Cerebral Cortex, 2022, 32, 4172-4182

https://doi.org/10.1093/cercor/bhab473
Advance access publication date 6 February 2022

Original Article

OXFORD

Multitask brain network reconfiguration is inversely
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Intelligence describes the general cognitive ability level of a person. It is one of the most fundamental concepts in psychological
science and is crucial for the effective adaption of behavior to varying environmental demands. Changing external task demands
have been shown to induce reconfiguration of functional brain networks. However, whether neural reconfiguration between different
tasks is associated with intelligence has not yet been investigated. We used functional magnetic resonance imaging data from 812
subjects to show that higher scores of general intelligence are related to less brain network reconfiguration between resting state
and seven different task states as well as to network reconfiguration between tasks. This association holds for all functional brain
networks except the motor system and replicates in two independent samples (n = 138 and n = 184). Our findings suggest that the
intrinsic network architecture of individuals with higher intelligence scores is closer to the network architecture as required by various
cognitive demands. Multitask brain network reconfiguration may, therefore, represent a neural reflection of the behavioral positive
manifold - the essence of the concept of general intelligence. Finally, our results support neural efficiency theories of cognitive ability

and reveal insights into human intelligence as an emergent property from a distributed multitask brain network.
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Introduction

Intelligence captures the general cognitive ability level
of a person. It is critically involved in learning from
experiences and a prerequisite for effective adaption
to changing environmental demands (Sternberg 1997).
People who score high on tests of general intelligence
perform better in multiple different cognitive tasks —
an observation that is called the positive manifold of
general intelligence (Spearman 1904). Although scien-
tists started to investigate the biological underpinning
of intelligence many decades ago, correlates have been
identified in brain structure (Gregory et al. 2016), brain
function (Neubauer and Fink 2009), and in intrinsic brain
connectivity (Hilger et al. 20172, 2017b, 2020; for general
reviews on neural correlates of intelligence, see Jung and
Haier 2007; Basten et al. 2015), it remains an open ques-
tion whether there exists an equivalent of the positive
manifold of general intelligence within the human brain,
that is, a “neuro-g” (Haier 2017).

Intrinsic brain networks can be assessed in the
absence of task demands during the so-called resting
state (Biswal et al. 1995; Van den Heuvel and Hulshoff
Pol 2010). Their topology has been suggested as a
reflection of information transfer between different
brain regions, and various topological network attributes

have been related to differences in cognitive ability
(Dubois et al. 2018; Hilger et al. 2020). Recently, the focus
has broadened to include functional brain network inter-
actions measured during active cognition, that is, during
task states (Braun et al. 2015; Cohen and D’Esposito
2016). Introducing such external task demands leads
to task-general and task-specific updates in functional
connectivity (FC; Cole et al. 2014) and was proposed to
amplify relations between phenotypical variations and
their neural basis, suggesting task-based connectivity as
promising marker of general intelligence (Greene et al.
2018, 2020).

Brain network reconfiguration, defined as changes in
functional magnetic resonance imaging (fMRI)-derived
functional brain connectivity in adaption to different
cognitive states, has previously been studied by com-
paring resting-state FC (i.e., intrinsic connectivity) with
FC during tasks (Schultz and Cole 2016). Task-evoked
changes in FC seem to be crucial for shifting neural
processing (Cole et al. 2021), and the pioneering study of
Schultz and Cole (2016) revealed a significant (negative)
association between a global estimate of brain network
reconfiguration and general intelligence. However, as the
exact nature of changes has been shown to depend on
the kind of task (Braun et al. 2015; Cohen and D’Esposito
2016; Soreq et al. 2021) as well as on the intensity level
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of the cognitive challenge (Shine et al. 2016; Hearne
et al. 2017), considering brain network reconfiguration
as a task-general phenomenon may only provide limited
insights into underlying processes. More specific insights
into general intelligence, that is, into implicated cog-
nitive processes and into a potential neural equivalent
of the positive manifold, would therefore require the
investigation of reconfiguration between different tasks.
Such a multitask brain network reconfiguration has been
demonstrated to capture meaningful variations between
persons (Salehi et al. 2020; Duong-Tran et al. 2021) but its
relation to intelligence has not yet been comprehensively
investigated. Furthermore, it has not yet been tested
whether the association between brain network recon-
figuration and general intelligence is driven by specific
functional systems or it represents a whole-brain phe-
nomenon. This would allow for additional insights about
intelligence-relevant processes and how these processes
are implemented on the neural level.

Here, we use fMRI data from a large sample of
healthy adults (n = 812) assessed during different
cognitive states, that is, during resting state and during
seven different task states, to test the hypothesis that
higher levels of general intelligence relate to less brain
network reconfiguration. Specifically, we expected this
association to manifest in reaction to different cognitive
demands and on various spatial scales. We used a
straight-forward operationalization of brain network
reconfiguration and implemented our analyses on a
whole-brain level as well as on the level of seven and
17 canonical functional brain networks. The results
confirm our hypotheses and suggest that functional
brain networks of more intelligent people may require
less adaption when switching between different cognitive
states, thus pointing toward the existence of an advanta-
geous intrinsic brain network architecture. Furthermore,
we show that although the different cognitive states
were induced by different demanding tasks, their relative
contribution to the observed effect was nearly identical;
a finding that supports the assumption of a task-
general neural correlate — a neural-positive manifold.
Finally, the involvement of multiple brain networks
suggests intelligence as an emergent property of a widely
distributed multitask brain network.

Materials and Methods

Participants

Main analyses were conducted on data from the HCP
Young Adult Sample S1200 including 1200 subjects of age
22-37 years (656 female, 1089 right-handed, and mean
age = 28.8 years). All study procedures were approved
by the Washington University Institutional Review Board,
and an informed consent, in accordance with the dec-
laration of Helsinki, was obtained from all participants
(for details see Van Essen et al. 2013). Subjects with a
mini-mental state examination score < 26 (serious cog-
nitive impairment) or missing cognitive data needed for
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calculating a general intelligence factor were excluded.
Cognitive measures of the remaining 1186 subjects were
used as input for factor analysis to estimate a latent
factor of general intelligence (see next section). After
additional exclusion due to missing fMRI data and exces-
sive head motion (see below), the final sample consists of
812 subjects (422 female, 739 right-handed, 22-37 years,
and mean age = 28.6 years).

General Intelligence g

To estimate a latent factor of general intelligence
(g-factor), bi-factor analysis based on the Schmid-
Leiman transformation (Schmid and Leiman 1957) was
conducted in accordance to Dubois et al. (2018) for
12 cognitive measures (Supplementary Table 1) of 1186
subjects.

Data Acquisition and Preprocessing

We used fMRI data acquired during resting state (four
runs) and data acquired during seven tasks (two runs
each) capturing information from eight different external
demands, which are referred to as cognitive states in the
subsequent text. Resting-state runs comprise 14:33 min
data (1200 time points), while task runs vary between
2:16 min (176 time points) and 5:01 min (405 time points)
lengths. See Van Essen et al. (2013) for an overview of
general data acquisition, Smith et al. (2013) for details
of the resting-state acquisition, and Barch et al. (2013)
for additional information about tasks. Briefly, all fMRI
data were acquired with a gradient-echo EPI sequence
(TR = 720 ms, TE = 33.1 ms, flip angle = 52°, 2-mm
isotropic voxel resolution, and multiband factor = 8) on a
3 T Siemens Skyra with a 32-channel head coil. We used
the minimally preprocessed HCP fMRI data (Glasser et al.
2013) and implemented further preprocessing compris-
ing a nuisance regression strategy with 24 head motion
parameters, 8 mean signals from white matter and cere-
brospinal fluid, and 4 global signals (Parkes et al. 2018).
For task data, basis-set task regressors (Cole et al. 2019)
were used simultaneously with the nuisance regressors
to remove mean task-evoked neural activation. Finally,
time series of neural activation were extracted from 200
nodes covering the entire cortex (Schaefer et al. 2018). In-
scanner head motion was measured by framewise dis-
placement (FD, Jenkinson et al. 2002). As recommended
in Parkes et al. (2018), subjects were only included if mean
FD < 0.2 mm, proportion of spikes (FD > 0.25 mm) < 20%,
and no spikes above 5 mm were observed.

Functional Connectivity

Subject-specific weighted FC matrices were computed
using Fisher z-transformed Pearson correlations between
time series of neural activation from 200 cortical regions.
For each of the eight states (rest, seven tasks), FC was first
computed for RL and LR phase directions separately and
averaged afterward. Functional connections were then
filtered based on their correlation with intelligence (P <
0.1, Finn et al. 2015; Shen et al. 2017). Connections that
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were inconsistently correlated with intelligence across
states (positive in one, negative in another or vice versa)
were excluded. To prevent circularity, this connection
filtering step was cross-validated: first, the sample was
divided into 10 subsamples (by ensuring absence of
family relations and equal distributions of intelligence
scores via stratified folds). Second, intelligence-relevant
connections (significantly correlated with intelligence, P
<0.1) were selected in nine subsamples only. And third,
this selection of connections was then applied to the
withheld subsample, thus in no case, the correlation
between FC and intelligence was calculated and applied
in one and the same sample. Note, that such a filtering
step has been applied in previous work to identify rela-
tions between FC and different phenotypical variations
(e.g., Finn et al. 2015; Shen et al. 2017; Greene et al.
2018; Gao et al. 2019; Avery et al. 2020). Reconfiguration
measures were calculated on a whole-brain level, as
well as within and between pairs of networks based on
the Yeo 7/17 canonical systems (Yeo et al. 2011). Note
that for analyses on the level of 17 functional networks,
the P-threshold was increased to P <0.2 to ensure a
sufficient number of remaining connections (see Fig. 1
for a schematic illustration of the general workflow,
Supplementary Fig. 1 for the filtering procedure, as well
as Supplementary Figs 2 and 3 for an overview of the
filtered and remaining functional brain connections).

Brain Network Reconfiguration

Reconfiguration of FC was operationalized as cosine dis-
tance between the filtered FCs of two states. The cosine
distance deos is the complement of the cosine similarity

SCOS
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where scos 1S the cosine of the angle between two connec-
tion weight vectors x and y with a total number of con-
nections n, which is expressed as the normalized inner
product of the vectors. Note that the cosine distance
captures changes in orientation between two vectors
and, thus, indexes changes in the architecture (structure)
of FC rather than changes in the strengths of connections
(as captured with, e.g.,, Manhattan distance, Euclidean
distance).

Association between Reconfiguration

and Intelligence

Relations between reconfigurations and intelligence
were assessed with Spearman rank-order partial cor-
relations by controlling for age, sex, handedness, and
in-scanner head motion (mean FD over all scans
and mean of percentage of spikes >0.25 mm over
all scans). For multiple comparisons, P-values were
FDR corrected (¢ =0.05). For gaining comprehensive
insights not only into the general relation between brain
network reconfiguration and intelligence but also into

the relevance of different states and the contribution
of different brain networks, multiple reconfiguration
values were computed for each participant: 1) an average
score of whole-brain reconfiguration between resting
state and all task states (rest-task reconfiguration); 2) an
average score of whole-brain reconfiguration between
all pairs of task states (task-task reconfiguration); 3) 28
scores capturing whole-brain reconfiguration for each
pair of rest-task and task-task state combinations (state
combination-specific reconfiguration); 4) eight scores
capturing whole-brain reconfiguration associated with
one specific cognitive state (average over all 28 state
combinations a specific state was involved in, i.e., state-
specific reconfiguration), and note that for task states,
only combinations with different tasks (no rest) were
included; 5) brain network-specific reconfigurations
scores for seven (and 17) functional brain networks
(reconfigurations of all within- and between network
combinations for each state combination). For inter-
pretable insights, these network-specific reconfiguration
scores (case 5) were averaged a) over all state combina-
tions (resulting in 28 (153) reconfiguration scores specific
to a certain brain network combination), b) over all state
combinations, and over all network-combinations the
respective network was involved in (resulting in seven
(17) state-independent network-specific reconfiguration
scores), and c) over all state combinations a respective
state was involved in (for task states, only combinations
with different tasks were included), and over all seven
(17) network combinations a respective network was
involved in, in total summing up to seven (17) network-
specific reconfiguration scores for each state.

External Replication

For testing the robustness of our findings against varying
measures of intelligence, varying cognitive demands
induced by different tasks, and sample dependence, all
analyses were repeated in two independent datasets
(PIOP1, PIOP2) from The Amsterdam Open MRI Collection
(AOMIC, Snoek et al. 2021). All study procedures were
approved by the faculty’s ethical committee before data
collection started (PIOP1 EC number: 2015-EXT-4366,
PIOP2 EC number: 2017-EXT-7568), and an informed
consent, in accordance with the declaration of Helsinki,
was obtained from all participants (for more details
see Snoek et al. 2021). PIOP1 includes fMRI data of
216 subjects collected from six cognitive states (resting
state and five tasks: emotion matching, gender-stroop,
working memory, face perception, and anticipation),
while PIOP2 contains fMRI data of 226 subjects from
four states (resting state and three tasks: emotion
matching, working memory, and stop signal). Details on
imaging parameters are described in Snoek et al. (2021).
In brief, all fMRI data were acquired with a gradient-
echo EPI on a Philips 3 T scanner with a 32-channel
coil (3-mm isotropic voxel resolution). Multiband scans
were acquired for the face perception and resting-state
paradigms of the PIOP2 sample (TR = 750 ms, TE = 28 ms,
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flip angle = 60°, and multiband factor = 3). Sequential
scans were acquired for resting state of the PIOP 2
sample, and the working memory, emotion matching,
gender-stroop, anticipation, and stop signal paradigms
of the PIOP1 and PIOP2 samples (TR = 2000 ms, TE = 28
ms, and flip angle = 76.1°).

The Raven’s Advanced Progressive Matrices Test (36
item version set II, Raven and Court 1998) was used in
both samples for measuring intelligence. After excluding
subjects with missing descriptive and behavioral data
and after applying motion exclusion criteria (see above),
138 subjects (PIOP1) and 184 subjects (PIOP2) remained
for analyses. The fMRI data were downloaded in the
minimal preprocessed form, using an alternative prepro-
cessing pipeline (fMRIprep v1.4.1, Esteban et al. 2019).
Further preprocessing to extract nuisance regressed time
series followed the same steps as specified above. As
the PIOP samples are relatively small compared to the
main sample and brain-behavior relationships are sug-
gested to be less reliable in small samples (Assem et al.
2020; Marek et al. 2020), no P-threshold was used for the
selection of functional connections here. Instead, and to
increase the robustness of these analyses, a filter mask
was computed from the larger main sample (containing
connections correlating only either positively or nega-
tively with intelligence P <0.01 in at least one of the
filtered FCs of intersecting state combinations), and only
connections located in this main sample filter mask and
correlating with intelligence in the same direction in the
replication samples were used in analyses.

Data and Code Availability

All analysis code used in the current study was made
available by the authors on GitHub: Preprocessing:
https://github.com/faskowit/app-fmri-2-mat; Main anal-
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(brief assessment of intelligence provided by the HCP)
are shown in Supplementary Figure 4.

Less Brain Network Reconfiguration Is
Associated with Higher Intelligence

Brain network reconfiguration was operationalized as
cosine distance between filtered FC matrices of two
out of eight different cognitive states (see Materials and
Methods, Fig. 1 for a schematic illustration of the analy-
ses workflow, and Supplementary Fig. 1 for details about
the FC filtering procedure). Averaged across all rest-task
and task-task state combinations, less brain network
reconfiguration was associated with higher intelligence
scores (rest-task: rho = —0.23, P <0.001; task-task: rho
= —0.23, P <0.001; Fig. 2A). This effect also holds when
using stricter thresholds for the cross-validated filtering
approach, for example, P <0.01 (Supplementary Table 2)
or when using alternative mathematical operationaliza-
tions of reconfiguration (Pearson correlation between
Fisher z-transformed FCs: rest-task: rho =0.23, P < 0.001,
task-task: rho =0.23, P <0.001; Manhattan distance
between bi-partitioned FCs: rest-task: rho = —0.19, P
<0.001, task-task: rho = —0.24, P <0.001).

Higher Intelligence Is Related to Less
Reconfiguration across Different Cognitive
Demands

Significant associations between higher intelligence and
less brain network reconfiguration were observed for all
rest-task and task-task state combinations (Fig. 2B). The
correlations between reconfiguration and intelligence
ranged from rho = —0.10 (P =0.006) for reconfiguration
between resting state and social recognition task to rho
= —0.23 (P <0.001) for reconfiguration between working
memory and motor task. Again, similar associations
were observed when using alternative reconfiguration

yses: https://github.com/jonasAthiele/BrainReconfiguration_metrics (Supplementary Fig. 5). For evaluating the total

Intelligence, https://doi.org/10.5281/zenodo.5031683. All
data used in the current study can be accessed online
under: https://www.humanconnectome.org/study/hcp-
young-adult (HCP), https://doi.org/10.18112/openneuro.

influence of each individual state on the observed effect,
reconfiguration values were averaged across all rest-
task combinations (for resting state) and separately
over all task-task combinations; a respective task was

ds002785.v2.0.0 (AOMIC-PIOP1), and https://doi.org/10.18112/involved in (for each task state). The total influence of

openneuro.ds002790.v2.0.0 (AOMIC-PIOP2).

Results
Intelligence

General intelligence was operationalized as latent g-
factor from 12 cognitive measures (Supplementary
Table 1) computed with bi-factor analysis (Dubois et al.
2018) using data from 1186 subjects of the Human
Connectome Project (Van Essen et al. 2013). As per model-
fit criteria of Hu and Bentler (1999), the 4-bi-factor model
fits the data well (Comparative Fit Index: CFI = 0.979,
Root Mean Square Error of Approximation: RMSEA =
0.0395, and Standardized Root Mean Square Residual:
SRMR = 0.0213). The statistical model and the g-factor
distribution in contrast to the PMAT-score distribution

the language task was significantly stronger (P <0.05)
than the influence of the social recognition task, the
relational processing, and the emotion-processing task,
while all other states did not differ significantly in
their total influence on the observed effect (Fig. 2B and
Supplementary Fig. 6).

The Relation between Reconfiguration and
Intelligence Depends on Different Functional
Brain Systems Rather than on Specific Cognitive
Demands

By parcellating the brain into seven functional networks
(Yeo et al. 2011) and by considering all possible network
and state combinations, we observed that the variance of
the effect between different state combinations was sig-
nificantly smaller than the variance of the effect between
different network combinations (Wilcoxon rank sum test,
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Fig. 1. Schematic overview of global analysis workflow. (A) Brain activity was assessed with fMRI during eight different cognitive states (resting state
and seven tasks). (B) For each state, functional brain connectivity matrices (FCs, D) were computed by correlating the time series of 200 nodes with
each other. For noise reduction, FCs were filtered based on their correlation with intelligence (see Supplementary Fig. 1 and Materials and Methods for
details). Brain network reconfiguration was calculated for all state combinations as cosine distances (A) between the filtered FCs (E). To assess the
relationship between brain network reconfiguration and intelligence, reconfiguration values were correlated (Spearman correlations, controlled for age,
sex, handedness, and in-scanner head motion) with a latent g-factor derived from 12 cognitive scores using a bi-factor analysis model (C). t, time; c,

cognitive score.

W =441,P <0.001, Fig. 2C and Supplementary Fig. 7). This
suggests prior importance of the differentiation between
different brain systems rather than between different
external demands.

Higher Intelligence Is Related to Less
Reconfiguration across Different Spatial Scales
Next, we analyzed the relative contribution of seven
and 17 functional brain networks to the observed effect.
Overall, higher intelligence scores were associated with
less reconfiguration of within and between network
connectivity in multiple brain networks. Dorsal and ven-
tral attention systems, the control network, the default
mode network, and limbic areas showed consistent
significant negative associations, while in the visual

and somatomotor networks, the effect was weaker and
the pattern more heterogeneous (Fig. 2D). To derive a
more global measure of total network-specific recon-
figuration, we then aggregated reconfiguration scores
across all network-combinations a respective network
was involved in. Higher intelligence was significantly
associated with less connectivity reconfiguration in
respect to all networks, except the somatomotor system
(Fig. 2E). Similar relations were observed within and
between 17 functional brain networks (Fig. 2F,G).

Network-Specific Reconfigurations in Response
to Varying External Demands

Finally, we investigated network-specific contributions
on the association between intelligence and brain net-
work reconfiguration for each cognitive state. To this end,
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Fig. 2. Less brain network reconfiguration is associated with higher intelligence. All associations were operationalized as partial Spearman correlation
(rho) between intelligence (g-factor derived from 12 cognitive tasks) and brain network reconfiguration (cosine distance between FC matrices of different
states) controlled for influences of age, sex, handedness, and in-scanner head motion. Correlation strengths are depicted in different colors. Brain
networks were derived from the Yeo atlas (Yeo et al. 2011) and network-specific correlations were projected onto the surface of the brain. (A) Scatterplots
illustrate the association between intelligence (x-axis) and the standardized residuals resulting from linear regression of age, sex, handedness, and in-
scanner head motion on brain network reconfiguration averaged over all possible rest-task combinations (y-axis, left panel), and all possible task-task
combinations (y-axis, right panel), respectively. Note that only in this subfigure data of one subject was excluded due to visualization purposes. (B)
Upper panel: Association between intelligence and brain network reconfiguration for all possible state combinations (all correlations are significant).
Lower panel: Associations between intelligence and a total measure of state-specific reconfiguration, that is, reconfiguration values were averaged
over all state combinations that the respective state was involved in. Note that for task states, only combinations with different tasks (no rest) were
included. (C) Associations between intelligence and brain network- and state combination-specific reconfiguration values. Network combinations
refer to all within and between network connectivity combinations (columns). Note that NaN (not a number) values exist if in a specific network-
state combination, no single brain connection passes the filtering procedure (see Supplementary Fig. 1 and Materials and Methods). For details about
the assignment of the correlation values to the specific state and network combinations, see Supplementary Figure 7. (D-G) Brain network-specific
associations between general intelligence and brain network reconfiguration (significant correlations (FDR-corrected P-values, « =0.05) are marked
with asterisks). Associations between intelligence and brain network-specific reconfiguration values for seven (D) and 17 (F) separate brain networks.
Reconfiguration scores averaged across all within- and between network combinations a respective network is involved in resulted in total association
values for seven (E) and 17 (G) brain networks. (H) Associations between intelligence and brain network reconfiguration for each cognitive state.
Reconfiguration values were averaged over all state combinations a respective state was involved in, and averaged over all network combinations
(within- and between network connectivity of seven brain networks) the respective network was involved in. Std. res., standardized residuals; FDR, false
discovery rate; RES, resting state; WM, working memory task; GAM, gambling task; MOT, motor task; LAN, language processing task; SOC, social cognition
task; REL, relational processing task; EMO, emotion processing task. VIS, visual network; SMN, somatomotor network; DAN, dorsal attention network;
VAN, salience/ventral attention network; LIM, limbic network; CON, control network; DMN, default mode network; TEMP, temporal parietal network.

network-specific reconfiguration scores were aggregated
across all rest-task combinations (for resting state) or
task-task combinations a respective task was involved in
(for each task state). As illustrated in Figure 2H, network-
specific associations between reconfiguration and intel-
ligence were relatively stable across all cognitive states.
Again, similar relations were observed at the level of 17
functional brain networks (Supplementary Fig. 8).

External Replication: Generalization to Different
Measures of Intelligence and Different Cognitive
Demands

To evaluate the robustness of our findings against
different measures of intelligence and against varying
cognitive demands induced by different tasks, all
analyses were repeated in two independent sam-
ples (The Amsterdam Open MRI Collection AOMIC,
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Snoek et al. 2021, PIOP1: n = 138, PIOP2: n = 184, see
Materials and Methods). In line with our main analyses,
less brain network reconfiguration was associated with
higher intelligence. This effect holds for both rest-task
and task-task reconfiguration (PIOP1 rest-task: rho =
—0.32, P <0.001, task-task: rho = —0.26, P =0.003; PIOP2
rest-task: rho = —0.23, P =0.002, task-task: rho = —0.26,
P <0.001, Supplementary Table 2) and became visible
across most state combinations (Supplementary Fig. 6).
In PIOP1, 9 out of 15 rest-task and task-task state
combinations showed a significant negative association
(range: —0.12 < rho < —0.35, 0.001 < P < 0.18), while
in PIOP2, five out of six rest-task and task-task state
combinations showed the respective effect (range: —0.13
< rho < —-0.30, 0.001 < P < 0.09). Aggregating across
all state combinations in which a respective state
was involved in demonstrated that only in the PIOP2
sample, the total influence of the stop signal task was
significantly stronger (P <0.05) than the total influence
of the emotional matching task. All other states did
not differ significantly in their total influence on the
observed effect (Supplementary Fig. 6). Finally, results
from network-specific analysis were also similar to the
results from the main sample (Supplementary Figs 9
and 10). In sum, the results of the replication analyses
support the robustness of our findings and suggest
that the association between higher intelligence scores
and less brain network reconfiguration generalizes
to different cohorts, imaging acquisition parameters,
operationalizations of intelligence, and to different
cognitive demands.

Robustness Control Analyses

Although the adopted procedure for filtering out noise-
contaminated functional brain connections was thor-
oughly cross-validated (see Materials and Methods)
rendering potential circularity of analyses unlikely,
to evaluate any remaining conceivable possibilities
that results are biased by this step, all whole-brain
analyses were repeated by: 1) considering all possible
functional brain connections (i.e., no filter for selecting
intelligence-related connections) and 2) implementing a
filter based on the pure overlap of intelligence-related
connections and ignoring the sign of the association
between connectivity and intelligence (different filter).
Similar associations between higher intelligence and less
brain network reconfiguration were observed in both
cases (no filter: rest-task: rho = —0.12, P <0.001; task-
task: tho = —0.12, P <0.001; different filter: rest-task:
rho = —0.21, P <0.001; task-task: rho = —0.21, P <0.001).
Without filtering, state-specific effects were overall
smaller with not all state combinations reaching the
significance threshold, while state-specific results based
on the different filtering procedure were nearly identical
(see Supplementary Table 2, Supplementary Fig. 11).
Altogether, these analyses suggest that our filter-
ing procedure successfully reduced noise and, most
importantly, demonstrate that the observed association

between higher intelligence and less brain network
reconfiguration does not represent a spurious result of
the filter.

To rule out that our results were influenced by region-
specific or subject-specific differences in data quality
(e.g., signal drop out), we repeated our main analysis
while additionally controlling for subject- and brain
network-specific differences in temporal signal-to-noise
ratio (tSNR) of the minimal preprocessed blood oxygen
level-dependent (BOLD) signals (i.e., mean of BOLD signal
divided by its standard deviation). With the additional
control of whole-brain subject-specific tSNR values, the
relation between intelligence and whole-brain network
reconfiguration was nearly identical to the relation
resulting from the main analysis (with additional tSNR
control: rest-task: rho = —0.24, P <0.001; task-task: rho
= —0.24, P <0.001; without SNR control: rest-task: rho =
—0.23, P <0.001; task-task: tho = —0.23, P <0.001). Also,
the results of network-specific associations we