI 

gene (rnhP) on a naturally occurring 84 Kbp plasmid (69). This work showed that RnhP 

is an RNase HI based on substrate preference and sequence similarity to E. coli RNase 

HI (69). Cells lacking rnhC and rnhP grew poorly and were induced for the SOS response 

with forks stalling at a 38 Kbp head-on operon (ppsA-E) located near the chromosomal 

terminus (69). Deletion of the ppsA-E operon in the double rnhC, rnhP deletion alleviated 

the SOS induction associated with the double RNase H mutant (69). The presence of RnhP 

in B. subtilis 3610 suggests that this wild strain might either require an additional protein 

to aid in removal of R-loops or a protein that can cleave R-loops under physiological 

conditions that do not favor activity from chromosomal encoded RNase HIII (69). Given 

results with engineered reporters and a single naturally occurring locus in a “wild” strain of 

B. subtilis, current evidence indicates that an important contribution of RNase HIII is to aid 

in replication fork progression through long and highly expressed head-on oriented genes. 

More experiments will be important to determine if there is a true orientation bias.

RNase HII and ribonucleotide excision repair in bacterial genomes

The contribution of R-loops to genome stability has been a major focus of this Review 

due to the number of ways in which R-loops impact genome integrity in bacterial cells. 

Another important type of RNA-DNA hybrid comes in the form of single ribonucleotide 

misincorporation events, which are not resolved by RNase HI or HIII enzymes in vivo (90). 

During genome replication, replicative DNA polymerases misincorporate ribonucleotides in 

place of deoxyribonucleotides leading to sugar errors in the chromosome (90; 91; 117). 

The rate of ribonucleotide errors is a function of ribonucleotide concentrations in the cell 

(117). For example, rATP out numbers dATP 600 to 1, causing rAMP misincorporations 

to far exceed that of any other ribonucleotide for E. coli pol III in vitro (117). Once 
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incorporated, the only difference between sugar errors (AMP, CMP and GMP) and their 

cognate dNMP is an oxygen atom on the 2' carbon of the ribose ring (42). In vitro and in 
vivo estimates suggest that single ribonucleotide errors account for nearly 2000 errors per 

round of replication, making ribonucleotide errors the most frequent nucleotide in need of 

correction (11; 117). Sugar errors are a challenge for the DNA polymerase to detect because 

the base pairing is correct making it less efficient for replicative enzymes to recognize 

and proofread sugar errors during synthesis (110). Therefore, once a sugar error is formed, 

the ribonucleotide will need to be recognized and removed by a process referred to as 

ribonucleotide excision repair (RER).

In bacteria and eukaryotes RER is initiated by RNase HII (RNase H2 in eukaryotes) (90; 

96; 107). RNase HII recognizes the error and cleaves the ribonucleotide 5' to the RNA-DNA 

junction generating a nick and allowing for entry of a DNA polymerase (Figure 3A). 

Evidence in B. subtilis and E. coli indicates that pol I is primarily responsible for the 

resynthesis step in the canonical pathway (90; 106; 107). It is unclear at this point if pol I 

degrades or cleaves the displaced strand or if a separately encoded FEN homolog could also 

cleave and release of the ribonucleotide containing strand (Figure 3A). The nick would then 

be sealed by DNA ligase to complete repair (90; 106; 107).

Recent studies have focused on the alternative pathways of RER that occur in the absence 

of RNase HII (90; 106; 107). For B. subtilis and E. coli the main phenotype for RNase 

HII deficient cells is a mild increase in mutation rate of about 2.5-fold (90; 117). In B. 
subtilis use of mutation accumulation lines showed that the increase in mutation rate was 

almost entirely explained by a specific GC->AT transition that occurred on the lagging 

strand in a specific sequence context (90; 117). The general model is that in the absence of 

RNase HII the nucleotide excision repair (NER) system recognizes ribonucleotide errors and 

removes an 8-10 nucleotide stretch leaving behind a gap (106) (Figure 1B). The resulting 

gap, as opposed to the nick generated by RNase HII, allows for access by an error-prone 

DNA polymerase for resynthesis causing an increase in mutagenesis (107). Reconstitution 

of the reaction using B. subtilis proteins found that essential DNA polymerase DnaE 

was responsible for mutagenic resynthesis (90). Even though pol I from B. subtilis lacks 

proofreading activity (17), pol I resynthesis was rather accurate across the sequence context 

found to undergo the transition in vivo (90). For E. coli, the resynthesis step can become 

mutagenic when Y-family DNA polymerases gain access to the resulting gap left behind 

following NER (107). Therefore, the canonical RNase HII-mediated RER pathway in 

bacteria shows high fidelity. When RNase HII is compromised, or if an overabundance 

of rNMP errors occurs, then NER can function as a secondary pathway, with the potential to 

result in mutagenesis (90; 106; 107; 117).

Concluding Statement

The last 10-15 years has seen a growing interest in understanding the contribution of RNase 

H enzymes to genome stability in bacteria. New experimental approaches for studying 

RNA-DNA hybrid formation certainly suggest that R-loops and single ribonucleotide 

incorporations are far more prevalent than previously appreciated and, if left unresolved, can 

have significant impacts on genome integrity. As discussed, further work will be necessary 
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to resolve the competing models for how gene orientation and expression levels contribute 

to replication-transcription conflicts resulting in R-loop-dependent mutagenesis. Another 

important avenue for future study will be to distinguish the contribution of RNase HI, 

HII and HIII to Okazaki fragment maturation on a genome-wide scale. Current evidence 

suggests that Okazaki fragments are matured by RNase HI and RNase HIII, however 

RNase HII/HIII deletions have been reported as either synthetically lethal or causing the 

accumulation of compensatory mutations (25; 85). Further, deletion of RNase HI and 

HII in E. coli results in R-loop conversion to “R-tracks” requiring recombinational repair 

(43). These results suggest that RNase HII is compensating, at least in part, for loss of 

RNase HI or RNase HIII during Okazaki fragment maturation and if excessive R-loops are 

converted to ribonucleotide polymers with an RNA-DNA junction (43). Finally, it will be 

important to continue to establish genome-wide approaches that improve detection of the 

different RNA-DNA hybrids that form in vivo. Such improvements will allow for studies 

to differentiate between hybrids participating in R-loop formation and primers required for 

Okazaki fragment synthesis in bacteria.
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Figure 1. 
Genome instability caused by codirectional and head-on encounters. (a) Schematic of 

a circular chromosome with genes oriented codirectional or head-on to replication fork 

movement (b) Codirectional encounter between backtracked RNAP and a replication fork. 

DNA synthesis by the replisome can be reprimed by mRNA or primase-initiated RNA 

synthesis following the encounter with RNAP. The replisome and RNAP collision creates 

a gap on the leading strand behind the repriming event (28, 81). Following excision of 

the repriming RNA, a gap remains in the leading strand that could be converted to a 
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double-strand break during the next round of DNA replication when the gap is encountered 

by the replisome. (c) RNAP moving head-on toward a replication fork. Head-on encounters 

between RNAP and the replisome can block fork progression. Although several outcomes 

can occur, the fork can be restored by evicting RNAP and enabling primosome-dependent 

fork restart (47,61a). Abbreviation: RNAP, RNA polymerase. Part of this figure is adapted 

from Reference 18.
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Figure 2. 
Initiation of replication from R-loops and a model for Okazaki fragment processing in 

RNase HIII–containing bacteria. The red lines indicate RNA, and the black lines denote 

DNA. (a) Model for cSDR. The nascent transcript is paired with DNA by RecA in negative 

supercoiled DNA behind RNAP. The transcript primes synthesis by DNA polymerase I 

followed by primosome assembly and loading of DNA polymerase III. The second fork is 

activated following primosome assembly and loading of DNA polymerase III. This figure is 

based on models from the following References 15 and 41 (b) RNase HIII incises the RNA 
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portion of the Okazaki fragment. The incisions allow for DNA polymerase I to efficiently 

remove the RNA during DNA synthesis from the 3′-OH on the adjacent fragment (86). (c) 

Bacteria that have a stand-alone FEN can cleave the flap resulting from DNA polymerase I 

strand displacement synthesis. For bacteria that contain RNase HIII and FEN, it is expected 

that both function during Okazaki fragment maturation (1, 86). The model is based on the 

following reference (86). The space filling models for RNase HIII and FEN were generated 

using the B. subtilis protein sequences modeled with I-TASSER (116). Abbreviation: FEN, 

flap endonuclease/5′-to-3′ exonuclease.
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Figure 3. Model for ribonucleotide excision repair.
(a) Removal and correction of a single rNMP (red) nested in genomic DNA (black lines). 

RNase HII incises 5′ to the rNMP. DNA polymerase I synthesizes from the nick, with 

concomitant 5′-to-3′ exonuclease activity removing the ribonucleotide-containing strand 

in a process known as nick translation, or by strand displacement synthesis (91, 107). If 

strand displacement synthesis occurs, DNA polymerase I or a stand-alone FEN cleaves 

the flap, releasing the fragment (1). (b) In the absence of RNase HII, nucleotide excision 

repair can recognize single rNMP errors. Nucleotide excision repair action leaves behind 
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a gap allowing mutagenic resynthesis by DNA polymerase IV and DNA polymerase V in 

Escherichia coli and essential DNA polymerase DnaE in Bacillus subtilis (91, 107, 108). 

Abbreviation: FEN, flap endonuclease/5′-to-3′ exonuclease.
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Table 1.

Bacterial proteins involved in RNA-DNA hybrid formation or resolution.

Protein Hybrid type Function

RNases

 RNase HI R-loops, Okazaki fragments, 
ribopatches

Hybrid resolution (30).

 RNase HII Single ribonucleotide errors, 
ribopatches, Okazaki fragments

Hybrid resolution (30).

 RNase HIII R-loops, Okazaki fragments, 
ribopatches

Hybrid resolution (30).

 RNase E R-loop Reduces R-loop formation (104; 105).

Exonucleases

 Exo I R-loops Hybrid removal in rnhA− strains (41).

 FEN Okazaki fragments, possible 
ribopatches and single 
ribonucleotide errors

Hybrid removal (85).

Recombination

 RecA R-loops Hybrid formation-promotes base pairing between mRNA and the 
template strand (29).

 RecBCD (Exo V) R-loops Hybrid removal in rnhA− strains (41).

Topoisomerases

 DNA Gyrase R-loops Promotes R-loop formation through inducing negative supercoiling 
(16).

 Topoisomerase I R-loops Reduces formation of R-loops (49).

 Topoisomerase III R-loops Reduces formation of R-loops (5).

 Topoisomerase IV R-loops Overexpression reduces R-loop formation (5).

Transcription and translation

 RNA polymerase R-loops R-loop formation during transcription and backtracked states (18).

 DksA R-loops Conflict resolution during starvation (101) and contribution to cSDR 
initiation (64).

 GreA R-loops Reduces RNAP backtracking and R-loop formation (18).

 GreB R-loops Reduces RNAP backtracking and R-loop formation (18).

 Mfd R-loop Increases R-loop formation and mutagenesis (81).

 NusG R-loops Limits R-loop formation by regulating Rho-dependent termination 
(50).

 Rho R-loops Limits R-loop formation (83).

 Ribosomes R-loops R-loop resolution by reducing RNAP backtracking (18).

DNA replication

 DNA polymerase I (A-family) Single ribonucleotide errors, R-
loops, and Okazaki fragments

Insertion of ribonucleotide errors during replication, replication from 
R-loops during cSDR, removal of RNA from Okazaki fragments (15; 
91).

 C-family DNA polymerases R-loops and single ribonucleotide 
errors

Insertion of ribonucleotide errors (117) and removal of R-loops by 
strand displacement synthesis (119).

 Y-family DNA polymerases Single ribonucleotide errors and 
ribopatches

Insertion of ribonucleotide errors (75; 108).

 Primase (DnaG) Okazaki fragments RNA primers during Okazaki fragment synthesis (87).

 SSB R-loops Targets RNase HI for R-loop resolution (114).

Helicases
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Protein Hybrid type Function

 DnaB R-loops R-loop resolution by unwinding hybrids (94).

 DinG R-loops R-loops resolution by unwinding hybrids (4).

 PcrA (Gram-positive bacteria) R-loops R-loops resolution by unwinding hybrids (102).

 RecG R-loops R-loops resolution by unwinding hybrids (29).

 Rep R-loops R-loops resolution by unwinding hybrids (4).

 UvrD R-loops R-loops resolution by unwinding hybrids (4).
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Table 2.

Bacterial RNase H enzymes and substrates cleaved

Adapted from Reference (91).

The red lines indicate RNA and the black lines denote DNA. It should be noted that RNase HI and RNase HIII have been described to cleave single 
ribonucleotides in vitro under specific conditions (53; 100). RNase HII is expected to recognize and cleave at single rNMPs in most organisms 
under physiological conditions.

Annu Rev Microbiol. Author manuscript; available in PMC 2023 September 08.


	Abstract
	Introduction
	Genome instability caused by replication-transcription conflicts
	Head-on conflicts with R-loops
	Co-directional conflicts with R-loops
	DksA and R-loop removal
	R-loop formation at GC-rich DNA repeats contributes to genome instability
	Replication initiation from R-loops: Constitutive stable DNA replication
	SSB protein cooperates with RNase HI to remove R-loops
	RNase HI functions in R-loop removal and Okazaki fragment maturation
	Contributions of bacterial FEN to hybrid resolution and genome integrity
	Contributions of RNase HIII to genome integrity
	RNase HII and ribonucleotide excision repair in bacterial genomes
	Concluding Statement
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Table 1.
	Table 2.

