
A Practical Guide to Genetic Testing for Kidney
Disorders of Unknown Etiology
Abraham W. Aron , Neera K. Dahl , and Whitney Besse

Abstract
Genetic testing is increasingly used in the workup and diagnosis of kidney disease and kidney-related
disorders of undetermined cause. Out-of-pocket costs for clinical genetic testing have become affordable, and
logistical hurdles overcome. The interest in genetic testing may stem from the need to make or confirm a
diagnosis, guide management, or the patient’s desire to have a more informed explanation or prognosis. This
poses a challenge for providers who do not have formal training in the selection, interpretation, and
limitations of genetic tests. In this manuscript, we provide detailed discussion of relevant cases in which
clinical genetic testing using a kidney gene panel was applied. The cases demonstrate identification of
pathogenic variants for monogenic diseases—contrasting them from genetic risk alleles—and bring up
diagnostic limitations and diagnostic utility of these tests in nephrology. This review aims to guide clinicians
in formulating pretest conversations with their patients, interpreting genetic variant nomenclature, and
considering follow-up investigations. Although providers are gaining experience, there is still risk of testing
causing more anxiety than benefit. However, with provider education and support, clinical genetic testing
applied to otherwise unexplained kidney-related disorders will increasingly serve as a valuable diagnostic
tool with the potential to reshape how we consider and treat many kidney-related diagnoses.
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Introduction
Despite standard workup, some patients with kidney
disorders may not have a clear diagnosis. Depending
on the year, 0.3%–4% of incident ESKD patients have
“unknown” listed as their underlying etiology (1),
with 20%–27% of patients with CKD/ESKD reporting
a positive family history (2–5). Depending on the
patient cohort, 10%–65% of patients with a family his-
tory may have a genetic cause identified (6–8),
whereas up to up to 24% of a more general CKD
cohort may have a genetic cause identified (9–11).
Implementation of genetic testing has been fruitful,
demonstrating notable yield in patients with nephrotic
syndrome (12,13), focal segmental glomerulonephritis
(14,15), nephrolithiasis (16,17), congenital anomalies of
the kidney and urinary tract (18), and cystic kidney
disease (19). Genetic sequencing of panels of hundreds
of kidney-related genes are now available from multi-
ple commercial or institutional genetic testing services
for less than $500 out-of-pocket cost, with sample col-
lection and professional genetic counseling services
included. This is affordable to many patients and thus
can be more readily offered in a variety of clinical set-
tings (20). Groopman et al. (21) suggest that genetic
findings can positively impact clinical care by making
a diagnosis or further characterizing an existing clini-
cal diagnosis, and guiding subspecialty referrals. They
show that in some—particularly pediatric—cases, a
genetic diagnosis may have an important impact on
treatment decisions. A genetic diagnosis can also

affect screening of living related donors for transplan-
tation (22,23). For some patients, a significant benefit
may come simply from providing an explanation for
their condition.
Many nephrology providers do not feel comfortable

counseling, ordering, or interpretating genetic testing
(24). Although a one-time patient referral to a center
with genetic kidney disease expertise to make a diag-
nosis is an option, we expect that the increasing role
of genetics in nephrology will push most clinicians to
want to over time develop a comfort level with this
themselves. This review provides a practical frame-
work of important concepts and nomenclature to
utilize in genetic testing of patients with kidney disor-
ders of unclear etiology. For excellent reviews of
genetic diagnoses found most often, patient character-
istics that predict highest likelihood of genetic diagno-
sis, and the types of genetic testing useful in kidney
disease, we direct the reader to additional references
(9,25–27). In this review, we detail the basics of genetic
testing in clinical care.

Pretest Preparation and Counseling
Ordering clinicians should provide basic pretest

communication and—to the extent of their comfort
level—counseling, recognizing that patient education
by a certified genetics counselor will be necessary in
some circumstances (28). In preparation for pretest dis-
cussion, the ordering clinician should know (1) the
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type of test ordered (2), where to find the list of genes tested
and available counseling services, and (3) whether the test
will return findings regarding “actionable genes” such as
cancer risk or cardiovascular disease that may prompt fur-
ther testing in addition to genes relevant to kidney-related
disease (29). For many testing services, the clinician will be
asked to decide in advance whether he or she wishes for
variants of unknown significance (VUS) to be included in
the results report or withheld. This is of relevance for certain
kidney phenotypes and is discussed below.
With the above in mind, we recommend the following be

conveyed to the patient as part of pretest counseling (30,31):

� The clinician’s expectation of what may or may not be
found, and how that would affect management. In other
words, define a gestalt pretest probability of making a pos-
sible or definitive genetic diagnosis. Also, convey whether
cancer risk might be found and reported or will not be
considered as part of the test.

� Genetic testing may not always provide a definitive result.
Sometimes, the results are inconclusive due to either a
VUS or the lack of a variant that could be due to the
sequencing modality missing it. Genetic testing of addi-
tional family members may be a helpful aid in the inter-
pretation of a variant.

� A positive test result may have implications for the health of
other family members. See discussion of “Is the variant(s)
present in all affected family members?” and case 4 below.

� A federal law, Genetic Information Nondiscrimination Act
of 2008, prohibits health insurance and most employment
discrimination based on genetic data, but it does not pro-
tect against denial of coverage for other types of coverage
such as life and disability insurance (32).

We will discuss the nomenclature used to describe var-
iants (cases 1 and 2) and how the pretest probability of
finding a variant will aid in variant interpretation (case 2).

Case 3 illustrates interpreting a risk allele in contrast to a
pathogenic variant for a monogenic disease. Case 4 illus-
trates a genetic finding that could have been missed by tar-
geted next-generation sequencing (NGS) and prompts our
outlining clinical scenarios where alternative or follow-up
genetic testing many be necessary to confirm or detect a
relevant variant. Overall, these cases highlight real-life find-
ings and a patient-centered approach. We continue to
refine our experience in genetic testing and reach out to
certified genetics counselors or genetic specialists to help
interpret and manage results when needed.

The Type of Genetic Test
Given the low cost, high sensitivity, and widespread

availability of NGS to sequence multiple genes in parallel
(also called massively parallel sequencing), this will be the
first choice for most situations (21). A kidney gene panel
refers to the assessment of multiple genes sequenced by
NGS-based methods. Some testing services tailor the list of
genes to the specified phenotype (i.e., nephrotic syndrome)
(12,33), whereas others have a fixed panel evaluated for
any kidney-related indication (8). These lists are often quite
thorough; however, we encourage providers to review the
panel to ensure the genes of interest are being evaluated.
There are many commercially available genetic testing
products, and many institutions may also have clinical
genetic testing available.
For a NGS panel, DNA obtained from cells in a patient’s

blood sample, cheek swab, or saliva is fragmented and bar-
coded for sequencing. Unless performing the more com-
plete and costly whole genome sequencing, the next step is
to capture and amplify the DNA fragments containing
exons—the approximately 1% of the genome that encodes
proteins. If the exons of all genes are collected and
sequenced, this is known as whole exome sequencing
(WES), whereas if the exons of only a subset of genes are
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Figure 1. | Patient factors that correlate with an increased likelihood of a genetic diagnosis.
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used, this is known as “targeted” NGS (20,21,34,35). Either
way, analysis is limited to the genes listed in the panel. At
present, there are more than 3900 genes associated with
monogenic disorders (36), with more than 625 of these
associated with kidney or urologic disease (37).

How to Know What to Expect
Certain clinical presentations convey a near certainty

that a causative genetic variant exists, whereas in others,
genetic testing is being used as one of many tools in the
workup. In the latter case, a conclusive positive finding is
meaningful, but an inconclusive or negative finding may
not be. Figure 1 illustrates factors that correlate with
increased likelihood of a genetic diagnosis (6,25). Having
an estimated gestalt pretest probability of the likelihood of
a positive result is useful both for setting patient expecta-
tions and preparing to interpret the genetic test results.

Case 1
A 20-year-old male with normal renal function has a renal

ultrasound as part of an initial evaluation for hypertension.
Multiple large cysts are noted in each kidney, resulting in
mild symmetric enlargement. A follow-up abdominal mag-
netic resonance imaging scan confirms the kidney cysts and
notes absence of liver cysts. He has no known family history
of autosomal dominant polycystic kidney disease (ADPKD),
kidney failure, or kidney transplant.
Genetic testing is pursued because his cyst number and

hypertension at this age point to a genetic cause, and diag-
nosis and prognosis are in question due to lack of family
history.
His genetic testing reveals a heterozygous variant in the

ALG8 gene and no other pathogenic or likely pathogenic
variant in a panel of genes that includes PKD1, PKD2,
PRKCSH, SEC63, GANAB, ALG8, ALG9, PKHD1, SEC61B,
DNAJB11, IFT140, UMOD, REN, HNF1B (38,39) (Figure 2).

Genetic Variant Nomenclature
The Human Genome Variation Society establishes the

standards for annotation of genetic variants (40,41). Figure 3

provides a guide to this interpretation. A variant is anno-
tated with reference to the gene and the numerical posi-
tion(s) in that gene’s coding DNA sequence and protein
(chain of amino acids [AA]) sequence. The numbering for
the coding DNA starts with nucleotides 1–3, which encode
AA number 1, and continues for the length of the protein.
Because some genes may have more than one way of splic-
ing its exons together (“alternative transcripts”), which
would affect the numbering for the coding DNA and pro-
tein sequence, a transcript name such as “NM_024079” may
also be provided. Each of the 64 possible three-nucleotide
combinations encodes 1 of 20 different AAs or a stop codon.
AAs are abbreviated as three letters or a single letter (e.g.,
“Arg” or “R” for arginine), and the stop codon is abbrevi-
ated as “Ter” for termination or “X.” Table 1 illustrates the
potential consequences that may result from the substitu-
tion, insertion, or deletion of one or a small number of
nucleotides.

Genetic Variant Interpretation
Identified variants affecting a gene of interest are com-

pared with large databases to determine whether they are
common or rare in the general population and ethnic sub-
groups, and whether they have previously been associated
with disease. The largest resource for assessing a variant’s
frequency in the general population and ethnic subgroups
is known as the Genome Aggregation Database (gnomAD)
(42). GnomAD provides data fromWES and whole genome
sequencing for more than 120,000 individuals (more than
240,000 alleles). A minor allele frequency of .1% is consid-
ered common. Although a patient’s gene sequence may
differ from the reference human genome with common
variants, a clinical genetics report will only list variants
that are sufficiently rare to be of possible relevance to the
rare monogenic disease phenotype in question or that are
specific established risk alleles. The American College of
Medical Genetics and Genomics and the Association for
Molecular Pathology provide criteria for the characteriza-
tion of a variants as “pathogenic,” “likely pathogenic,”
“uncertain significance,” “likely benign,” and “benign,”
with “likely” being used when there is a .90% certainty
that the variant may be either pathogenic or benign (40).Figure 2. | Abdominal MRI of patient described in Case 1.
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Figure 3. | Illustration of variant nomenclature for Case 1. Human
gene names are capitalized and italicized.
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Table 1. Types of variants resulting from single or small oligonucleotide variants

Variant Type Definition Nucleotide Change

Coding DNA
Nomenclature
“c. prefix”

Protein
Nomenclature
“p. prefix” Comments Implication

Substitution
(synonymous)

Single nucleotide
substitution resulting
in unchanged AA

ATG AGA (ref) 
c. 1  2  3 4  5  6

Met Arg

p. 1 2

ATG AGG (var) 

c.6A>G p.Arg25
or p.Arg2Arg

� 6th nucleotide adenine
changed to guanine

� Variant occurs at 2nd
codon; both AGA and
AGG encode arginine to
the protein sequence is
not affected

No change in AA; likely
benign unless near splice
junction

Substitution
(missense)

Single nucleotide
substitution
changing AA

ATG AGA

ATG ATA

c.5G>T p.Arg2Ile � 5th nucleotide guanine
changed to thymine

� 2nd codon encoded
arginine, but variant
encodes isoleucine (Ile)

AA changed; potentially
pathogenic if significant
change in important AA

Substitution
(nonsense)

Single nucleotide
substitution creating
a stop codon

ATG AGA

ATG TGA

c.4A>T p.Arg2Ter
or p.Arg2X

� 4th nucleotide adenine
changed to thymine

� 2nd codon encoded
arginine, but variant
encodes a premature stop
codon

Truncated protein;
pathogenic in majority
of disease mechanisms

Insertion/deletion
(frame shift)

Insertion or deletion
of # nucleotides
(# Þ multiple of 3)

ATG AGA CAG T

ATG GAC AGT

Met Arg Gln

Met Asp Ser

c.4delA p.Arg2fs � 4th nucleotide adenine
is deleted

� A resultant shift in the
reading frame no longer
encodes the intended
protein and by chance
will reach a stop codon

Truncated/altered protein;
all AAs distal to frame
shift are changed;
pathogenic in majority
of disease mechanisms

Insertion/deletion
(nonframeshift)

Insertion or deletion
of # nucleotides
(# 5 multiple of 3)

ATG AGA CAG

ATG CAG

-Met Arg Gln

Met Gln

c.4_6delAGA p.Arg2del � 4th through 6th
nucleotides are deleted,
causing loss of the Arg
but no frameshift

AA deleted; potentially
pathogenic if critical AA

Substitution
(splice variant)

Single nucleotide
substitution

AAGgtaa�...

AAGttaa�...

Lys intron

Lys intron

c.211 1G.T � 1st intronic nucleotide
(guanine) is changed to a
thymine; no protein
consequence is defined
given intronic variant

Truncated protein expected;
splice site abolished if
first or second intronic
base is modified;
pathogenic in majority
of disease mechanisms

AA, amino acid.
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Truncating versus Nontruncating Variants
An important distinction in variant interpretation is the

difference between a variant that results in a shortened
(“truncated”) protein versus a variant that still encodes the
full-length protein but with a focal modification. The
“truncating variant” can be expected to encode a non-
functional protein fragment that is typically degraded.
Examples of truncating variants are (1) nonsense variant
(premature termination [“stop”] codon), (2) frameshift “fs”
variant (insertion or deletion of nucleotides not a multiple
of three), (3) splice variant affecting either of the essential
two intronic nucleotides adjacent to a splice junction, or (4)
a large deletion of multiple exons (Table 1). In contrast, a
“nontruncating” variant encodes a full-length protein that
may be fully functional, fully dysfunctional, or partially
functional, or alternatively take on a different function—a
so-called gain of function. Examples of nontruncating var-
iants include (1) a missense variant (single AA substitu-
tion), or (2) small nonframeshifting insertion/deletion of
three or six or nine etc. nucleotides (Table 1).
Truncating variants can typically be characterized as

likely pathogenic or pathogenic for disorders caused by
loss-of-function mechanism even if not previously reported
with disease and without family data. In contrast, nontrun-
cating mutations will need to be previously associated with
the disorder, found in multiple affected family members,
or assessed by biologic assay if they are to be characterized
as more than just a VUS.
The ALG8 variant in case 1 is a truncating variant, also

known as loss of function variant, because the 179th AA,
arginine, is replaced by a stop codon. The ALG8: c.535C.T:
p.Arg179Ter variant has been previously reported (43) and
can, in the opinion of the authors, be interpreted as patho-
genic. The variant classification of “pathogenic” refers to the
effect of the variant on the encoded protein but not necessar-
ily whether a single “pathogenic” heterozygous variant can
be expected to cause disease as discussed next.

Inheritance and Zygosity
In autosomal dominant (AD) conditions, a single patho-

genic variant on one (maternal or paternal) allele—a
“heterozygous” variant—results in disease. In autosomal
recessive (AR) conditions, both (maternal and paternal)
alleles must have a disease-causing variant (i.e., there are
no normal copies of the gene). For recessive genotypes, if
the two disease-causing alleles are identical, the variant is
referred to as “homozygous,” whereas if the two disease-
causing alleles are different, the patient’s genotype is
referred to as “compound heterozygous.” Patients with a
single pathogenic copy of a gene associated with an AR
disease are called carriers. They may have either no expres-
sion of disease characteristics or, with some diseases, mild
or unique attributes (44,45). X-linked variants are on the X
chromosome. Males will have greater disease expression of
X-linked traits because they only have one X chromosome
and thus no normal copy (46,47). De novo mutations spon-
taneously arose in the gamete or early embryo and are not
inherited from either parent.

Considering the Data Linking the Gene to
a Phenotype

ALG8 encodes a protein required for the synthesis of
sugar molecules known as N-glycans that help protein mat-
uration in the endoplasmic reticulum. ALG8 is essential for
appropriate maturation of the ADPKD protein polycystin-1
(43). ALG8 is curated in some but not yet all public data-
bases as an official disease gene for autosomal dominant
polycystic kidney and liver phenotypes. The authors and
others having growing experience with this genetic diagno-
sis (38,48). Given what is known about this gene, the lack
of variants in the disease genes for typical ADPKD in the
case 1 patient, and the phenotype that fits reported cases,
we were comfortable providing the patient with reassur-
ance that the ALG8 variant is likely to be the cause of his
cystic kidney disease. Based on previously described cases
and the mechanism of cyst formation being an incomplete
loss of polycystin levels, his course will hopefully be rela-
tively indolent, without renal failure. We expect therefore,
based on the non-PKD1 or -PKD2 genetic etiology, that he
is at low-risk of progression and thus not a candidate for
tolvaptan therapy. In general, genotype alone should not
be used to determine those at risk for rapid progression
because sometimes even patients with truncating PKD1
mutations may have slowly progressive course (49). For
patients with normal renal function and ADPKD, we rely
on Mayo imaging classification and/or the finding of aver-
age kidney length .16.5 cm in a young patient to deter-
mine eligibility for tolvaptan therapy (50).

In other cases, if a gene variant is called pathogenic but
the implicated gene does not fit the patient’s phenotype, it
is always reasonable to consider the level of evidence and
experience (i.e., case numbers, pedigrees, biologic mecha-
nism, animal models) that support the implication of a
gene with a phenotype because the literature is still a work
in progress.

Case 2: A VUS
A 38-year-old male with no past medical history has an

elevated creatinine of 1.7 mg/dl. Seven years prior, he had
normal renal function. He has no hearing or vision loss and
no family history of kidney disease, and he takes no medi-
cation. Physical exam and history are unremarkable. Uri-
nalysis consistently demonstrates 21 blood but no protein.
Urine microscopy demonstrates isomorphic red blood cells
without casts.

Due to his young age, elevated creatinine, and hematuria
of unclear etiology, a renal biopsy is performed. This shows
unremarkable light microscopy and immunofluorescence,
but diffuse thinning of the glomerular basement membrane
on electron microscopy.

This did not explain his renal impairment but suggested
thin basement membrane disease which has been associ-
ated with mutations in COL4A3, COL4A4, or COL4A5 (51)
(Figure 4).

To explore this possibility further and to address patient
interest in whether there was a genetic cause, he underwent
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clinical genetic testing. No positive findings were reported;
however, his list of VUSs are shown in Table 2.

VUS
VUSs, as the name implies, are of unknown significance.

It is typically advised that the clinician will not base clinical
decisions on VUSs. Nonetheless, there are characteristics
about a case/gene/VUS that can increase the likelihood
that a VUS is indeed pathogenic such that the finding may
still provide clinically relevant information that can be
interpreted with caution. The following considerations are
assessed when determining the potential significance of a
VUS (52):

Patient/Family/Phenotype Factors

� Does the patient’s phenotype fit with reported phenotype
for the disease gene/genotype? Keep in mind that hetero-
zygous VUS will typically not be of relevance for recessive
disease unless two variants are found in the same gene.

� Is the variant(s) present in all affected family members?
This is a very important way to support or exclude the
pathogenicity of a variant. Given this, it may be wise to
include in pretest counseling that some results may lead to
the suggestions that other family members get tested. In
general, affected family members will provide more infor-
mation than unaffected family members—because for
some diseases, not all carriers of the pathogenic variant
get disease. In contrast, lack of the variant in a family
member affected with the same phenotype has the power
to rule out that variant as the causative variant in that
family.

Gene/Protein/Variant Factors

� Does the variant cause a significant alteration in AA char-
acteristics in an important region of the encoded protein?
If the specific AA at that position in the protein is con-
served (maintained) through evolution of species, this sup-
ports its importance. If the affected AA is in a functional
domain of the protein, it is more likely to have a conse-
quential effect. If the AA change results in change of size,
polarity, or charge of the AA, it is more likely to have an
effect than a more subtle change.

� Is the variant sufficiently rare in the general population?
Rarer is more likely pathogenic in rare monogenic disor-
ders. Often a threshold of ,1% in the general population
is set to define a variant as being “rare.” This may be a logi-
cal threshold for many AR phenotypes because only when
two such rare alleles occur in the same person does the
phenotype present. However, for AD diseases, the general
population frequency for any one pathogenic variant
should be expected to be significantly less than the preva-
lence of the disease, thus certainly ,0.1% but typically
much rarer than that. For example, the authors consider
any variant with frequency in the general cohort or ethnic
subpopulations .0.01% as too common to be pathogenic
for ADPKD where the 1:1000 disease prevalence is made
up of patients who each have any one of many hundreds
to thousands of potential unique rare pathogenic alleles. A
variant’s frequency in the general population or ethnic
subpopulations can be found on the GnomAD resource
listed below. Many pathogenic variants will be so rare that
they are “novel” or “absent” in GnomAD; the variant was
not found in any of the volunteers represented in the Gno-
mAD cohort and thus would not be listed on the site.

� Is the variant near a splice junction and predicted by algo-
rithms to effect splicing efficiency?

� Is the implicated disease known to be caused by very rare
deleterious variants (as opposed to specific gain-of-func-
tion mutations)? To use the example of ADPKD again,
many disease-causing nontruncating alleles are character-
ized as VUS because they haven’t been previously
reported in association with disease; thus, their conse-
quence cannot be conclusively interpreted. Nonetheless,
in a patient with clinically diagnosed ADPKD, finding a
VUS in PKD1 that is convincing by the parameters
described above is often helpful. For this reason, we sug-
gest requesting VUSs to be reported at least when testing
for ADPKD variants.

Figure 4. | Electron microscopy of renal biopsy in Case 2.

Table 2. Case 2 Variant Report: VUS

Gene Associated Disease(s) Inheritance Variant Zygosity Classification

COL4A4 COL4A4-related
Alport syndrome

AD and AR c.816G.A (p. Lys272=) Heterozygous Unknown
significance

Provided Interpretation: This synonymous variant is located near an intron-exon boundary located in exon 13 and is predicted by
multiple in silico splice predictor algorithms to reduce the splice site activity significantly. This variant has not been reported as
associated with a clinical condition in the Human Gene Mutation Database (HGMD) and is absent from the Broad Institute
gnomAD dataset.
VUS, variant of uncertain significance; AD, autosomal dominant; AR, autosomal recessive.
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Clinical geneticists have access to algorithms and predic-
tion scoring systems that incorporate some of this assess-
ment and may innumerate relevant data to the variant
interpretation in the report. In addition, assessment will
consider whether the specific variant has been reported
previously for the provided phenotype. If this information
is not provided in the genetic testing report, some details
can be found on websites such as ClinGen (53), ClinVar
(54), gnomAD (42), and other broad or disease-specific
publicly available databases.
The VUS listed in case 2 was one of six reported VUSs

from a panel testing 385 “kidney genes” in this patient.
Although it is reasonable to pass over most VUSs, in cases
such as this where the pretest probability for finding a
COL4A3 or COL4A4 heterozygous variant was considered
high, the reported VUS in COL4A4 can be considered with
added interest. COL4A4 encodes the a4 collagen protein
integral to the a3a4a5 helix that forms the adult glomeru-
lar basement membrane. Patients with heterozygous muta-
tions negatively impacting COL4A4 may have AD Alport
syndrome or thin basement membrane disease (51,55).
Although this VUS is a synonymous variant—no change in
the 272nd AA lysine—algorithms identified that this novel
(never before reported) variant occurs near an exon-intron
boundary and is predicted based on the surrounding
sequence to interfere with splicing. Unlike variants in the
first or second base of the intron from the exon/intron
junction, which will undoubtedly abolish splicing, exonic
nucleotides near the splice site may also alter splicing—
potentially resulting in exclusion of exon 13 in the case
above—but their consequence is less predictable. This case
certainly raises the likelihood that indeed this variant has
consequence; however, without biologic assessment or
more familial data, this suspicion remains unproven.

Case 3: APOL1 Risk Alleles
A 38-year-old male with hypertension and prediabetes

presents to clinic for evaluation of proteinuria. His mother
had developed ESKD in her late 30s, but the details of her
diagnosis are not well known by the family. His physical
exam, aside from mild hypertension, is unremarkable. His
laboratory data show a serum creatinine of 1.2 mg/dl, a
urine protein-to-creatinine ratio of 0.97 mg/mg Cr, and no
other abnormalities. His renal biopsy shows focal segmen-
tal glomerulosclerosis (FSGS). Due to his family history
and young age of disease onset, the patient underwent
genetic testing. There were no variants reported for mono-
genic causes of FSGS; however, positive variants were
found, as detailed in Table 3.
This case highlights the discovery of a risk allele—an

allele that on its own is not pathogenic but can increase the
risk of developing a disease in the setting of other clinical

or environmental “second hit” factors. APOL1 risk alleles
(termed G1 or G2) were discovered among people with
recent West African ancestry who had higher rates of
ESKD, even after accounting for traditional risk factors.
Further studies demonstrated that individuals homozygous
for either allele (G1/G1 or G2/G2) or heterozygous for
both alleles (G1/G2) as seen in this case are at significant
risk for developing hypertensive ESKD, biopsy-proven
FSGS, HIV-associated nephropathy, and possibly coronavi-
rus disease 2019–related glomerular disease (56–60).
APOL1 G1 or G2 heterozygosity will be encountered fre-
quently by a clinician performing genetic testing because
more than one third of Black individuals carry one
high-risk allele—thought to confer no significant added
risk—whereas 13% have a high-risk genotype (60,61). The
discovery of the high-risk genotype may lead the clinician
to consider its associated disease(s) and/or aggressively
treat known risk factors that may contribute to the “second
hit” such as HIV or other viral infections, hypertension,
and obesity.

Use of Genetic Testing in Living Related
Kidney Donation

Living kidney donors are at increased risk of developing
of CKD/ESKD (62). Although this may be attributed to
reduced nephron mass following donation, an alternative
explanation could be that some living related donors might
carry the genetic cause or genetic risk that already destined
them to kidney problems. As such, it may be valuable to
attempt to identify a genetic cause of CKD/ESKD in a recip-
ient such that if found, the living related donor can be
screened for the same variant (single variant testing would
be all that would be necessary). This is particularly of rele-
vance when the donor is younger than the age at which clin-
ical manifestations would become apparent (22,23,63–65).

The presence of risk alleles such as APOL1 is a different
situation because ,15% of those with the high risk APOL1
genotype will develop ESKD (66). Even though studies
indeed report an increased risk of ESKD in donors with the
APOL1 high-risk genotype, that is a risk that some living
related donors may still wish to take in order to give their
loved one a kidney (67). Importantly, attitudes toward
genetic testing in potential donors are mixed, with some
demonstrating dissatisfaction knowing that genetic testing
may preclude them from donating their kidney to a loved
one and would be willing to undergo donation despite
these potential risks of transplant (68).

Case 4: An Unexpected but Fitting Diagnosis
A 53-year-old female with hypertension and insulin-

dependent diabetes mellitus is noted to have chronic

Table 3. Case 3 Variant Report: Two APOL1 risk alleles

Gene Condition(s) Inheritance Variant(s) Zygosity Classification

APOL1 Susceptibility to ESKD and focal
segmental glomerulosclerosis

Complex G1 allele Heterozygous Risk allele
APOL1 G2 allele Heterozygous Risk allele
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hypomagnesemia. Multiple family members have been
diagnosed with type 2 diabetes and CKD attributed to dia-
betes. She does not take any diuretics, proton pump inhibi-
tors, or alcohol. During a prior hospitalization, she rarely
achieved normal magnesium levels despite significant
intravenous and oral magnesium repletion. Renal ultra-
sound demonstrates symmetric, echogenic kidneys in addi-
tion to multiple right upper pole simple cysts measuring
up to 1.7 cm in diameter.
Due to severe renal magnesium wasting, renal cysts,

CKD, and positive family history for CKD, there was mod-
erate suspicion for a genetic etiology, although it was
unclear to what extent diabetes could explain the familial
kidney disease.
Serum creatinine: 1.5 mg/dl (gradual upward trend

from a creatinine of 1.0 six years ago).
Serum magnesium: 1.4 mg/dl (normal range 1.7–2.4

mg/dl) despite supplementation with magnesium lactate
336 mg twice daily.
Fractional excretion of magnesium: 25% (expected ,3%

in patients with hypomagnesemia).
Urinalysis is remarkable for 11 protein, 21 glucose.
Findings are detailed in Table 4.

Given the whole gene deletion, the patient underwent
clinical chromosomal microarray analysis to confirm the
variant and define the extent of the deletion. This con-
firmed the presence of a large (1.4 Mb) heterozygous dele-
tion at 17q12, which includes the disease gene HNF1B.

When NGS May Not Be Enough
Large deletions such as seen in this case can be character-

ized as a type of structural variation. Since the heterozy-
gous deletion results in only one remaining allele, these
deletions are also referred to as copy number variation
(CNV; i.e., only one copy of the gene is present rather than
the usual two copies provided by the maternal and pater-
nal allele). CNVs, broadly defined as deletions or duplica-
tions of large segments of the genome, can occur de novo or
be inherited (69). They are not optimally detected by the
short reads of targeted NGS or WES. Although NGS-based
sequencing will be sufficient as the genetic testing modality
for many patients with kidney disorders and was sufficient
to detect the large deletion in this case, Table 5 outlines
specific indications where alternative genetic testing
modalities are used as the preferred initial test, follow-up

Table 4. Case 4 Variant Report: Whole gene deletion

Gene Associated Disease(s) Inheritance Variant Zygosity Classification

HNF1B Renal cysts and
diabetes syndrome

AD Whole gene deletion Heterozygous Pathogenic

AD, autosomal dominant.

Table 5. Specific indications for alternative sequencing modalities in nephrology

Clinical Scenario Alternative Testing Options

Large deletions or chromosomal rearrangements suspected
(typically pediatric: CAKUT, multi-organ manifestations) or
needed as a follow-up assessment to a negative test with
suboptimal assessment of copy number variation (e.g.,
whole gene deletions of NPHP1) or to confirm large
deletion found by WES or targeted NGS

SNP or chromosomal microarray
Other options:

� Comparative genomic hybridization
� Whole genome sequencing
� Multiplex ligation probe amplification

ADTKD-MUC1 suspected (ADTKD phenotype but no
mutations found in other ADTKD genes)

Variant-specific testing available without cost from the Broad
Institute
(contact ableyer@wakehealth.edu)

Single variant testing: An established familial pathogenic
variant is known, and patient desires testing only for
presence/absence of that variant

Sanger sequencing following PCR amplification of a small
genomic region containing the variant location

Gold standarda for ADPKD Sanger sequencing of long-range PCR amplicons designed to
amplify only PKD1, PKD2, but not the duplicated regions
(pseudogenes) homologous to PKD1

High suspicion for genetic etiology but no variant found Consider testing for large deletions (above), and/or
contacting testing facility to ask about sequencing quality
for specific genes of interest

ADTKD, autosomal dominant tubulointerstitial kidney disease; ADPKD, autosomal dominant polycystic kidney disease; CAKUT,
congenital anomalies of the kidney and urinary tract; NGS, next-generation sequencing; SNP, single nucleotide polymorphisms;
WES, whole exome sequencing.
aAs NGS-based methodologies improve, using paired-end sequencing, improved capture reagents, with or without preceding
long-range PCR, the superiority of this approach is less apparent, and thus NGS-based panels are often used recently as first test
for genetic diagnosis in ADPKD.
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to a suspected missed variant, or confirmation of a detected
variant, as in case 4 (35,70–73).

Case 4 Continued: Reframing the Patient
HNF1B encodes the essential transcription factor hepato-

cyte nuclear factor 1b, which is expressed in the pancreas,
liver, and kidney (74,75). Recessive loss is embryonically
lethal, whereas a range of phenotypes and severities—which
may be termed “variable expressivity”—can result from het-
erozygous variants or loss of this gene. In the kidney, some
patients with an HNF1B mutation manifest with congenital
anomalies of the kidney and urinary tract, whereas others
have a progressive tubulointerstitial kidney disease often
with gout with or without kidney cysts. Other potential
manifestations are maturity-onset diabetes of the young
(formerly known as “renal cysts and diabetes syndrome”),
hypomagnesemia, elevated liver function tests, and hyper-
parathyroidism out of proportion to CKD (76–79). HNF1B
gene deletion can be part of a larger chromosome 17q2 dele-
tion syndrome, in which case there may also be develop-
mental, learning, and psychiatric problems (80,81).
In this case, the genetic finding prompted the reframing

of the patient’s diabetes diagnosis and her CKD. She had
undergone a liver biopsy 1 year prior for workup of persis-
tent mild liver function test elevation, which had shown no
actionable findings and arguably could have been avoided
if the genetic diagnosis was known at the time. Given the
AD nature of this disease, the patient was counseled by the
ordering provider about potential implications for her fam-
ily members. Specifically, 50% of her offspring would be
expected to inherit this variant, and she may wish to dis-
cuss screening with them.
Depending on the clinician’s comfort level, such post-test

counseling can be performed by the clinician or by a genet-
ics counselor—either via the genetic testing service or via
an independent clinical referral. Although establishing a
definitive pathogenic variant can create the opportunity
to establish a potentially presymptomatic diagnosis in
affected family members, proactively offering this should
not be taken lightly. First, in diseases such as this case with
a disease gene (HNF1B) with variable expressivity, know-
ing that a family member has the variant does not entirely
predict the characteristics or severity of disease to expect.
Second, genetic diagnosis in pediatrics is typically discour-
aged other than for familial disease where pre-emptive
therapies are available.

Take-Home Points and Looking Ahead
It is important to note that with increasing use of genetic

testing, public databases that document variants and their
spectrum of clinical consequences will be updated. With
time, this will contribute to more informed interpretations
of VUSs discovered in the future (82). A clinician can aid in
these efforts by accurately providing the patient phenotype
at time of ordering the test—allowing the submitted data
(phenotype) to be associated with the variant—and encour-
aging the sequencing service to submit data to public
resources. As resources for variant curation improve and
additional disease genes are identified, clinicians may

consider contacting the testing company to have a patient’s
genetic sequencing data reanalyzed. Sequencing services
that use WES as opposed to just targeted sequencing of the
genes in the panel may be able not only to reinterpret
VUSs but also to analyze genes not previously considered.

This review aimed to provide a foundation for nephrol-
ogy providers to start to develop experience with the
affordable tool of clinical genetic testing to aid in the
workup of a wide range of unexplained kidney-related
abnormalities. Some take home points are the following:

� Ordering a clinical genetic test should be feasible and no
longer require extensive logistical coordination by the
provider.

� Pretest discussion (counseling) to establish expectations is
recommended as outlined above.

� A clinician can choose whether to refer for genetic
counseling, and even whether to refer to a center with
genetic kidney disease expertise to make a genetic diagno-
sis, but will want to understand genetic terminology in kid-
ney disease diagnoses.

� Everyone has many genetic variants. Avoid overinterpret-
ing VUS. Many, possibly most, VUS are benign, but if the
VUS is in a gene that can cause the phenotype, further
consideration may help determine clinical relevance.

� Seek advice from a genetics counselor or a colleague with
genetics experience when there is uncertainty about the
consequence or relevance of a variant.

When used in the proper circumstances, genetic testing
will allow us to enrich our understanding and care of
patients with kidney disorders.
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