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Abstract

Spiculations/lobulations, sharp/curved spikes on the surface of lung nodules, are good predictors 

of lung cancer malignancy and hence, are routinely assessed and reported by radiologists as 

part of the standardized Lung-RADS clinical scoring criteria. Given the 3D geometry of the 

nodule and 2D slice-by-slice assessment by radiologists, manual spiculation/lobulation annotation 

is a tedious task and thus no public datasets exist to date for probing the importance of 

these clinically-reported features in the SOTA malignancy prediction algorithms. As part of 

this paper, we release a large-scale Clinically-Interpretable Radiomics Dataset, CIRDataset, 

containing 956 radiologist QA/QC’ed spiculation/lobulation annotations on segmented lung 

nodules from two public datasets, LIDC-IDRI (N=883) and LUNGx (N=73). We also present an 

end-to-end deep learning model based on multi-class Voxel2Mesh extension to segment nodules 

(while preserving spikes), classify spikes (sharp/spiculation and curved/lobulation), and perform 

malignancy prediction. Previous methods have performed malignancy prediction for LIDC and 

LUNGx datasets but without robust attribution to any clinically reported/actionable features (due 

to known hyperparameter sensitivity issues with general attribution schemes). With the release of 

this comprehensively-annotated CIRDataset and end-to-end deep learning baseline, we hope that 

malignancy prediction methods can validate their explanations, benchmark against our baseline, 

and provide clinically-actionable insights. Dataset, code, pretrained models, and docker containers 

are available at https://github.com/nadeemlab/CIR.
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1 Introduction

In the United States, lung cancer is the leading cause of cancer death [14]. Recently, 

radiomics and deep learning studies have been proposed for a variety of clinical 

applications, including lung cancer screening nodule malignancy prediction [5,8,9,11]. 

The likelihood of malignancy is influenced by the radiographic edge characteristics of a 
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pulmonary nodule, particularly spiculation. Benign nodule borders are usually well-defined 

and smooth, whereas malignant nodule borders are frequently blurry and irregular. The 

American College of Radiology (ACR) created the Lung Imaging Reporting and Data 

System (Lung-RADS) to standardize lung cancer screening on CT images based on size, 

appearance type, and calcification [7]. Spiculation has been proposed as an additional image 

finding that raises the suspicion of malignancy and allows for more precise prediction. 

Spiculation is caused by interlobular septal thickness, fibrosis caused by pulmonary artery 

obstruction, or lymphatic channels packed with tumor cells (also known as sunburst or 

corona radiata sign). It has a good positive predictive value for malignancy with a positive 

predictive value of up to 90%. Another feature significantly linked to malignancy is 

lobulation, which is associated with varied or uneven development rates [15].

Spiculation/lobulation quantification has previously been studied [8,10,13] but not in an 

end-to-end deep learning malignancy prediction context. Similarly, previous methods [17] 

have performed malignancy prediction alone but without robust attribution to clinically-

reported/actionable features (due to known hyperparameter sensitivity issues and variability 

in general attribution/explanation schemes [3,4]). To probe the importance of spiculation/

lobulation in the context of malignancy prediction and bypass reliance on sensitive/variable 

saliency maps, first we release a large-scale Clinically-Interpretable Radiomics Dataset, 

CIRDataset, containing 956 QA/QC’ed spiculation/lobulation annotations on segmented 

lung nodules for two public datasets, LIDC-IDRI (with visual radiologist malignancy RM 

scores for the entire cohort and pathology-proven malignancy PM labels for a subset) 

and LUNGx (with pathology-proven size-matched benign/malignant nodules to remove the 

effect of size on malignancy prediction). Second, we present a multi-class Voxel2Mesh [16] 

extension to provide a good baseline for end-to-end deep learning lung nodule segmentation 

(while preserving spikes), spikes classification (lobulation/spiculation), and malignancy 

prediction; Voxel2Mesh [16] is the only published method to our knowledge that preserves 

spikes during segmentation and hence its use as our base model. With the release of 

this comprehensively-annotated dataset and end-to-end deep learning baseline, we hope 

that malignancy prediction methods can validate their explanations, benchmark against our 

baseline, and provide clinically-actionable insights. Dataset, code, pretrained models, and 

docker containers are available at https://github.com/nadeemlab/CIR.

2 CIRDataset

Rather than relying on traditional radiomics features that are difficult to reproduce and 

standardize across same/different patient cohorts [12], this study focuses on standardized/

reproducible Lung-RADS clinically-reported and interpretable features (spiculation/

lobulation, sharp/curved spikes on the surface of the nodule). Given the 3D geometry of 

the nodule and 2D slice-by-slice assessment by radiologists, manual spiculation/lobulation 

annotation is a tedious task and thus no public datasets exist to date for probing 

the importance of these clinically-reported features in the SOTA malignancy prediction 

algorithms.

We release a large-scale dataset with high-quality lung nodule segmentation masks and 

spiculation/lobulation annotations for LIDC (N=883) and LUNGx (N=73) datasets. The 
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spiculation/lobulation annotations were computed automatically and QA/QC’ed by an expert 

on meshes generated from nodule segmentation masks using negative area distortion metric 

from spherical parameterization [8]. Specifically, (1) the nodule segmentation masks were 

rescaled to isotropic voxel size with the CT image’s finest spacing to preserve the details, 

(2) isosurface was extracted from the rescaled segmentation masks to construct a 3D mesh 

model, (3) spherical parameterization was then applied to extract the area distortion map of 

the nodule (computed from the log ratio of the input and the spherical mapped triangular 

mesh faces), and (4) spikes are detected on the mesh’s surface (negative area distortion) 

and classified into spiculation, lobulation, and other. Because the area distortion map and 

spikes classification map were generated on a mesh model, these must be voxelized before 

deep learning model training. The voxelized area distortion map is divided into two masks: 

the nodule base (ε > 0) and the spikes (ε ≤ 0). Then, in the spikes mask, the spiculation 

and lobulation classes were voxelized from the vertices classification map, while the other 

classifications were ignored and treated as nodule bases.

Following [8], we applied semi-auto segmentation for the largest nodules in each LIDC-

IDRI patient scan [1,2] for more reproducible spiculation quantification, as well as 

calculated consensus segmentation using STAPLE to combine multiple contours by the 

radiologists. LUNGx only provides the nodule’s location but no the segmentation mask. We 

applied the same semi-automated segmentation method on nodules as LIDC to obtain the 

segmentation masks. All these segmentation masks are released in CIRDataset. Complete 

pipeline for generating annotations from scratch on LIDC/LUNGx or private datasets can 

also be found on our CIR GitHub along with preprocessed data for different stages. Samples 

of the dataset, including area distortion maps (computed from our spherical parameterization 

method), are shown in Figure 1.

3 Method

Several deep learning voxel/pixel segmentation algorithms have been proposed in the past, 

but most of these algorithms tend to smooth out the high-frequency spikes that constitute 

spiculation and lobulation features (Voxel2Mesh [16] is the only exception to date that 

preserves these spikes). The Jaccard index for nodule segmentation on a random LIDC 

training/validation split via UNet, FPN, and Voxel2Mesh was 0.775/0.537, 0.685/0.592, and 

0.778/0.609, and for peaks segmentation it was 0.450/0.203, 0.332/0.236, and 0.493/0.476.

Using the Voxel2Mesh as our based model, we present a multi-class Voxel2Mesh extension 

that takes as input 3D CT volume and returns segmented 3D nodule surface mesh 

(preserving spikes), vertex-level spiculation/lobulation classification, and binary benign/

malignancy prediction. Implementation details, code, and trained models can be found on 

our CIR GitHub.

3.1 Multi-class Mesh Decoder

Voxel2Mesh [16] can generate a mesh model and voxel segmentation of the target item 

simultaneously. However, Voxel2Mesh only allows for multi-class segmentation in different 

disjoint objects. This paper presents a multi-class mesh decoder that enables multi-class 

segmentation in a single object. The multi-class decoder segments a baseline model first, 
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then deforms it to include spiculation and lobulation spikes. Traditional voxel segmentation 

and mesh decoders were unable to capture nodule surface spikes because they attempted 

to provide a smooth and tight surface of the target object. To capture spikes and classify 

these into lobulations and spiculations, we added extra deformation modules to the mesh 

decoder. The mesh decoder deforms the input sphere mesh to segment the nodule with the 

deformation being controlled by chamfer distance between the vertices on the mesh and the 

ground truth nodule vertices with regularization (laplacian, edge, and normal consistency). 

Following the generation of a nodule surface by the mesh decoder at each level, the model 

deforms the nodule surface to capture lobulations and spiculations. The chamfer distance 

loss (chamfer_loss) between the ground truth lobulation and spiculation vertices and the 

deformed mesh is used to assess the extra deformations. To capture spikes, we reduced 

the regularization for the extra deformation to allow free deformation. For lobulation and 

spiculation, we classified each vertex based on the distance between the same vertex 

on the nodule surface and the deformed surface. The mean cross entropy loss (ce_loss) 

between the final mesh vertices and the ground truth vertices is used to evaluate their vertex 

classification. Deep shape features were extracted during the multi-class mesh decoding for 

spiculation quantification and subsequently used to predict malignancy.

3.2 Malignancy prediction

LIDC provides pathological malignancy (strong label) for a small subset of the data 

(LIDC-PM, N=72), whereas LUNGx provides it for the entire dataset (N=73). Unlike PM, 

LIDC provides weakly labeled radiological malignancy scores (RM) for the entire dataset 

(N=883). Due to the limited number of strong labeled datasets, these can not be used to 

train a deep learning model. In contrast, RM cases are enough to train a data-intensive deep 

learning model. We used LIDC-RM to train and validate the model. In addition, because 

the RM score is graded on a five-point scale, RM>3 (moderately suspicious to highly 

suspicious) was used to binarize the scores and matched to PM binary classification.

Mesh Feature Classifier—We extracted a fixed-size feature vector for malignancy 

classification by sampling 1000 vertices from each mesh model based on their order. 

The earlier vertices come straight from the input mesh, while the later vertices are added 

by unpooling from previous layers. Less important vertices are removed by the learned 

neighborhood sampling. Using 32 features for each vertex, the mesh decoder deforms the 

input mesh to capture the nodule, lobulations, and spiculations, respectively. A total of 96 

(32 × 3) features are extracted for each vertex. The feature vector is classified as malignant 

or benign using Softmax classification with two fully connected layers, and the results are 

evaluated using binary cross entropy loss (bce_loss). The model was trained end-to-end 

using the following total loss (with default Voxel2Mesh [16] weights):

total loss = 1 × bce_oss [malignancy prediction] + 1 × ce_loss [vertex classification] +
1 × chamfer_loss [nodule mesh] + 1 × chamfer_loss [spiculation mesh]+
1 × chamfer_loss [lobulation mesh] +(0 . 1 × laplacian_loss+1 × edge_loss+
0.1 × normal_consistency_loss) [regularization]
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Hybrid (voxel+mesh) Feature Classifier—The features from the last UNet encoder 

layer (256 × 4 × 4 × 4 = 16384) were flattened and then concatenated with the mesh features 

and fed into the last three fully connected layers to predict malignancy, as shown in Table 

1. This leads to a total of 112384 (16384 + 96000) input features to the classifier which 

remains otherwise same as before. The motivation behind this hybrid feature classifier was 

to test using low level voxel-based deep features from the encoder in addition to the higher 

level shape features extracted from the mesh decoder for the task of malignancy prediction.

4 Results and Discussion

All implementations were created using Pytorch. After separating the 72 strongly labeled 

datasets (LIDC-PM) for testing, we divided the remaining LIDC dataset into train and 

validation subsets and trained on NVIDIA HPC clusters (4 × RTX A6000 (48GB), 2 × 

AMD EPYC 7763 CPUs (256 threads), and 768GB RAM) for a maximum of 200 epochs. 

We saved the best model during training based on the Jaccard Index on the validation set. 

Once fully trained, we tested both the trained networks on LIDC-PM (N = 72) and LUNGx 

(N = 73) hold out test sets. For estimating the mesh classification (nodule, spiculation and 

lobulation) performance, we computed Jaccard Index and Chamfer Weighted Symmetric 

index, and for measuring the malignancy classification performance we computed standard 

metrics including Area Under ROC Curve (AUC), Accuracy, Sensitivity, Specificity, and F1 

score.

Table 2 reports the mesh classification results for the two models. On the LIDC-PM test set, 

the mesh-only model produces better Jaccard Index for nodule (0.561 vs 0.558), spiculation 

(0.553 vs 0.541), and lobulation classification (0.510 vs 0.507). Opposite trend is observed 

in the Chamfer distance metric. On the external LUNGx testing dataset (N=73), the hybrid 

voxel classifier model does better in terms of Chamfer distance metric for all three classes. 

The results for malignancy prediction are reported in Table 3. On the LIDC-PM test dataset, 

the hybrid features network produces an excellent AUC of 0.813 with an accuracy of 

79.17%. The mesh-only features model, on the other hand, does slightly worse in terms 

of AUC (=0.790) and produces worse accuracy (70.83%). On the external LUNGx test 

dataset, the hybrid features network does better in terms of AUC and sensitivity metrics. 

This is likely due to the fact that the hybrid features’ model uses voxel-level deep features 

in classification and no datasets from the LUNGx are used in training. There may also be 

differences in CT scanning protocols and/or different scanner properties which are never 

seen during training.

Figure 3 shows segmentation results using the proposed method, as well as ground truth 

mesh models with spiculation and lobulation classifications for comparison. The proposed 

method segmented nodule accurately while also detecting spiculations and lobulations at the 

vertex level. The vertex-level classification however detects only pockets of spiculations and 

lobulations rather than a contiguous whole. In the future, we will use mesh segmentation 

to solve this problem by exploiting the features of classified vertices and the relationship 

between neighboring vertices in the mesh model.
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Previous works have performed malignancy prediction on LIDC and LUNGx datasets but 

again without any robust attribution to clinically-reported features. For reference, NoduleX 

[6] reported results only on the LIDC RM cohort, not the PM subset. When we ran the 

NoduleX pre-trained model (http://bioinformatics.astate.edu/NoduleX) on the LIDC PM 

subset, the AUC, accuracy, sensitivity, and specificity were 0.68, 0.68, 0.78, and 0.55 

respectively versus ours 0.73, 0.68. 0.81 and 0.57. On LUNGx, AUC for NoduleX was 0.67 

vs ours 0.73. MV-KBC [17] (implementation not available) reported the best malignancy 

prediction numbers with 0.77 AUC on LUNGx and 0.88 on LIDC RM (NOT PM).

In this work, we have focused on lung nodule spiculation/lobulation quantification via the 

Lung-RADS scoring criteria. In the future, we will extend our framework to breast nodule 

spiculation/lobulation quantification and malignancy prediction via BI-RADS scoring 

criteria (which has similar features). We will also extend our framework for advanced lung/

breast cancer recurrence and outcomes prediction via spiculation/lobulation quantification.
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Fig. 1. 
Nodule spiculation quantification dataset samples; the first row - input CT image; the second 

row - superimposed area distortion map [8] and contours of each classifications on the input 

CT image; the third row - 3D mesh model with vertices classifications; red: spiculations, 

blue: lobulations, white: nodule
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Fig. 2. 
Depiction of end-to-end deep learning architecture based on multi-class Voxel2Mesh 

extension. The standard UNet based voxel encoder/decoder (top) extracts features from 

the input CT volumes while the mesh decoder deforms an initial spherical mesh into 

increasing finer resolution meshes matching the target shape. The mesh deformation utilizes 

feature vectors sampled from the voxel decoder through the Learned Neighborhood (LN) 

Sampling technique and also performs adaptive unpooling with increased vertex counts in 

high curvature areas. We extend the architecture by introducing extra mesh decoder layers 

for spiculation and lobulation classification. We also sample vertices (shape features) from 

the final mesh unpooling layer as input to Fully Connected malignancy prediction network. 

We optionally add deep voxel-features from the last voxel encoder layer to the malignancy 

prediction network.
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Fig. 3. 
Results of nodule segmentation and vertex classification; the first column - input CT image; 

the second column - 3D mesh model with vertices classifications (ground truth); the third 

column - 3D mesh model with vertices classifications (predictions); red: spiculations, blue: 

lobulations, white: nodule

Choi et al. Page 10

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2022 October 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Choi et al. Page 11

Table 1.

Malignancy prediction model using mesh features only and using mesh and encoder features

Network Layer Input Output Activation

Mesh Only FC Layer1 96000 512 RELU

Mesh Only FC Layer2 512 128 RELU

Mesh Only FC Layer3 128 2 Softmax

Mesh+Encoder FC Layer1 112384 512 RELU

Mesh+Encoder FC Layer2 512 128 RELU

Mesh+Encoder FC Layer3 128 2 Softmax
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Table 2.

Nodule (Class0), spiculation (Class1), and lobulation (Class2) peak classification metrics

Training

Network
Chamfer Weighted Symmteric↓ Jaccard Index↓

Class0 Class1 Class2 Class0 Class1 Class2

Mesh Only 0.009 0.010 0.013 0.507 0.493 0.430

Mesh+Encoder 0.008 0.009 0.011 0.488 0.456 0.410

Validation

Network
Chamfer Weighted Symmteric↓ Jaccard Index↓

Class0 Class1 Class2 Class0 Class1 Class2

Mesh Only 0.010 0.011 0.014 0.526 0.502 0.451

Mesh+Encoder 0.014 0.015 0.018 0.488 0.472 0.433

Testing LIDC-PM N=72

Network
Chamfer Weighted Symmteric↓ Jaccard Index↓

Class0 Class1 Class2 Class0 Class1 Class2

Mesh Only 0.011 0.011 0.014 0.561 0.553 0.510

Mesh+Encoder 0.009 0.010 0.012 0.558 0.541 0.507

Testing LUNGx N=73

Network
Chamfer Weighted Symmteric↓ Jaccard Index↓

Class0 Class1 Class2 Class0 Class1 Class2

Mesh Only 0.029 0.028 0.030 0.502 0.537 0.545

Mesh+Encoder 0.017 0.017 0.019 0.506 0.523 0.525
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Table 3.

Malignancy prediction metrics.

Training

Network AUC Accuracy Sensitivity Specificity F1

Mesh Only 0.885 80.25 54.84 93.04 65.03

Mesh+Encoder 0.899 80.71 55.76 93.27 65.94

Validation

Network AUC Accuracy Sensitivity Specificity F1

Mesh Only 0.881 80.37 53.06 92.11 61.90

Mesh+Encoder 0.808 75.46 42.86 89.47 51.22

Testing LIDC-PM N=72

Network AUC Accuracy Sensitivity Specificity F1

Mesh Only 0.790 70.83 56.10 90.32 68.66

Mesh+Encoder 0.813 79.17 70.73 90.32 79.45

Testing LUNGx N=73

Network AUC Accuracy Sensitivity Specificity F1

Mesh Only 0.733 68.49 80.56 56.76 71.60

Mesh+Encoder 0.743 65.75 86.11 45.95 71.26
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