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During postnatal cardiac development, cardiomyocytes mature and turn
into adult ones. Hence, all cellular properties, including morphology,
structure, physiology and metabolism, are changed. One of the most
important aspects is the contractile apparatus, of which the minimum unit
is known as a sarcomere. Sarcomere maturation is evident by enhanced
sarcomere alignment, ultrastructural organization and myofibrillar isoform
switching. Any maturation process failure may result in cardiomyopathy.
Sarcomere function is intricately related to other organelles, and the growing
evidence suggests reciprocal regulation of sarcomere and mitochondria on
their maturation. Herein, we summarize the molecular mechanism that
regulates sarcomere maturation and the interplay between sarcomere and
other organelles in cardiomyocyte maturation.

This article is part of the theme issue ‘The cardiomyocyte: new
revelations on the interplay between architecture and function in growth,
health, and disease’.
1. Introduction
The heart is the first organ to function in a body and pumps blood throughout
life. The heart adapts to produce sufficient force and match the demand as the
body grows. Cardiomyocytes are the main force generators in the heart, and the
sarcomere is the minimal unit to produce the force in cardiomyocytes. Cardio-
myocytes change their morphology, structure, metabolism and physiology
during the pre- and postnatal development; the whole process is called cardio-
myocyte maturation [1,2]. Cardiomyocyte maturation is now considered the
third and last phase of heart development and growth following specification
and morphogenesis [3]. Sarcomeres undergo assembly to maturation in cardio-
myocyte differentiation and maturation. Herein, we summarize the components
that constitute sarcomeres, their assembly and maturation, and the regulatory
mechanisms of the maturation process. Organelles in cardiomyocytes also
structurally and functionally mature along with the sarcomere maturation,
which would regulate sarcomere maturation or be regulated by sarcomeres.
Here, we introduce the interactions between sarcomeres and other organelles
in cardiomyocytes.
2. Constitution of sarcomere
Sarcomeres longitudinally repeat to form a myofibril that serves as the contrac-
tile apparatus of cardiomyocytes (figure 1a). Thus, a sarcomere is the minimal
contractile unit, mainly consisting of thin and thick filaments. The thick
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Figure 1. Structures supporting cardiac contractile force. (a) Hierarchical scheme of the cardiac structures. Cardiomyocytes generate the cardiac force. A bundle of myofi-
brils forms the muscle fibre in a single cardiomyocyte. Myofibrils are composed of the repeats of sarcomeres. Synchronous sarcomere contractions and relaxations cause
heartbeats. (b) Structure of a sarcomere. Both ends of the sarcomere are Z-discs, and thin filaments, made of actin, are cross-linked to the adjacent sarcomeres through
α-actinin. Thick filaments are composed mainly of myosin. Titin, one of the largest proteins in humans, spans from the centre of the sarcomere to the Z-disc, where it
interacts with α-actinin. Microscopically, the dark A-band corresponds to the thick filaments, while the bright I-band consists only of the thin filaments and titin.
(c) Detailed structures of the thin and thick filament. The main components of a thin filament are filamentous actin (F-actin), tropomyosin (Tm) and troponin complexes.
Tm is a long dimeric coiled-coil protein that polymerizes from head to tail, covering most of the thin filaments except the Z-disc. A troponin complex consists of troponin T
(TnT), troponin I (TnI) and troponin C (TnC), which interact with actin and Tm to regulate their calcium sensitivity while contracting. The thick filament has two segments,
namely, myosin heads and light meromyosin (LMM). Two myosin proteins dimerize through their long tails and further compose an LMM subfragment with other myosin
tails. The myosin head is composed of two globular multi-domain heads that bind to actin and hydrolyse ATP and necks that are stabilized by myosin essential light chains
(ELCs) and regulatory light chains (RLCs). The C-terminal domain of myosin-binding protein C (MyBP-C) is anchored to titin and myosin LMM, while the N-terminal domain
interacts with myosin and possibly actin. (d ) Scheme of costamere. Costameres anchor sarcomeres to sarcolemma and transduce signals and forces between inside and
outside of the cardiomyocytes through the extracellular matrix.
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filaments are composed of numerous myosin heads that
attach to actin in the thin filaments that create actin-myosin
cross-bridges (figure 1b). Lines and bands of different elec-
tron densities form Z-discs and M-, A- and I-bands because
of the structural components. Both ends are demarcated by
Z-discs, which are thin discs with a high electron density.
An electron-dense A-band is formed owing to the presence
of parallelly aligned thick filaments, primely composed of
myosin, at the middle of a sarcomere [4]. Less electron-
dense bands form I-bands, composed of actin and titin
between A-band and Z-discs. The H-zone is a low electron
density region in the middle of the A-band in which the
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thick filaments are the only longitudinal elements. At the
very central region of the H-zone, an electron-dense line,
M-band, serves to arrange thick filaments into A-bands.
 lsocietypublishing.org/journal/rstb
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(a) Thick filament
Themajorcomponent of a thick filament ismyosin II,which con-
tains four light chains and two heavy chains, myosin light chain
(MLC) andmyosin heavy chain (MHC), respectively (figure 1c).
Different MLC and MHC proteins form skeletal, cardiac and
smooth muscle myosin. α-MHC (encoded by Myh6) and
β-MHC (encoded by MYH7) are the predominant MHC
expressed in mice and humans, respectively in the adult heart.
Two heavy chains form a complex of two heads and a rod.
The rod is an α-helical coiled-coil structure, which is crucial for
the complex formation, and connects to two globular heads via
flexible hinges [5,6]. The high-resolution crystal structure of the
myosin head revealed the active site for adenosine triphosphate
(ATP) hydrolysis, the binding of two MLCs to an extended
α-helix just before the tail domain and the binding site for actin
filaments [7].MLChas twodistinct subtypes, essential and regu-
latory light chains (ELC and RLC, respectively). In ventricular
cardiomyocytes, MLC2v and MLC1v are RLC and ELC, res-
pectively [7]. MYL2 and MYL3 genes encode these MLCs,
respectively. The cardiac isoform of myosin-binding protein C
(MyBP-C), encoded by MYBPC3, binds to titin (encoded by
TTN) and light meromyosin (LMM, the tail region of myosin)
in the A-band via its C-terminal domain [8,9]. In the M-band,
the myomesin family, namely, myomesin, M-protein/myome-
sin-2 and myomesin-3, encoded by MYOM1, MYOM2 and
MYOM3, respectively in humans [10–12], acts as a structural
sarcomere stabilizer by cross-connecting thick filaments [13–15].
(b) Thin filament
The backbone of a thin filament is filamentous actin (F-actin),
which is predominantly encoded by α-cardiac actin (ACTC1)
in the heart (approx. 80%) [16]. The thin filament of striated
muscles has two additional functional components, namely,
the tropomyosin (Tm) and troponin (Tn) complex, which
modulate sarcomere function in addition to the actin filament
backbone (figure 1c). Two Tm molecules form a long thin,
stranded α-helical coiled-coil filament that occupies two
grooves of the actin filament. Three subunits of Tn—troponin
T (TnT), troponin I (TnI) and troponinC (TnC)—form aTn com-
plex. The TnTmolecule is a binding subunit to Tm, whereas the
other two subunits are globular and linkTnT to actin.Moreover,
TnI andTnC are the regulator domain of Tn in response toCa2+.
TnI consists of two parts, one is a part to form a complex with
TnT and TnC and the other inhibits sarcomere contraction by
interfering with the Tm on the actin filament [17,18]. The
C-terminal of TnI protein constrains the Tm position on the
actin filament, and TnI and Tm sterically block myosin from
interacting with actin in the absence of Ca2+. Contrastingly,
Ca2+ binding leads to a conformational change of TnC, which
subsequently releases TnI and Tm from the myosin-binding
region of the actin filament, allowing myosin to bind to actin,
thereby resulting in sarcomere contraction [17–20]. A myosin
produces the power stroke to slide the actin filament while
cross-bridging between actin and thick filaments with ATP
hydrolysis [21,22]. The power stroke slides the actin filament
past the myosin; hence, reducing the distance between the Z-
discs while thick and thin filaments remain at the same length.
(c) Z-disc
At the Z-disc, α-actinin proteins form antiparallel homodi-
mers and cross-link actin filaments to adjacent sarcomeres,
thereby framing a lattice-like structure that stabilizes the
muscle contractile apparatus [23,24]. Encoded by ACTN2,
α-actinin-2 is a major isoform in the cardiac muscle. Encoded
by TCAP, telethonin is also located in the Z-discs of a
sarcomere and plays an important role in the sarcomere
assembly as it joins titin [25,26]. Titin provides passive
elasticity to muscles and is also essential for maintaining
structural sarcomere integrity. A single titin molecule spans
the half sarcomere, binding to the Z-disc and the thin fila-
ment at its N-terminus and the thick filament and M-band
with its C-terminus. Among three cardiac titin isoforms,
N2B titin is the most abundant in the left ventricles [27].

A costamere anchors the Z-disc of myofibrils to the
sarcolemma (figure 1d ). The costamere is a sub-membranous
structure in striated muscles and is composed of two major
protein complexes, the dystrophin-glycoprotein complex and
the vinculin-talin-integrin complex [28]. Desmin is a major
intermediate filament protein that links between costameres
and Z-discs [29]. It also connects Z-discs to Z-discs, mitochon-
dria and the nucleus [30]. Generally, costameres are thought to
transmit forces bidirectionally between the sarcomeres and the
sarcolemma [31–33]. Additionally, they function as important
centres of intracellular signalling, in which integrin-filamin
and ankyrin-desmin are also involved [34,35]. The signalling
is also bidirectional between the extracellular environment
and the intracellular signalling network (outside-in/inside-
out signalling) [36,37]. Many proteins associated with Z-discs
and costameres have been identified, and mutations in many
of those have been associated with cardiomyopathy and
skeletal myopathy in humans and mice [33,38–40].
3. Sarcomere assembly
Sarcomeres are the centrepieces of force generation in the
cardiomyocytes, and approximately 200 sarcomere-associated
proteins are annotated in the gene ontology database
(GO:0030017, Sarcomere). Sarcomere formation starts when
cardiomyocytes differentiate and continue through early post-
natal life, and then the sarcomere structure is maintained
throughout life. Over the last three decades, several initiation
and propagation models of the sarcomere assembly have
been proposed, which include models of pre-myofibril, tem-
plate sarcomere assembly and independent subunit sarcomere
assembly [41]. Among these concepts, one in common is that
the Z-body, the precursor of Z-disc, is assembled first, then
thin filaments formas a part of a Z-bodyoronZ-disc after form-
ing the myofibrils (figure 2a,b) [42]. Finally, thick filaments
replace non-muscle myosin, assembled in situ, or separately
assembled and incorporated into sarcomeres [41].

(a) Z-disc assembly
One of the key structures of the initiation for the assembly is
the Z-body, also known as the I-Z-I brush (figure 2a). This
structure consists of α-actinin and actin. Pre-myofibrils,
stress fibre-like structures of Z-bodies and non-muscle
myosin II, form in the cell periphery via either an integrin-
dependent mechanism or as latent complexes forming
throughout the myocyte [43–45]. Z-bodies are recruited into
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Figure 2. Sarcomere assembly. (a) Schematic diagram of the pre-myofibril model. Z-bodies form pre-myofibrils with non-muscle myosin. Pre-myofibrils further connect to become
nascent myofibrils. A wide array of myofibrils aligns with the integration of titin and the replacement of non-muscle myosin with muscle myosin. (b) Z-body and thin filament
assembly: 1. at the proto-costamere (precursor of costamere), the Z-body forms following the Z-disc alternatively spliced PDZ-motif protein (ZASP) recruitment to the sarcolemma.
ZASP recruits proteins, e.g.α-actinin, nebulin-related anchoring protein (NRAP) and filamin, to assemble the Z-body; 2. nebulin/nebulette and titin are incorporated into the Z-body;
3. BAG3 simultaneously localizes CapZ to the Z-body with dishevelled associated activator of morphogenesis 1 and 2 (DAAM1/2); 4. prefoldin (GimC) delivers the nascent actin to
chaperonin-containing T-complex protein 1 (CCT), which folds it into its final conformation. CCT then transfers the folded G-actin to BAG3. Finally, formin proteins (DAAM1/2 and
FHOD3) polymerize G-actin to F-actin; and 5. troponin complex and tropomyosin are incorporated into the I-band by an unknownmechanism. Leiomodin stabilizes the growing fibres
and competes with tropomodulin not to stop actin polymerization. Leiomodin detaches when actin filaments reach mature length, and the filaments are capped by tropomodulin.
(c) Pre-myofibril model of thick filament assembly: 1. non-muscle myosin II is incorporated between the Z-bodies to form pre-myofibrils; 2. titin is integrated into pre-myofibrils to
align nascent myofibrils; and 3. Muscle myosin replaces non-muscle myosin, and M-line proteins and MyBP-C are incorporated to complete the assembly of myofibrils.
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the proto-costameres, areas of high integrin concentration of
the sarcolemma, by Z-disc alternatively spliced PDZ-motif
protein (ZASP) [42,46–48]. Then, ZASP recruits α-actinin,
nebulin-related anchoring protein (NRAP) and filamin,
which in turn anchors titin to the Z-disc through nebulette
[47,49,50]. Z-bodies fuse to form the wide lateral arrays of
mature Z-discs.

(b) Thin filament assembly
The thin filament assembly starts on a Z-body or Z-disc
(figure 2b) [42]. The monomeric form of actin, the globular
actin (G-actin), polymerizes to form the filament (F-actin)
from the Z-disc edge, with their barbed ends toward the
Z-disc end. The actin polymerization step is regulated by a
series of proteins. CapZ (the muscle isoform of capping
protein; also known as β-actinin), α-actinin and other proteins
block the barbed ends of the actin filaments in the Z-disc and
contribute to initiating their polymerization [23,51]. CapZ is
recruited to the Z-disc with BAG3, one of the Bcl2-associated
athanogene (BAG) family proteins, before the actin polymeriz-
ation. Prefoldin (GimC) enhances actin folding and prevents
G-actin aggregation [52]. Chaperonin-containing T-complex
protein 1 (CCT), a Z-disc protein, folds the actin to the final con-
formation and transfers the folded actin to BAG3 [53,54]. The
rho GTPase-binding formin homology protein family, such as
dishevelled associated activator of morphogenesis 1 and 2
(DAAM1/2) and formin homology 2 domain-containing 3
(FHOD3), regulates actin polymerization to F-actin. Tropomo-
dulin caps and limits the thin filament, while leiomodin
competes with tropomodulin until the thin filament reaches
its mature length [55]. BAG3 family proteins represent an evo-
lutionarily conserved group of heat shock 70 kDa protein
(HSP70)/heat shock cognate 71 kDa protein (HSC70) binding
co-chaperones [35,56]. BAG3 binds to the actin capping protein
CapZ, which ensures the stability of the actin network and its
proper Z-disc anchorage, together with HSC70 [57]. BAG3
also involves selective sarcomere protein autophagy to keep
sarcomere integrity [58].

(c) Thick filament and myofibril assembly
Z-body and thick filament assembly to a myofibril differ
depending on the assembly models. Across the models, titin
is considered the main scaffold. Additionally, full-length titin,
β-cardiac myosin and α-actinin are required for sarcomere
assembly in human cardiomyocytes [59], although titin is not
essential for Z-body or the thick filament formation [60,61].
In the pre-myofibril model (figure 2c), a widely supported
one, the Z-bodies first formed as the pre-myofibrils with non-
muscle myosin II. They lack titin, and the distance between
them ranges from 0.3 to 1.4 µm [44]. Then, titin addition and
thin filament elongation process pre-myofibrils to nascent
myofibrils, and the distance increases to 1.8–2.5 µm [44].
Finally, muscle myosin replaces non-muscle myosin and M-
line proteins and MyBP-C are incorporated to complete the
myofibril formation [43,44,62–64]. Protein chaperones, uncoor-
dinated mutant number 45 (UNC-45), SET and MYND
domain-containing proteins (SMYD1B), HSP70, and HSP90
regulate myosin folding and thick filament assembly [65].
The template sarcomere assembly model is similar to the pre-
myofibril model. Pre-myofibrils form first, and muscle
myosin and M-band proteins are folded and incorporated as
thick filaments in situ on titin that is extended from Z-bodies
by the chaperones. In the independent subunit sarcomere
assembly model, pre-assembled thick filaments are linked to
the Z-bodies via titin [66,67].
4. Maturation process of sarcomere in
cardiomyocytes

Sarcomere maturation is a constant and gradual process to
develop a complete ultrastructure in cardiomyocytes so that
cardiomyocytes can generate sufficient contractile forces for
blood circulation. The sarcomeres are still disorganized as car-
diomyocytes differentiate in an early embryo. The sarcomeres
organize and align well to form parallel myofibrils throughout
the cardiomyocytes when more maturation processes proceed
[2]. Part of the organization and alignment can be explained by
sarcomere assembly as previously described. During the sarco-
mere maturation (from late embryonic to the adolescent
stages), new sarcomeres are continuously added in alignment
with pre-existing myofibrils, both longitudinally and laterally,
to expand myofibrils [3]. In vitro studies revealed that sarco-
meres are added to the lateral margins of myofibrils to
increase the number of myofibrils, whereas the addition of sar-
comeres to the edges of existing myofibrils increases their
length [68,69]. Under longitudinal stretches, sarcomeres can
also be added to the middle of myofibrils [69]. The distance
between Z-discs increases from approximately 1.7 µm to
approximately 2.2 µm when matured [70,71]. Mechanical
force regulates the sarcomere maturation through vinculin
[72]. Once sarcomeres mature, continuous maintenance
occurs by replacing sarcomere proteinswith newly synthesized
ones. This maintenance process occurs throughout life [64].
Moreover, the composition of sarcomeres changes owing to
the isoform switching of sarcomere proteins, leading to physio-
logical property changes in the sarcomeres. Additionally,
M-bands are difficult to observe in fetal cardiomyocytes.
With the isoform switch and increased M-band protein
expression, M-bands become distinct [73]. Here, we summar-
ize two aspects of the sarcomere maturation process, isoform
switching and its effects on sarcomere physiology.

(a) Isoform switching
The isoform switching of sarcomeric proteins in the troponin
complex, MHC, MLC and titin from fetal to adult ones
through transcriptional changes or alternative splicing is the
essential element of myofibril maturation. For instance, the
slow skeletal muscle isoform of troponin I (ssTnI, encoded
by TNNI1) is predominantly expressed in fetal hearts, and
the isoform turns to cardiac ones (cTnI, encoded by TNNI3)
after birth [74,75]. Two different MHC isoforms are alter-
nately expressed during heart development. β-MHC
(encoded by Myh7) is the major isoform in fetal cardiomyo-
cytes in mice, while α-MHC (encoded by Myh6) is the adult
isoform [76]. Conversely, α-MHC is expressed in fetal
hearts, and β-MHC is expressed in adult ones in humans
[1,77]. Transcriptional regulation also switches the MLC
isoforms in ventricular cardiomyocytes. Primitive fetal ventri-
cular cardiomyocytes express both MLC2v (the ventricular
isoform of MLC, encoded by MYL2) and MLC2a (the atrial
isoform of MLC, encoded by MYL7), whereas MLC2v
becomes the predominant isoform once ventricular cardio-
myocytes mature. Contrastingly, atrial cardiomyocytes have
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no MLC isoform switching [78,79]. The coding gene of
titin (TTN) has 363 exons in humans, and the alternative spli-
cing of TTN creates stiff N2B and more compliant N2BA
isoforms [80,81]. Among N2BA isoforms, at least four differ-
ent isoforms were reported in the heart (3220–3710 kDa in
rats) [81]. Fetal N2BA isoforms (3590 kDa and 3710 kDa),
which are larger than adult N2BA isoforms (3220 kDa and
3390 kDa), exist in the fetal heart. These larger fetal isoforms
have a longer middle immunoglobulin domain, which works
as a molecular spring; thus, they are the most compliant titin
isoforms. The fetal cardiac titin isoforms quickly disappear
after birth, and adult N2BA and N2B isoforms are upregu-
lated [80,81]. N2B (2970 kDa) is the dominant titin isoform
in the adult heart. ACTC1 is the predominant actin isoform
in the adult heart; however, ACTA1 (skeletal) and ACTA2
(smooth muscle aorta) are also expressed. These two isoforms
are expressed higher in embryonic hearts than in adult hearts
and upregulated in disease conditions [82–84]. Like other
sarcomere components, M-bands also undergo the isoform
switch from fetal myomesin (embryonic heart [EH]-myome-
sin, a splicing variant of MYOM1) to mature one lacking
the EH domain, including the M-protein/MYOM2 upregula-
tion [13,85]. This isoform switch is associated with the
emergence of the clear M-bands under electron microscopy
[86]. These sarcomere isoform switches are considered to
occur upon birth [3]. Quick downregulation of Myh7 and
Tnni1, and upregulation of Myh6 and Tnni3 were observed
after birth with transcriptome analysis in mice [87].

During the cardiomyocyte maturation process, dynamic
transcriptional changes were observed, and thousands of
genes, not only sarcomere genes but structural, ion channel,
and mitochondrial/metabolic genes, are upregulated [87–90].
These genes include the aforementioned genes, TCAP,
MYOM2 and TNNI3, as the sarcomeric genes [87].

Sarcomere isoform switches are coupled with the matu-
ration process; however, they also occur in heart failure.
Hence, fetal isoforms revert to appear. The ratio of α-MHC
and β-MHC is often used as a heart failure marker in the
disease models, although the impact of the isoform switch in
human failing hearts remained debatable [16,91]. The N2BA
isoform of titin and EH-myomesin also re-express in failing
hearts [92,93].

(b) Sarcomere maturation and changes in physiological
properties

Cardiomyocyte maturation is a dynamic process in which
sarcomeres and other cellular elements that interact with
sarcomeres reach the adult level of maturity. For example,
sarcomeres regulate cellular morphology. Adult cardio-
myocytes exhibit a rod shape with an approximately 7 : 1
length-to-width ratio [94]. Cardiomyocytes lacking Myh6
or Actn2 retained their elongated morphology but the cell
width was drastically decreased with reduced transverse
tubules (t-tubules) and disrupted mitochondrial morphology
using a genetic mosaic model in mice [95,96].

Isoform switches of sarcomere proteins change the
way of interactions between sarcomeres and other cellular
components and lead to physiological adaptation to adult
contractility demands, along with other cardiomyocyte prop-
erty maturation. The transition from high energy demanding
α-MHC to the more forceful and energy sparing β-MHC in
mature ventricular cardiomyocytes ensures optimum
contractility [91,97]. Their differences in ATPase activity
determine the speed of sarcomere contraction [98]. A small
percentage of α-MHC significantly enhances cell contractility
in rat cardiomyocytes [99]. Moreover, the expression ratio
imbalance of α- and β-MHC is linked to cardiomyopathy,
atrial fibrillation and heart failure. Therefore, tight regulation
of the two isoforms ratio is required. Similar to the isoform
switch of MHC, isoform switches of MLC, titin and myome-
sin lead to changes in physiological properties and/or
calcium sensitivity. Ventricular cardiomyocytes of the early
mouse embryo express MLC2a, while MLC2v takes over by
embryonic day 14.5 [100], which might be associated with a
ventricular action potential morphology [101]. Moreover,
MLC2v is phosphorylated by MLC kinases, which increases
the step size of myosin and increases the contraction force
[102,103]. The isoform switch of titin changes sarcomere com-
pliance [104]. Titin provides passive sarcomere resistance.
N2B is stiffer, while N2BA is more compliant between the
two adult titin isoforms [105]. The N2B isoform is predomi-
nant and N2BA is less expressed in healthy hearts [105].

The distance between Z-discs (sarcomere length) becomes
approximately 2.2 µm during the sarcomere maturation pro-
cess, in which sarcomere has the best performance. Sarcomere
length is tightly coupledwith force generation,which is themol-
ecular basis of the Frank-Starling Law [106–108]. Sarcomere and
thin and thick filament lengths determine the overlaps between
them and the number ofmyosin heads available to bind to actin
and generate tension. Sarcomere length is determined by the
balance between its active force and the pre- and post-loads
[37], and blood pressure is considered one of the causes for
the sarcomere length increase after birth [109]. Blood pressure
increases owing to an increased systemic vascular resistance
after birth [110]. With time, repeated loads increase sarcomere
length to adapt to the growing demand [111].
5. Molecular mechanisms regulating sarcomere
maturation

The molecular mechanisms that control cardiac myofibrillar
maturation remained inadequately understood although
sarcomere assembly and maturation are studied as previou-
sly summarized. Isoform switches and sarcomere protein
expressions are regulated by transcription and translation.
Here, we summarize the reports that highlighted the roles
of possible regulatory molecules for sarcomere formation
through transcription and translation, including indirect evi-
dence of cardiomyopathy phenotypes with their alteration,
indicative of sarcomere formation disruption.

(a) Transcription factors
Serum response factor (SRF) is a critical transcription factor
that regulates several aspects of growth and muscle differen-
tiation. Cardiac-specific knockout of SRF in mice embryos
severely disrupted cardiac sarcomeres causing lethal contrac-
tility defects around embryonic day (E) 10.5–13.5 [112,113].
Adeno-associated virus (AAV)-based genetic mosaic analysis
showed that SRF regulates the cardiomyocyte maturation in
neonatal mice hearts in a tightly controlled, time-specific
manner [95]. Either increased or decreased SRF levels in neo-
natal mice hearts disrupted normal sarcomere maturation,
which in turn impaired several cardiomyocyte maturation
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aspects, suggesting sarcomeres as a key cardiomyocyte
maturation regulator [95].

The major coactivators of SRF are the myocardin family,
namely, myocardin and myocardin-related transcription
factors (MRTFs) A and B [114]. Cardiac-specific double
knockout of MRTFA/B in mice caused sarcomere disarray
and decreased cardiac functions. Most of the mutant mice
died in the first month of life and surviving mice displayed
severe ventricular dilation and reduced cardiac function,
suggesting the importance of MRTFA/B in sarcomere assem-
bly [115]. Indeed, the α-actinin–α-actin–MRTF–SRF signalling
axis was probed to involve sarcomere and cardiomyocyte
maturation using the AAV-based mosaic assay [96]. The
monomeric form of β-actin (G-actin) retains MRTFs in the
cytoplasm to inhibit SRF activation, while F-actin does not
[116]. The cardiac-specific α-actin isoform, ACTC1, possesses
the same ability, and α-actinin orchestrates the assembly
of α-actin to F-actin, reducing G-actin levels. In turn,
MRTFs enter the nucleus and activate SRF-dependent gene
expression programmes to further enhance sarcomere assem-
bly in a positive feedback manner. Disruption of α-actinin
increased monomeric α-actin isoform (G-actin), thereby
retaining MRTFs in the cytoplasm [96]. Another SRF-binding
transcription coactivator is homeodomain-only protein,
which is involved in cardiomyocyte hypertrophic response
and myofibrillar switching to more mature isoforms [117].

GATA-binding protein (GATA) 4 and 6 are important
transcription factors for normal heart development. They
share partly redundant functions. Cardiac-specific GATA4
ablation resulted in progressive cardiac dilatation and func-
tional deterioration. GATA6 knockout caused a significant
reduction in heart size with no significant effect on cardiac
function, and both GATA4 or GATA6 knockout mice had
decreased cardiomyocyte hypertrophy in response to pressure
overload [118,119]. Fetal double knockout of GATA4 and 6
caused severe ventricular dilation and decreased cardiac
function, and death by 16 weeks of age [119].
(b) Nuclear receptors
Nuclear receptors play an important role in cardiac develop-
ment, homeostasis and disease pathogenesis in the heart.
Among the nuclear receptor superfamily, thyroid hormone
receptors (THRs), oestrogen-related receptors (ERRs), gluco-
corticoid receptors and peroxisome proliferator-activated
receptors (PPARs) are known to be involved in cardiomyocyte
maturation.

The thyroid hormone has a critical role in cardiac develop-
ment and cardiovascular physiology [120]. Tri-iodothyronine
(T3) is important for titin and MHC isoform switching, along
with sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) 2a
expression [121–123]. Two THR isoforms, THRa and b, are
found in the heart. Of the two, THRa mediates primary T3
effects on sarcomere maturation. THRa knockout mice
showed decreased contractile functions of the papillary
muscle and lower levels of Serca2a andMyh6 transcripts similar
to that observed in hypothyroid mice [124]. THRa mutation in
zebrafish also caused decreased contractility, with abnormal
sarcomere organization [125]. Cardiac-specific expression
of D337T mutant or a dominant-negative form of THRb in
mice caused bradycardia and decreased cardiac function and
left ventricular hypertrophy with ageing, suggesting the later
roles compared to THRa [126,127].
ERRs are known to participate in cardiac maturation and
postnatal regulation of mitochondrial development and func-
tion [128]. Postnatal cardiac-specific ERRα/γ knockdown
in mice caused cardiomyopathy, decreased mitochondrial
function, reduced expression of structural, ion channel/trans-
porters, and mitochondrial and calcium handling genes.
Prenatal ERRα/γ knockdown mice exhibited left ventricle
thinning along with disrupted mitochondrial structure and
function, and all mice died within 24 h of birth [128].

Glucocorticoid receptors are important for normal fetal
heart maturation. Mutation of the Nr3c1 gene encoding
glucocorticoid receptors in mice disrupted sarcomere organ-
ization, decreased cardiomyocyte alignment and impaired
calcium handling [129].

PPARs have three different isoforms, namely, α, β/δ and γ.
Once activated, they bind to the retinoid X receptor to conduct
their transcriptional activity. The PPAR family generally func-
tions in regulating glucose and lipid metabolism. However,
each member seems to have distinct functions [130]. Abnormal
PPAR levels in the heart are linked to many diseases. Decreased
PPARα and increased PPARγ in the right ventricle are linked to
arrhythmogenic right ventricular dysplasia [131,132]. Decreased
PPARα is also associated with developing pressure-induced
cardiac hypertrophy [133]. PPARγ is critical for normal heart
development. PPARγ gene deletion in mouse embryos caused
severe myocardial dysplasia at E10, leading to embryonic
lethality [134]. However, two later studies reported different
pathological phenotypes ofPPARγgeneknockout, hypertrophic
and dilated cardiomyopathy (DCM) [135,136].

PPARγ coactivators α and β (PGC1α/β) serve as a coacti-
vator of nuclear receptors, not only for PPARs but for THRs
and ERRs [137] and are known for their role in metabolism
and mitochondrial biogenesis [138]. Recently, PGC1/PPAR
signalling was reported as essential for normal contractile
function, cell hypertrophy and calcium handling maturation,
partly through a transcriptional factor, Yes-associated protein
1 (YAP1) [139].
(c) MicroRNAs
MicroRNAs (miRNAs) are a large group of small, non-coding
RNAs, which regulate different cardiomyocyte aspects.
miRNAs and transcription factors regulate each other in devel-
oping hearts, and they control cardiac gene expression together
[140]. An miRNA can affect the translation of hundreds of
messenger RNAs [141]. Dicer1 is an essential endonuclease
for miRNA processing and maturation. Thus, postnatal car-
diac-specific Dicer1 deletion leads to a global miRNA loss in
cardiomyocytes with marked left ventricular dilation and
impaired cardiac function.At the cellular level, cardiomyocytes
showed decreased contractile proteins and myofibrillar disar-
ray [142]. Dicer1 inactivation using a pan-cardiomyocyte Cre
driver at mid-gestation in mice leads to embryonic lethality
between E14.5 and E16.5. Themutantmice had severe myocar-
dialwall defectswith decreased cell proliferation and increased
apoptosis and contractile protein misexpressions. These results
imply the importance of miRNAs in sarcomere development
and maturation.

Certain miRNAs were shown to be more important
in cardiac development and maturation in addition to the
global miRNA functions in the heart. MicroRNA-1 (miR-1) is
highly expressed in developing hearts. Two copies of miR-1
are found in most mammals, namely, miR-1-1 and miR-1-2.
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miR-1 directly acts on the ERRβ to repress fetal cardiac gene
programmes and control the transition from the prenatal to
the neonatal stage. miR-1 knockout mice resembled the control
mice at P2.5. Afterwards, they suffered DCM and failed to
survive past P17 [140]. However, another study reported that
miR-1 knockout was fatal by P10 [143]. Deletion of miR-1–1
alone also decreased sarcomere organization, with mild
ventricular dilatation and conduction abnormalities [143].
MicroRNA133a1 and 2 (miR133a1/2) are muscle-specific
miRNAs. Double knockout mice exhibited right ventricular
thinning by E12.5 but were otherwise normal. Then approxi-
mately, half of them developed severe ventricular dilatation
and ventricular septal defects and became lethal by P1. Surviv-
ingmice grew but hadDCMand fibrosis. Transmission electron
microscopy showed significant sarcomere fragmentation and
disorganization along with disrupted Z-discs [144].

(d) RNA-binding proteins for alternative splicing
RNA-binding motif protein (RBM) 24 is an RNA-binding
protein that is exclusively expressed in the heart and skeletal
muscles and regulates the alternative splicing of genes that
are important for cardiac development, such as certain tran-
scriptional factors, cytoskeleton proteins, and ATPase gene
family members [145]. Abolishing RBM24 function in zebra-
fish embryos resulted in decreased sarcomere proteins and
reduced heart contractility [146]. Serine/threonine kinase
(STK) 38 regulates RBM24 stability through phosphorylation
during sarcomere development. STK38 deficiency reduces
sarcomere proteins and causes sarcomere disarray [147].
Other RNA splicing factors, RBM20 and heterogeneous
nuclear ribonucleoprotein U (hnRNPU), are also important
for sarcomere maturation. RBM20 regulates titin splicing,
and its deletion caused pathological titin isoform expression
and DCM phenotype in rats [148]. More importantly,
RBM20 mutations are found in familial DCM [149].
Cardiac-specific hnRNPU knockout mice exhibited impaired
sarcomere dynamics, abnormal calcium handling, severe
DCM and lethal heart failure within two weeks of birth
[150]. These findings highlight the importance of alternative
splicing for sarcomere regulation and cardiomyopathy
development.
6. Relationships to other organelles
A more comprehensive approach, which considers other
cellular organelles, is needed to deepen our understanding of
sarcomerematuration. Not only sarcomeres but also organelles
are highly organized and linked with each other to facilitate
efficient cardiomyocyte beating (figure 3).Molecular and phys-
ical interchanges between sarcomeres and other organelles
remain largely unknown. Hence, elucidating these interactions
and their effects on the maturation of sarcomeres and other
organellesmay provide a further understanding of cardiomyo-
cyte biologyand cardiac diseases and be themissing step in our
attempts to producemature, adult-like cardiomyocytes in vitro.
Here, we summarize how organelles interact with sarcomeres
(figure 3).

(a) Mitochondria
The mitochondria are the powerhouse of the eukaryotic cell.
They produce the energy needed to sustain heart beating
among other functions in the heart. Mitochondrial activity
in cardiomyocytes is particularly strong compared to that
in skeletal and smooth muscles [151]. A recent three-
dimensional electron microscopy study revealed different
mitochondrial networks, morphology and interactions with
other cellular components compared to the other muscles,
implying that the energy demand regulates mitochondria
[152]. The decreased mitochondrial function causes cardiac
dysfunction and leads to cardiomyopathy with sarcomere dis-
array, suggestive of mitochondrial involvement in sarcomere
organization or homeostasis [153–155].

The mitochondria need to meet the demand from sarco-
meres even during myofibrillogenesis [156,157]. Embryonic
cardiomyocytes mainly use glycolysis, while adult ones rely
on fatty acid beta oxidization, which is coupled with the mito-
chondrial morphological transition from reticular to lattice
[158]. Lattice mitochondria distribution allows close contact
and regular alignment of mitochondria with sarcomeres, an
important feature for an efficient ATP delivery to sarcomere
from mitochondria [159].

Cytoskeletons have important roles to keep mitochondria
arrangementwith sarcomeres. Theproteolytic treatmentof tryp-
sin disrupted the cytoskeleton and disorganized the alignment
of mitochondria in permeabilized cardiomyocytes, suggesting
that the cytoskeleton maintains the mitochondrial arrangement
in cardiomyocytes [160,161]. Later, non-sarcomeric cytoskele-
tons, e.g. desmin intermediate filaments, were revealed to
anchor mitochondria to sarcomere [162,163]. Desminmutations
are associatedwith cardiomyopathy, supporting its crucial roles
in maintaining proper mitochondrial distribution and sarco-
mere integrity [30,164]. The coupling of mitochondria to the
cytoskeleton is alsonecessary to facilitate nucleotide channelling
[165], translocation of metabolites involved in oxidative phos-
phorylation [166,167] and mitochondrial transport [168,169].
Tubulin tethering to mitochondria has also been shown to
play structural and functional roles in striatedmuscle homeosta-
sis and disease [159,170]. Myofibrils can also more directly
regulate myocyte metabolism through their interaction with
mitochondria. The mitochondria failed to localize aroundmyo-
fibrils, where high energy is needed inmice lackingmuscle LIM
protein (MLP), suggesting that cytoskeletal MLPmay be part of
an energy-sensing mechanism [171]. Furthermore, a recent
study reported that mutating key myofibrillar genes, such
as Actn2 and Myh6, disrupted mitochondrial maturation,
thereby suggesting that sarcomere organization is upstream of
mitochondrial maturation [95].

Mitochondria are positioned between lined myofibrils
and mechanically elongated by the myofibrils. The geome-
try of mitochondria also influences the interaction between
sarcomeres and thick filaments within the muscle cell [172].
Myofibril and mitochondria morphogenesis are intimately
linked in Drosophila muscles. Mitochondrial over-fusion
duringmyofibril assembly preventsmitochondrial intercalation
in flight muscles, thereby causing the shift of muscle-specific
sarcomeric proteins [173]. Moreover, conditional knockout of
Drp1, a mitochondrial fission factor, in cardiomyocytes led
to cardiac dysfunction [174]. Additionally, muscle-specific
Drp1 loss induces muscle wasting and weakness owing to
intracellular signalling changes induced by mitochondrial
morphological changes [175]. Contrarily, mutations that affect
the mitochondria, such as Mfn1/2 and Tfam, had minor
effects on sarcomere organization but altered cardiomyocyte
proliferation [95,176].
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potential formation. Mitochondria reside next to the myofibres along t-tubules and SR, and several proteins have been shown to exist between the mitochondria and
SR, which are known as mitochondria-SR contact sites. These structures maintain proximity between organelles and allow mitochondria to exert significant Ca2+

fluctuations at each action potential. Furthermore, these SR-mitochondria-t-tubule interactions modulate the calcium and ATP that regulate sarcomere contraction.
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Collectively, mitochondria are important organelles that
maintain sarcomere function, but they are also functionally
regulated by sarcomeres, and both work side by side to main-
tain the cardiomyocyte functions. However, the molecular
dialogue in the context of maturation between the sarcomere
and mitochondria remains to be elucidated.

(b) Transverse tubules
The well-developed t-tubules are one of the key differences
between neonatal and adult cardiomyocytes [177]. The
t-tubules are complex and interconnected invaginations of
the sarcolemmalmembrane, which propagates action potential
through the cardiomyocyte and initiates excitation-contraction
coupling [178]. The three-dimensional model results revealed
that the t-tubules in the heart project not only transversely
but also in different directions, and their diameters range
from 20 to 450 nm [179]. T-tubules of the skeletal muscle are
much smaller, with diameters ranging from 20 to 40 nm
[180,181]. Bridging integrator 1 (BIN1) is one of the t-tubule for-
mation regulators, and BIN1 reduction suppressed the t-tubule
invaginations, but overall cardiomyocyte morphology
remained intact [182]. Caveolin-3 (Cav3) is another regulator
that interacts with BIN1 [183]. The deletion of Cav3 resulted
in cardiomyocyte hypertrophy, although t-tubule formation
was not completely abolished [184]. Emerging evidence
suggests a possible role of sarcomeres in t-tubule formation
andmaturation. T-tubules are anchored to sarcomeres, and car-
diomyocytes exhibited defective t-tubule organization with
depleted α-actinin [96]. Moreover, an actin-binding protein,
nexilin, that stabilizes the sarcomere was recently shown as
important for t-tubule formation [185,186]. Similar to mito-
chondria, morphological changes owing to the lack of Drp1
cause structural abnormalities in the t-tubule [175]. These
results suggest a close relationship between mitochondrial
morphology and t-tubules.

(c) Sarcoplasmic reticulum
The sarcoplasmic reticulum (SR) is an organelle found within
the muscle cells and is similar to the smooth endoplasmic reti-
culum in other cells. SR constitutes major intracellular calcium
storage in striated muscles and plays an important role in
regulating excitation-contraction coupling and intracellular cal-
cium concentrations during contraction and relaxation. SR has
two forms, namely, longitudinal SR (l-SR) and junctional SR
( j-SR) [187]. The repetitive close apposition between j-SR and
t-tubules is essential for efficient excitation-contraction coup-
ling [188]. The latest study implicated the junctophilin-2 on
SR tethers t-tubules [189]. Upon action potential, Ca2+
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microdomains, which are generated in synchrony at the
interface between j-SR and t-tubules, underlie an immediate
increase in cytosolic Ca2+ concentration, ultimately responsible
for cell contraction during systole [190–192]. This process
requires mitochondrial involvement, the main energy source
of cardiomyocytes. Interestingly, mitochondrial distribution is
highly ordered and strategically juxtaposed with SR in adult
cardiomyocytes [188,193–195]. Mitochondria take up Ca2+

and modulate ATP synthesis according to the specific cardiac
workload when Ca2+ release sites are close together
[196–198]. Increasedmitochondrial Ca2+ is pivotal inmitochon-
drial dehydrogenase activation and thus is essential for
adjusting ATP production to cardiac needs during contraction
[199,200]. Mitochondrial Ca2+ oscillates synchronously with
cytosolic Ca2+ in cardiac cells, andmitochondrial Ca2+ handling
rapidly adapts to inotropic or chronotropic inputs [201]. Thus,
Ca2+ and ATP, which are required for sarcomere contraction,
are regulated by t-tubules, SR and mitochondria interactions.
SR mediates the growth of mitochondria and myofibrils at the
intercalated disc in an electronmicroscopy study [202]. Further-
more, another study revealed that the close association of SR,
mitochondria, and t-tubules was disrupted in heart failure
[192]. While SR and mitochondria are in direct contact with
sarcomeres, functions between them are unclear; hence,
more studies are required for further understanding of the
interplays across organelles and sarcomeres.
(d) Nucleus
The nucleus also interacts with sarcomeres. The nuclear
membrane is vital in maintaining genome stability and over-
all cellular dynamics. The linker of the nucleoskeleton and
cytoskeleton (LINC) complex, which is composed of nesprins
and Sad1p-UNC-84 domain 1 and 2 (SUN1/2) proteins,
anchors actin filaments, intermediate filaments and micro-
tubules to the nucleus. SUN proteins are also linked to the
nuclear lamina, a structure near the inner nuclear membrane.
The nuclear lamina directly interacts with chromatin
to form lamina-associated chromatin domains [203]. The
nuclear architecture is maintained through a balance between
intermediate filaments and microtubules in the cytoplasm of
cardiomyocytes, and the nuclear lamina counteracts the
forces from the cytoplasm [204]. A key nuclear lamina protein
is nuclear Lamin type A, which is encoded by the LMNA
gene, and LMNA mutations cause DCM, conduction defects
and ventricular arrhythmias [205]. LMNA protein disruption
disorganizes the nuclear lamina to increase mechanical stress
susceptibility. The conformational changes of the nuclear
lamina not only result in impaired signalling from extracellu-
lar and cytoplasmic domains but also disrupt chromatin
structure, directly affecting the gene transcription. Further-
more, similar to proto-costamere, the LINC complex
recruits ZASP to the cytoplasmic side of the nucleus before
sarcomere assembly and is also vital for sarcomere assembly
and stability [206,207].

Sarcomere-related proteins also serve as direct signalling
molecules to the nucleus from sarcomeres [208]. Some tran-
scriptional factors and chromatin modifiers, e.g. nuclear
factor of activated T cells 3, core-binding factor β, muscle-
specific RING finger proteins and SMYD1, localize to sarco-
meres and translocate to impact gene transcription upon
defined stimuli [209]. Interestingly, sarcomere proteins (e.g.
MLP, tropomyosin and troponin proteins) contain nuclear
localization signals and may affect the nuclear structure or
transcription [208], which remains to be further elucidated.
7. Summary and future perspectives
The sarcomere is the contractile unit of cardiomyocytes.
Optimal structure and function are required for it to efficiently
beat throughout our life. Therefore, it goes through a complex
assembly and maturation process to reach its adult-like
structure and function. The sarcomere and other organelle
maturation processes in cardiomyocytes should progress
hand-in-hand but is not fully understood. A comprehensive
approach is needed to study and recapitulate the regulatory
network of molecular interactions that occur during develop-
ment in vivo. Herein, we focused on sarcomere maturation
for its functional importance, regulatorymachinery and central
role in regulating other cardiomyocyte organelle maturation.

Many molecules have been reported to regulate the pro-
cess of sarcomere development and maturation. Several
transcription factors, such as SRF, GATA4, GATA6 and their
modulators, work to regulate the levels of sarcomere gene
expression on the gene expression levels. Nuclear receptors,
such as THRs, ERRs, PPARs and glucocorticoid receptors,
exert similar functions when activated. In the next step,
RNA-binding proteins modulate alternative splicing, and
miRNAs modulate the translation from transcripts. Outside
the nucleus, sarcomere assembly machinery takes place for
sarcomere formation and maturation. Sarcomere assembly
and maturation is a dynamic, orchestrated process that
reflects the cellular state and signalling environment.

Some molecules may have interchangeable functions
given the complex regulatory network required for sarcomere
maturation. Hence, dysfunction or deficiency of any of the
aforementioned molecules can result in a wide range of mani-
festations. This was shown via animal models in which
inflicting cardiac-specific mutations in sarcomere-regulating
genes caused phenotypes ranging from apparently normal to
heart failure and premature death. Consequences of failed sar-
comere maturation and mutations in sarcomere protein genes
range from asymptomatic to full-blown cardiomyopathy,
heart failure and death in humans.

Having said that, many sarcomere maturation aspects are
notwell-understood.More research is needed to further illumi-
nate the mechanisms by which the sarcomere acquires its
mature phenotype. To this end, pluripotent stem cell-derived
cardiomyocytes (PSC-CMs), either from embryonic or induced
PSCs, are appealing tools to study the sarcomere maturation
process and failed maturation consequences. Recent studies
that used PSC-CMs noticeably support the importance of
environmental cues for cardiomyocyte maturation, including
extracellular matrix [73], appropriate culture substrate stiffness
[210], nuclear receptors [139,211] and nutrients [212]. With the
progress, PSC-CMs can finally be used as a model for studying
the sarcomere maturation process because PSC-CMs are better
at tracing the entire process compared to the snapshots from
the heart. More importantly, human PSC-CMs eliminate the
hurdle of species-related physiological differences encountered
when animal models are used.

Emerging pieces of evidence are pointing towards the sar-
comere as being not only the force generator but also themaster
regulator of cardiomyocytematuration in contrastwith the pre-
vious presumption that mitochondria regulate cardiomyocyte
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maturation. Such a hypothesis is evident in the underdevelop-
ment of organelles, such as the mitochondria and t-tubules,
whenmyofibrillar genes are mutated. This new understanding
should gear our efforts towards studying sarcomeres as a sig-
nalling hub that regulates cardiomyocyte maturation and
function. Significant progress was seen on how sarcomeres
and cardiomyocytesmature; however, a lot remained to be elu-
cidated. For example, cardiomyocytes have unique rectangular
morphology; however, it remained unknownhow they become
rectangular. Z-discs are anchored by costamere (figures 1d and
3); thus, the extension of the cell membrane by the addition of
sarcomeres to myofibrils is a possibility. Recent advances in
new technology, such as live imaging, may provide further
insights. The interplays between sarcomeres and other orga-
nelles have pivotal roles in cardiac diseases and studying
how sarcomeres acquire their mature forms and the mainten-
ance machinery can be translated to the understanding of
how they work in adult hearts to maintain the cardiomyocyte
physiology and play in diseased conditions.
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