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Public attitudes value interpretability but
prioritize accuracy in Artificial Intelligence

Anne-Marie Nussberger 1 , Lan Luo2, L. Elisa Celis3 & M. J. Crockett 4

As Artificial Intelligence (AI) proliferates across important social institutions,
many of the most powerful AI systems available are difficult to interpret for
end-users and engineers alike. Here, we sought to characterize public attitudes
towards AI interpretability. Across seven studies (N = 2475), we demonstrate
robust and positive attitudes towards interpretable AI among non-experts that
generalize across a variety of real-world applications and follow predictable
patterns. Participants value interpretability positively across different levels of
AI autonomy and accuracy, and rate interpretability as more important for AI
decisions involving high stakes and scarce resources. Crucially, when AI
interpretability trades off against AI accuracy, participants prioritize accuracy
over interpretability under the same conditions driving positive attitudes
towards interpretability in the first place: amidst high stakes and scarce
resources. These attitudes could drive a proliferation of AI systems making
high-impact ethical decisions that are difficult to explain and understand.

The rise of Artificial Intelligence (AI) promises unprecedented advan-
ces in many aspects of human life, including public infrastructure1,
legal systems2, and healthcare3. AI systems have made great strides in
learning complex patterns from large unstructured datasets, and can
be used to make predictions about future outcomes. Currently avail-
able AI technologies leverage a range ofmethods tomake predictions,
from simple linear regressionmodels to highly complex deep learning
models. Simpler models are generally more interpretable, in that it is
straightforward to understand why and how the AI arrives at its
decisions4. For example, an AI system relying on linear regression
might predict a health outcome from a limited set of variables (e.g.,
age, weight, gender) in a way that is easy to explain in simple language.
More complex AI systems, such as those relying on deep learning, can
be difficult or even impossible to interpret, not only to end-users, such
as policy makers and citizens, but even to their engineers4–7. For
instance, a deep learning systemmight predict health outcomes based
on high-dimensional interactions among hundreds of variables – pat-
terns that are impossible for human minds to grasp.

AI research initially focusedonoptimisingAI performance, aiming
to design systems thatmake themost accurate predictions, regardless
of whether those predictions are interpretable. More recently,

however, stakeholders suggested AI interpretability is important in its
own right8: frommedical doctors rejecting the adoption of AI systems
due to lack of insight about how they work9, to business executives
expressing concerns that “AI’s inner workings are too opaque”10, to
social scientists proposing an “imperative of interpretable machines”11

and the European Union establishing a right to obtain “meaningful
information about the logic involved” in AI decisions12. These concerns
have sparked debates about how much interpretability should be
prioritized relative to overall AI performance, given that interpret-
ability sometimes (but not always13,14) comes at the cost of
accuracy4,5,15,16. While much of this recent attention has focused on the
technical feasibility of “interpretable AI”–sometimes referred to as
“explainable AI”, “intelligible AI”, or “transparent AI”13,14,17–little is
known about the public’s attitudes towards interpretable AI, particu-
larly in cases where interpretability trades off with accuracy. To
address this gap, we present seven empirical studies investigating
whether and how much people without expertise in AI care about AI
interpretability across a variety of real-world applications.We focus on
characterising public attitudes towards AI interpretability rather than
revealed choices, because current debates about interpretable AI take
place prior to widespread technological development or deployment
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of AI systems systematically varying in termsof interpretability. Hence,
public attitudes–rather than revealed preferences–seem critical for
policy development at present.

Because explanation is a central component of interpretable AI4,7,
psychological research on explanation provides a useful starting point
for characterising public attitudes towards interpretable AI. Decades
of research document explanation as a fundamental human need18–22.
Explanations facilitate understanding and guide subsequent learning,
prediction, and feelings of control23. In serving these functions,
explanation is essential for establishing trust18,23,24. If explanations play
a similar role in human-machine interactions, interpretability will be a
necessary precondition for establishing trust in AI7,11. Indeed, a recent
study provides initial evidence: when people perceived an AI joke-
recommender system as opaque, they avoided relying on its recom-
mendations, evenwhen they knew that theAI outperformedhumans in
terms of accuracy25.

In the current work, we investigate several factors hypothesized
to drive attitudes towards interpretability in AI. Currently available AI
systems can make decisions autonomously, or merely provide
recommendations for human users to implement. In view of past work
suggesting that people demand more explanation from intentional
agents22, wewanted to explorewhether peoplevalue interpretability as
more important for AI systems deciding in an autonomous capacity
relative to systems providing recommendations.

Second, we predicted that people would consider interpretability
as more important in settings with higher stakes (e.g., medical care,
criminal justice) than in settings with lower stakes (e.g., entertainment,
shopping). Because interpretability plays a crucial role for predicting,
auditing, and controlling underlying decision-making processes23,26, it
should be particularly important in settings where AI has large con-
sequences for human welfare. Considering low- versus high-stake
cases within the same domain reinforces this intuition: you would
probably care more about understanding why an AI accepted or
rejected your application for a salaried permanent job, compared to an
unpaid honorary job. Indeed, decades of research have documented
that people demand explanationsmore for high-stakes than low-stakes
decisions7,13,23.

A third aspect of AI applications that might drive attitudes
towards interpretability is its potential gatekeeping function. Many
emerging AI applications are designed to determine access to scarce
but desirable resources, such as jobs, financial loans, or medical care.
Ample theoretical and empirical work demonstrates that people
demand explanations for decisions involving the allocation of
resources27–29, especially when those resources are scarce30,31, in order
to ensure that the allocation procedure was fair. Importantly, existing
literature suggests that people’s concerns about fairly allocating scarce
resources are dissociable from concerns about stakes29. This suggests
that people may be more concerned about AI interpretability in
applications that allocate scarce resources, independent of the stakes
at hand.

Finally, becauseAI interpretability sometimes comes at the cost of
AI accuracy, we sought to characterise people’s attitudes towards
interpretability as a function of accuracy and in direct tradeoffs
between interpretability and accuracy. Previouswork frompsychology
suggests people might perceive AI-accuracy as a proxy, or at least
precondition, for ensuring favourable outcomes28,31. This could lead
people to prioritize accuracy over interpretability, despite valuing
interpretability in its own right.

By testing these hypotheses among non-experts (see theMethods
section for summaries of participants’ computer science knowledge),
we sought to address the present lack of empirical insights about
public attitudes towards AI interpretability.We first surveyed attitudes
about the importance of interpretability across a variety of real-world
applications where AI systems either made recommendations to a
human decision-maker or made decisions on behalf of a human

decision-maker (Study 1A). This initial study indicated positive atti-
tudes towards interpretability that were similarly pronounced for AI
systems making decisions or recommendations and that varied sub-
stantially across applications. Two pre-registered follow-up studies
with samples nationally representative for age, race, and gender in the
US and UK provided further correlational evidence that stakes and
scarcity predict variation in positive attitudes towards interpretability
in AI (Studies 1B and 1C). Using an experimental study design, we then
confirmed that stakes and scarcity have a causal impact on attitudes
towards interpretability (Study 2). Next, we demonstrated that people
value AI interpretability largely independently of AI accuracy (Study
3A). However, when interpretability and accuracy directly traded off,
these attitudes proved capricious with participants willing to sacrifice
interpretability for the sake of accuracy (Studies 3B and 3C).

Results
Study 1A–establishing attitudes towards AI interpretability
across a variety of applications
Weconducted a behavioural experiment to examinepeople’s attitudes
towards interpretability in AI across a variety of applications. Partici-
pants (final N = 170; US convenience sample recruited via Amazon’s
Mechanical Turk, MTurk) first read a definition of ‘explainable AI’,
specifying that “by explainable we mean that an AI’s decision can be
explained in non-technical terms. In other words, it is possible to know
and to understand how an AI arrives at its decision” (see SI Notes,
Materials Study 1A). Followingpastwork inpsychology andphilosophy
of science7, we used the more intuitive term ‘explainable’ rather than
‘interpretable’ while ensuring that our definition aligned with both
terms’ prevalent use in existing work on interpretable AI4. Each parti-
cipant read twenty descriptions of real-world AI applications ranging
from allocating medical treatment to news reporting to photo assis-
tants. We compiled the collection of AI applications by surveying
newspaper articles, technological reports, and scientific papers, with
the aim of covering a diverse range of applications already in use as
comprehensively as possible (see Fig. 1 for an overview; see SI Notes,
Materials Study 1A for full list of applications with source links and
instructional descriptions).

To explore the role of AI autonomy for people’s attitudes towards
the importance of interpretability, half of the participants were ran-
domized to read a recommend version that described an AI system
making recommendations to a human decision-maker, while the other
half of participants read a parallel decide version that described an AI
system deciding on behalf of a human user. For example, the recom-
mend version of the ‘medical treatment’ application read “An AI
recommends to a doctor what disease a patient might be suffering
from”, whereas the corresponding decide version read “An AI estab-
lishes on behalf of a doctor what disease a patient might be suffering
from”. Two applications (‘surveillance’ and ‘virtual assistants’) were
included only as decide versions, as a parallel recommend version was
not sensical. For eachof the twenty applications,whichwerepresented
one by one and in randomized order, participants answered the
question “how important is it that the AI in this application is
explainable, even if it performs accurately?” on a discrete 5-point scale
with three labels (1 = not at all important, 3 =moderately important,
5 = extremely important).

First, we examined the effect of AI autonomy (recommend versus
decide) on participants’ attitudes towards the importance of inter-
pretability for those applications that existed in both a recommend
and a decide version. Because participants gave their answers on a
discrete rating scale, we used mixed effect ordinal regression analysis
with a fixed effect for condition and a random intercept effect for
participant. There was no significant difference in participants’
interpretability-ratings across the two conditions, χ2(1) = 1.72,
p =0.189, ORdecide = 1.23, 95% CIOR [0.90, 1.67], p = 0.188. Median rat-
ings coincided at 4 (IQRrecommend = 3, IQRdecide = 2), above the scale’s
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“moderately important” midpoint. These results indicate robust and
positive attitudes towards interpretable AI across a variety of appli-
cations, that seem to be largely independent of AI systems’ autonomy.

However, as illustrated in Fig. 1, we also observed substantial
variation in attitudes towards AI interpretability across applications.
Collapsing across recommend and decide conditions, participants
rated interpretability most important for applications such as ‘parole
reviewing’ (Mdn = 5, IQR = 0), followed by applications such as ‘poli-
tical news reporting’ (Mdn = 3, IQR = 1), and least important for ‘orga-
nising pictures’ (Mdn = 2, IQR = 1). Hence, our next step was to explore
whether variation across AI applications in termsof the involved stakes
and scarcity7,19,30 predicted variation in attitudes towards interpret-
ability. To this end, two of the authors performed hand-coded cate-
gorisations of the stakes (low/medium/high) and scarcity (no/yes; see
Fig. 1) involved in a given application after data collection was com-
plete. To avoid issues of multicollinearity (most applications involving
scarcity involved high stakes), we ran separate ordinal mixed effect
regressionmodels to exploreeffects of stakes and scarcity onattitudes
towards interpretability. Regressing on interpretability ratings with a
fixed effect for stakes and a random intercept effect for participant, we
observed a significant main effect (χ2(2) = 1066.20, p <0.001) signify-
ing that participants valued interpretability more in medium- (OR =
2.15, 95% CIOR [1.94, 2.37], p <0.001) and high-stakes applications
(OR = 3.18, 95% CIOR [2.93, 3.44], p < 0.001) relative to low-stakes ones,
andmore inhigh-stakes relative tomedium-stakes ones,OR = 1.03, 95%
CIOR [0.83, 1.24], p <0.001 (Holm-correction applied for all multiple
comparisons). A separate model including a fixed effect for scarcity
and a random intercept effect for participant showed a significant
main effect (χ2(1) = 192.71, p < 0.001) signifying that participants valued
interpretability as more important for applications involving the allo-
cation of scarce resources, relative to those that did not, OR = 2.68,
95% CIOR [2.32, 3.09], p < 0.001.

The results of Study 1A demonstrate overall positive attitudes
towards interpretability that generalise across less autonomous AI

systems, which make recommendations, and more autonomous ones
that directlymake decisions on behalf of human agents.We also found
exploratory evidence that the stakes and scarcity characterising a
given application might explain variation in attitudes towards inter-
pretable AI. In our next studies, we sought to replicate these explora-
tory findings in representative non-expert samples drawn from
different populations, and to test their robustness to using a validated
categorisation of stakes and scarcity as well as their robustness to
varying the language used to probe attitudes towards interpretability.

Study 1B–replicating attitudes towards AI interpretability in a
representative US sample
Next, we tested whether the previous study’s findings would replicate
in a sample from the US (finalN = 258) thatwas representative in terms
of gender, age, and race and that was recruited from a different plat-
form, ProlificAcademic.Wedropped themanipulationof AI autonomy
(using only the decide version) and instead focused on testingwhether
the observed attitudes towards interpretability in AI were robust to
varying the language used to probe them and to using a validated
categorisation of the applications in terms of involved stakes and
scarcity. In particular, we used the term “understandable” instead of
“explainable” throughout the instructions and slightly changed the
answer format from a dichotomous measure to a continuous slider
with the same labels as in Study 1A to allow more fine-grained
responses. To validate the post-hoc categorisation of applications, we
had nine independent raters (i.e., who were blind to the study
hypotheses) categorise each application according to the involved
stakes (low/medium/high) and scarcity (no/yes). Aggregating across
vignettes, raters agreed in their stakes categorisations 70% of the time
and in their scarcity categorisations 84% of the time. The pre-
registered procedure, hypotheses, and analysis plan are available at
the Open Science Framework32.

Following the pre-registered analysis plan, we first tested whether
attitudes towards interpretability (~understandability) in AI exceeded

Fig. 1 | Attitudes towards interpretability across real-world AI applications.
Joyplot visualizes the distributions of interpretability ratings, averaged across
recommend and decide versions. Participants (N = 170) responded to the question

“how important is it that the AI in this application is explainable, even if it performs
accurately?” on a 5-point rating scale (1 = not at all important, 5 = extremely
important).
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the scale-midpoint “moderately important”. This was the case,
M = 3.70, SD = 1.24, t(7,481) = 49.32, p < 0.001, 95% CI [3.68, 3.73],
d =0.57. Deviating from the pre-registered analysis plan, we estimated
separatemixed effect regressionmodels for stakes and scarcity due to
multicollinearity of the two predictors. Because participants now
answered on a continuous slider scale, we used linear regression ana-
lysis with the respective fixed effects for stakes and scarcity and a
random intercept effect for participant. We replicated a significant
main effect for stakes, F(2) = 2,803.30, p <0.001. Relative to applica-
tions involving low stakes, people valued interpretability more in
applications involvingmedium (b =0.93,p <0.001, 95%CI [0.85, 1.00])
or high stakes (b = 1.49, p < 0.001, 95% CI [1.42, 1.55]), andmore amidst
high relative to medium stakes, b =0.56, p <0.001, 95% CI [0.50, 0.62]
(Holm-correction applied for all multiple comparisons). Similarly, a
significant main effect for scarcity (F(1) = 364.86, p <0.001) indicated
that people valued interpretability more in applications allocating
scarce resources, relative to those that did not, b =0.58, p <0.001, 95%
CI [0.52, 0.64].

Study 1C – Replicating attitudes towards AI interpretability in a
representative UK sample
To further verify the robustness of our results, we ran another repli-
cation using a representative sample from the United Kingdom (final
N = 246) recruited from Prolific Academic. We applied the same
instructions andprocedures as in Study 1B, as alsopre-registered at the
Open Science Framework32.

Again, attitudes towards interpretability in AI exceeded the scale-
midpoint “moderately important”,M = 3.68, SD = 1.26, t(7,133) = 46.02,
p <0.001, 95% CI [3.66, 3.71], d =0.54. We also replicated a significant
main effect for stakes, F(2) = 2,823.10, p < 0.001. Relative to applica-
tions involving low stakes, people valued interpretability more in
applications involvingmedium (b = 0.95,p <0.001, 95%CI [0.88, 1.03])
or high stakes (b = 1.52, p <0.001, 95% CI [1.45, 1.59]), andmore amidst
high relative to medium stakes, b =0.56, p <0.001, 95% CI [0.50, 0.62]
(Holm-correction applied for all multiple comparisons). Similarly, a
significant main effect for scarcity (F(1) = 364.86, p <0.001) indicated
that people valued interpretability more in applications allocating
scarce resources, relative to those that did not, b =0.57, p < 0.001, 95%
CI [0.50, 0.63].

Across representative samples from theUS andUK, Studies 1B and
1C replicated robustly positive yet variable attitudes towards inter-
pretability in AI. Again, stakes and scarcity emerged as potential

driving forces in people’s valuations of interpretability. Still, these
findings concerning the role of stakes and scarcity remained correla-
tional; the applications we tested varied on a number of other
dimensions; and also in the validated ranking, stakes and scarcity
covaried in the sense that almost all applications involving high
scarcity also involved high stakes. Indeed, there was no application
involving low stakes but high scarcity in the validated ranking. Thus,
we next pursued an experimental approach to test the hypothesis
that stakes and scarcity independently drive attitudes towards
interpretability in AI.

Study 2–characterising attitudes towards AI interpretability:
stakes and scarcity as driving forces
To examine whether stakes and scarcity impact attitudes towards
interpretable AI, we manipulated these factors in a 2 × 2 within-
subjects design, focusing on five autonomous applications: allocating
vaccines, prioritizing hurricane first responders, reviewing insurance
claims, making hiring decisions, and prioritizing standby flight pas-
sengers. Participants (final N = 84; US convenience sample recruited
from MTurk) were presented with the four versions of each given
application in randomised order. Figure 2 illustrates how the four
different versions read for the ‘allocating vaccines’ application:

For each application and version, participants answered the
question “In this case, how important is it that the AI is explainable?”
using a slider ranging from “not at all important” to “extremely
important”. Below the slider, we displayed a note reminding partici-
pants that “Explainablemeans that theAI’s decision canbe explained in
non-technical terms. Please consider how important it is that the AI is
explainable, even if it performs accurately” (emphasis from original
instructions; see SI Notes, Materials Study 2).

Because our experimental manipulation implied that stakes and
scarcity varied independently, we were able to run full mixed effect
regression models including fixed effects for stakes and scarcity, as
well as their interaction, as well as random intercept effects for parti-
cipant and application. Aggregating across applications, type IIWald χ2

tests indicated significant main effects for stakes (χ2(1) = 348.48,
p <0.001) and scarcity (χ2(1) = 110.98, p <0.001) on attitudes towards
interpretability, whichwere not qualified by an interaction, χ2(1) = 0.10,
p =0.754 (Fig. 3a). In particular, participants cared more about inter-
pretability for high- relative to low-stakes cases (b =0.85, p <0.001,
d =0.33, 95% CI [0.25, 0.40]) and for high- relative to low-scarcity
cases, b = 0.49, p <0.001, d =0.19, 95% CI [0.11, 0.26]. This pattern

Fig. 2 | Exemplary instructions from Study 2. Schematic representation of the
instructions for the vaccine application with its four versions. Each version was

shownon a separate page, with the same general scenario described at the top. The
depicted bolding andunderlining corresponds to the format shown to participants.
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replicated across the five different applications (Fig. 3b–f). Overall
main effects for stakes and scarcity were robust when we added gen-
der, age, education, income, pre- and post-task support for AI, and
computer science knowledge to the model (see SI Results, Study 2).

To summarize so far, our first four Studies established that people
consistently value interpretability across a wide range of AI applica-
tions and that they value interpretability more when AI makes deci-
sions involving high stakes and scarce resources. In these studies, we
held the level of AI accuracy constant by explicitly instructing parti-
cipants to rate interpretability’s importance for a given application
“even if the AI performs accurately”. Because it has beenwidely argued
that, in practice, interpretable AI may require trading off interpret-
ability against accuracy4,5,15,16, in Studies 3A-C we sought to investigate
people’s attitudes towards interpretability in AI across different levels
of accuracy and when interpretability explicitly comes at the cost of
accuracy.

Study 3A–characterising attitudes towards AI interpretability as
a function of accuracy
Taken together, the previous studies suggest that people hold positive
attitudes towards interpretability in AI. Our instructions across these
studies told participants to assume the AI would perform accurately.
This raises the question whether people’s attitudes towards inter-
pretability are stable acrossAImodels that vary in accuracy. To address
this, we asked participants (final N = 261 recruited from Prolific; the
sample was representative of the US population in terms of gender,
age, and race) to indicate their attitudes towards interpretability for
separate AImodels that varied in their accuracybetween60% and 90%.
For each of the AI applications from Study 2, participants rated the
importance of interpretability on four separate sliders where each

slider represented a separate AI model performing at a specified
accuracy level. We focused on the range between 60% and 90% accu-
racy (presented in increments of ten percentage points) because
models that perform merely at chance-level or only slightly better
are undesirable per se, and because few models available to date
achieve accuracy levels above 90%. We counterbalanced the order in
which we presented the AI models across participants (low (60%) to
high (90%) for half of participants, high to low for the other half).
Because we focused on characterising attitudes towards interpret-
ability as a function of accuracy, we dropped the variations of stakes
and scarcity and presented only the general description of each AI
application (e.g., “It is flu season. AnAI decideswhether or not a citizen
will get a vaccine”). The pre-registered sampling plan, procedure, and
materials are available at the Open Science Framework32.

To explore whether participants’ attitudes towards AI interpret-
ability were sensitive to variations in AI accuracy, we ran a linearmixed
effect model predicting rated importance of interpretability by a fixed
effect of accuracy and random intercept effects for participant and
application. A type II Wald chi-square test indicated a significant effect
of accuracy on interpretability importance, χ2(3) = 11.89, p =0.008,
such that participants rated interpretability as less important for AI
models with higher accuracy both at the overall level (Fig. 4a) and
across all five AI application (Fig. 4b–f). This overall pattern replicated
when accounting for various control variables and in particularwas not
affected by the order in which we presented the AI models varying in
accuracy (p = 0.422; see SI Results, Study 3A). Notably, across all levels
of accuracy and including the 90% level, participants indicated a high
level of importance for AI interpretability such that their ratings con-
sistently exceeded the “moderately important” scale-midpoint (Ms ≥
3.72; one-sample t-tests yielding ps < 0.001, Cohen’s ds ≥0.54).

Fig. 3 | Results for Study 2. Participants’ responses from Study 2 (N = 84) to the
question “In this case, how important is it that the AI is explainable?” on a con-
tinuous slider-scale from “not at all important” (1) to “extremely important” (5). All
panels show the jittered rawdata, its density, the point estimate of themeanwith its
95% confidence intervals, and interquartile ranges; all grouped by stakes (indicated
by fill colour; low stakes = yellow, high stakes = red) and scarcity (indicated on x-

axes). In summary, participants rated interpretability as more important for high
stakes and high scarcity situations. Main effects for stakes and scarcity were not
qualified by an interaction. a data aggregated across all five applications; triangle-
shaped data points represent averages for the five applications. b–f non-
aggregated data for each individual application; circle-shaped data points repre-
sent individual responses.
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Our findings from Study 3A indicate that attitudes towards
interpretability in AI are stable across different levels of AI accuracy
and that they average at a level valuing AI interpretability consistently
as more than “moderately” important. While Study 3A asked partici-
pants to evaluate the importance of interpretability across indepen-
dently varying levels of accuracy, in practice AI interpretability might
come at the cost of AI accuracy4,5,15,16. Thus, in our next step we sought
to explore how people value AI interpretability when it comes as a
tradeoff with AI accuracy.

Study 3B–characterising attitudes when AI interpretability
trades off with AI accuracy
To examine how people value interpretability when it comes at the
cost of accuracy, we presented participants (final N = 112; US con-
venience sample recruited from MTurk) with a slider measure where
one end represented a “completely accurate” but “not at all explain-
able” AI, whereas the other end represented a “not at all accurate” but
“completely explainable” AI (see Fig. 5a and SI Notes, Materials
Study 3B for additional instructions). After reading through the
instructions that provided definitions of AI, explainability, and accu-
racy and after successfully passing comprehension checks, partici-
pants were presented with the five AI applications from Studies 2 and
3A. Because Study 2 indicated stakes and scarcity as factors shaping
participants’ valuation of interpretability, we again included four ver-
sions of each application, varying by stakes and scarcity. For each
application-version, participants used the described tradeoff-slider to
indicate whether they would prefer a more interpretable but less

accurate, or a less interpretable but more accurate AI. As we were
interested in people’s attitudes or a priori preferences, we continued
using the scenario format of our first studies, where we did not specify
the outcome of the machine-made decisions. Previous work from
psychology suggests people might perceive AI-accuracy as a proxy, or
at least precondition, for ensuring favourable outcomes28,31, which
would suggest an overall preference for accuracy over interpretability.

We coded participants’ responses such that positive values
represented a preference for interpretability over accuracy and nega-
tive values indicated a preference for accuracy over interpretability.
Our data revealed an overall preference for accuracy over interpret-
ability, signified by a mean rating of M = −0.36 that differed sig-
nificantly from the indifference point of 0, t(2,239) = −12.21, p <0.001,
95% CI [−0.41, −0.30].

Next, we ran a linear mixed effects model predicting participants’
tradeoff preferences, with stakes, scarcity, and their interaction
entered asfixed effectswhilewe enteredparticipant and application as
random intercept effects. Type II Wald χ2 tests indicated significant
main effects for stakes (χ2(1) = 52.91, p <0.001) and scarcity
(χ2(1) = 24.42, p <0.001) on tradeoff preferences, which were not
qualified by an interaction, χ2(1) = 1.13, p = 0.288 (Fig. 5b). Overall,
participants preferred accuracy over interpretability, and this pre-
ference was amplified by the same conditions that impacted pre-
ferences for interpretability in Study 2. That is, participants’
preferences for accuracy over interpretability were more pronounced
for high relative to low stakes cases (b = −0.42, p < 0.001, d =0.12, 95%
CI [0.05, 0.20]) and for cases involving high relative to low scarcity,

Fig. 4 | Results for Study 3A. Participants’ responses fromStudy 3A (N = 261) to the
question “How important is it that the given AI model is explainable?” on con-
tinuous slider-scales from “not at all important” (1) to “extremely important” (5). For
each AI model with a given level of accuracy, there was a separate slider-scale.
Panels show the jittered rawdata, its density, the point estimate of themeanwith its
95% confidence intervals, and interquartile ranges. Overall, there was a slight

tendency for participants to rate interpretability as less important for more accu-
rate models. a Data aggregated across all five applications; triangle-shaped data
points represent averages for every of the five applications. b–f Non-aggregated
data for each individual application; circle-shaped data points represent individual
responses.
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b = −0.30, p < 0.001, d =0.09, 95% CI [0.01, 0.17]. These effects were
robust to controlling for AI- and task-related covariates, in particular
the ordering of accuracy and interpretability across instructions and
the response-variable, pre- and post-task support for AI, and computer
science knowledge (see SI Results, Study 3B). Main effects for stakes
and scarcity also remained significant when we added further expla-
natory candidates, such as decision-reversibility or personal affected-
ness, to the model (see SI Results, Study 3B).

The results of Study 3B suggest that people prioritize AI accuracy
over interpretability when the two trade off against one another.
Moreover, participants appear to be more inclined to sacrifice inter-
pretability for accuracy under the same conditions under which they
value interpretability most when considered on its own (i.e., high
stakes and high scarcity). In Study 3C, we sought to replicate these
findings in a US sample nationally representative for age, race, and
gender, and using a between-subjects design that reduces the salience
of differences in (low versus high) stakes and scarcity.

Study 3C–replicating effects of stakes and scarcity on
interpretability-accuracy tradeoffs
Participants in Study 3B were presented with four different versions of
each AI application, which might have increased the salience of var-
iation in stakes and scarcity. This, in turn, might have enhanced par-
ticipants’ sensitivity to variations in stakes and scarcity33,34. Thus, in
Study 3C, we sought to test the robustness of our findings using a
between-subjects design in which each participant was presented with
only one combination of stakes and scarcity. Our sample (final
N = 1344; recruited from Prolific) was representative of the US popu-
lation in terms of its gender by age by race composition. Participants
were randomly allocated to one of four between-subjects conditions
(low stakes, low scarcity; low stakes, high scarcity; high stakes, low
scarcity; high stakes, high scarcity) and presented with each of the five
applications from Studies 2 and 3A. Similar to our previous studies,
participants were given a general description of a given application
that mentioned how stakes and scarcity could be low or high before
specifying the exact combination according to the between-subjects
manipulation. For each application, participants stated their pre-
ferences on the slider measure from Study 3B, where one end repre-
sented a “completely accurate” but “not at all explainable” AI, whereas
the other end represented a “not at all accurate” but “completely
explainable”AI. All other instructions and comprehension checkswere
the same as in Study 3B. The pre-registered procedure, hypotheses,
and analysis plan are available at the Open Science Framework32.

Again, we coded participants’ responses such that positive values
represented a preference for interpretability over accuracy and nega-
tive values indicated a preference for accuracy over interpretability. In
line with our findings from Study 3B, we observed an overall pre-
ference for accuracy over interpretability, signified by a negative
average of M = −0.32 that differed significantly from the indifference
point, t(6,719) = −19.00, p <0.001, 95% CI [−0.36, −0.29].

Next, we ran a linear mixed effects model predicting participants’
tradeoff preferences, with stakes, scarcity, and their interaction
entered asfixed effectswhilewe enteredparticipant and application as
random intercept effects. Type II Wald chi-square tests indicated sig-
nificant main effects for stakes (χ2(1) = 34.18, p <0.001) and scarcity
(χ2(1) = 7.84, p =0.005) on tradeoff preferences, which were not qua-
lified by an interaction, χ2(1) = 0.93, p =0.336 (Fig. 5c). Themain effects
of stakes (b = −0.28,p < 0.001,d = 0.06, 95%CI [0.01, 0.11]) and scarcity
(b = −0.15, p =0.008, d = 0.03, 95% CI [−0.02, 0.08]) on tradeoff pre-
ferences thus replicated in the between-subjects design that mini-
mised salience of variation in the two attributes. And again, main
effects for stakes and scarcity remained significant when we added
further explanatory candidates, such as decision-reversibility or per-
sonal affectedness, to the model (see SI Results, Study 3C). However,
effect sizes relative to Study 3B were extremely small. This suggests
that people’s sensitivity to stakes and scarcity is dependent on the
salience of variation in the two attributes, which was higher in the
within-subjects design than the between-subjects design. Indeed, aswe
report in Study 3D in the SI, whenwe ran an additional experiment that
reduced the salience of variation of the two attributes to a minimum,
by not even mentioning their range, only the main effect for stakes
remained significant (p <0.001) whereas the effect for scarcity was no
longer significant (p = 0.136).

Over time, as the use of AI spreads ever more widely, people will
be increasingly likely to encounter variations of stakes and scarcity
within and across AI applications in the real-world. This will arguably
enhance people’s sensitivity to stakes and scarcity present in a given AI
application and foster the formation of more systematic and stable
preferences over accuracy and interpretability in AI34. But already at
this point, where most people’s awareness and experience of inter-
acting with AI remains scattered, our findings suggest that people’s
attitudes are sensitive to variations in stakes and scarcity both across

Fig. 5 | Dependent variable and results for Studies 3B and 3C. a Dependent
variable on which participants were asked to move the slider to a position repre-
senting their preference for the interpretability - accuracy tradeoff. The order of
attributes and hence the direction of the slider was counter-balanced across par-
ticipants. b Tradeoff-preferences from Study 3B (N = 112; within-subjects design),
aggregating across all five applications. c Tradeoff-preferences from Study 3C
(N = 1344; between-subjects design), aggregating across all five applications.
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applications (Studies 1A–1C), as well as within applications (Studies
2, 3B, 3C).

Discussion
In recent years, academics, policymakers, and developers have deba-
ted whether interpretability is a fundamental prerequisite for trust in
AI systems. However, it remains unknown whether non-experts–who
may ultimately comprise a significant portion of end-users for AI
applications–actually care about AI interpretability, and if so, under
what conditions. Here, we characterise public attitudes towards
interpretability in AI across seven studies. Our data demonstrates that
people consider interpretability in AI to be important. Even though
these positive attitudes generalise across a host of AI applications and
show systematic patterns of variation, they also seem to be capricious.
While people valued interpretability as similarly important for AI sys-
tems that directly implemented decisions and AI systems recom-
mending a course of action to a human (Study 1A), they valued
interpretability more for applications involving higher (relative to
lower) stakes and for applications determining access to scarce (rela-
tive to abundant) resources (Studies 1A-C, Study 2). And while parti-
cipants valued AI interpretability across all levels of AI accuracy when
considering the two attributes independently (Study 3A), they sacri-
ficed interpretability for accuracy when these two attributes traded off
against one another (Studies 3B–C). Furthermore, participants
favoured accuracy over interpretability under the same conditions
that drove importance ratings of interpretability in the first place:
when stakes are high and resources are scarce.

Our findings highlight that high-stakes applications, such as
medical diagnosis, will generally be met with enhanced requirements
towards AI interpretability. Notably, this sensitivity to stakes parallels
magnitude-sensitivity as a foundational process in the cognitive
appraisal of outcomes35,36. The impact of stakes on attitudes towards
interpretability were apparent not only in our experiments that
manipulated stakes within a given AI-application, but also in absolute
and relative levels of participants’ valuation of interpretability across
applications–take, for instance, ‘hurricane first aid’ and ‘vaccine allo-
cation’ outperforming ‘hiring decisions’, ‘insurance pricing’, and
‘standby seat prioritizing’. Conceivably, this ordering would also
emerge if we ranked the applications according to the scope of
auditing- and control-measures imposed on human executives,
reflecting interpretability’s essential capacity of verifying appropriate
and fair decision processes7,26,37,38.

Fairness concerns are also salient in ‘gatekeeping’ settings where
decision-makers determine access to scarce resources27–29. Accord-
ingly, we found that the importance of interpretability was higher
when AI applications allocated resources under conditions of scarcity.
These findings build on past work showing that people demand more
explanation for decisions involving resource allocation in order to
ensure that the allocation process was fair11,38,39, demonstrating that
such principles also operate in the context of AI applications and
substantiating calls for interpretability as a safeguard for ethical and
fair AI systems. Enhanced valuation of interpretability in such settings
seems all the more justified and important in view of recent anecdotal
evidence that (apparent) lack of interpretability may provide human
agents in charge of overseeing outcomes produced by AI systems with
the opportunity to obscure personal responsibility: when allocation
decisions for vaccines against Covid-19 went awry, prioritising
administrators before frontline healthcare workers, responsible offi-
cials blamed a “very complex algorithm” for the undesirable
outcomes40. The fact that this algorithm turned out to be a relatively
simple andhand-coded rule-based formula41 highlights the danger that
humans in charge may purport lack of interpretability in AI even when
this is not the case.

In practice, AI interpretability andAI accuracycomeoften–but not
necessarily13–as a tradeoff. When we explored participants’ attitudes

towards interpretability without imposing such a tradeoff, we found
that most participants rated interpretability as invariably important
across all levels of AI accuracy, indicating they value interpretability in
AI in its own right. In contrast, when we confronted participants with a
tradeoff between AI interpretability and AI accuracy, they sacrificed
interpretability for accuracy, andweremore inclined to do so for high-
stakes applications and those involving the allocation of scarce
resources. Prioritizing accuracy over interpretability by seeking
“answers first, explanations later” accrues what the legal scholar
Jonathan Zittrain has described as “intellectual debt”42: answers gained
at the expense of understanding. Intellectual debt is risky because
lacking understanding of how something works can produce negative
unintended consequences in complex systems. For instance, if a drug
is effective but theunderlyingmechanism isunknown, prescribing that
drug can lead todangerous side-effects if administered in combination
with other drugs. Likewise, accruing intellectual debt in AI systems
becomes riskier in settings wheremultiple AI applications will interact:
consider a medical system where AI diagnosis applications are used in
combinationwith AI applications that decidewhogets access to scarce
medical treatments. Our studies imply that even though participants
value interpretability in its own right, they endorse the accrual of
intellectual debt when interpretability trades off with accuracy. In fact,
they weremost inclined to sacrifice interpretability for accuracy under
conditions of high stakes and high scarcity–those conditions where
negative unintended consequences are likely to produce the most
damage.

Asmuch as the present work offers a glimpse into public attitudes
towards interpretability, it also highlights the need for deeper insights.
Where scholars grapple with conceptual and practical controversies
about interpretable AI13,43, non-experts arguably have an even harder
time to understand the concepts at hand. As much as this may justify
our relatively liberal and simplified definitions of interpretability and
accuracy, it also constitutes a limitation of our work. For instance, the
prominence of “mistakes” in our definition of accuracy (“the more
accurate an AI, the fewer mistakes it makes when performing deci-
sion”) might have inflated people’s valuation of accuracy relative to
interpretability in Studies 3B and 3C. Furthermore, the conclusions
drawn from the present work are limited to participants from the US
and the UK. Exploring attitudes towards interpretable AI among other
populations is a promising and important topic for future work,
especially in light of recent work suggesting that expectations towards
machine-made decisions can vary substantially across countries and
cultures44 and amidst reports about the potential of dis-
proportionately harmful impacts of AI on the lives of low-income
populations45.

As the technical implementation of different degrees of inter-
pretability in AI develops, policy-makers and users alike might update
their a priori attitudes towards interpretability in AI. It will then
become possible and important for future research to characterise
how the findings described in the present workdependon stakeholder
perspectives (e.g., policy-makers versus users) and how they evolve
over time, to explore how attitudes towards interpretability translate
into manifest choices, and how they relate to attitudes towards
explanations of human decisions46. For instance, a scenario con-
ceivable in the near futuremight be that healthcare providerswill offer
patients a choice between a version of a medical algorithm that vastly
outperforms humandoctors inmedical diagnosing but that is not at all
interpretable3, or a version that performs slightly better than human
doctors and that is interpretable. It will be important to characterise
people’s revealed preferences in such settings, which will also allow to
explore whether, and if so how, valuations of interpretability differ
between a priori appraisals, where outcomes are unknown and on
which we focused in the present work, as opposed to a posteriori
appraisals, where outcomes are known. Valuations might also depend
on stakeholder perspectives (e.g., human patient versus human
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doctor), even though findings from an explorative experiment that we
report in the Supplementary Information (Supplementary Results,
Study 4) indicate no differences in terms of stated a priori attitudes
towards interpretability for perspectives of an affectedpatient versus a
responsible agent.

Given the lack of empirical work on people’s valuation of inter-
pretability in AI, our contribution started by considering two
variables–stakes and scarcity–that have emerged as important from
existing literature on appraising the “good-“ and “fairness” of human-
made decisions. But the nature and scale of machine-made decisions
warrants for considering further features of decision situations and
their role in people’s valuation of interpretability46,47. For instance, in
view of recent work indicating that perceptions about required human
expertise in a given decision-context affect people’s willingness to rely
on algorithmic advice in that context48, we explored ‘required human
expertise’ as an additional explanatory variable and find tentative
evidence that perceiving high expertise-requirements might sway
tradeoff-preferences away from prioritising interpretability, towards
prioritising accuracy (see SI Results, Studies 3B, C). Similarly, an
important avenue for future researchwill be to further characterise the
relationship between different features of AI systems. Our results from
Studies 3A–C indicate that while people have dissociable preferences
for individual AI features, complex patterns and interactions emerge
when technological constraints, such as interpretability-accuracy tra-
deoffs, are considered. While the present work reflects the focus on AI
interpretability and accuracy as hallmarks of desirable AI, wehope that
it generates further research into other AI properties such as trans-
parency or usability.

Answering the most basic of all questions–“why?”–is a funda-
mental human need49. Our findings show that this quest for explana-
tion translates into positive attitudes towards interpretability in AI
systems, which are pronounced most strongly in applications invol-
ving high stakes and scarce resources. Nevertheless, when interpret-
ability trades off against accuracy, people are willing to accrue
intellectual debt in these same settings, seeking accurate solutions at
the expense of understanding. These findings highlight the impor-
tance of further characterising and respecting human attitudes
towards AI interpretability, particularly when designing and/or reg-
ulating complex technical systemswith high stakes for humanwelfare.

Methods
All studies were approved by the Yale University Human Participants
Committee (approval number: HSC 2000022385) and participants in
each study gave their informed consent beforehand. Participants for
all studies were recruited via MTurk or Prolific. MTurk and Prolific
provide more diverse participant pools than university students50–52,
including representative samples of certain populations, which we
recruited as we were interested in the general public’s views on
interpretability in AI. All participants were paid in line with minimum
wages for the US ($7.25 hourly rate for Studies 1A, B; 2–4) and for the
UK (£8.72 hourly rate for Study 1C). The exact instructions for all stu-
dies are deposited as Qualtrics questionnaires at the Open Science
Framework under https://doi.org/10.17605/OSF.IO/DQ4VC.

Study 1A
Participants. We recruited 200 participants from the US via MTurk
(data collected 20/04/2019). One duplicate response and 29 partici-
pantswho failed a comprehension checkon their second attemptwere
excluded from our analyses, leaving a final sample ofN = 170. The final
sample included 107 males, 60 females, and 3 “other” with an average
age of 36.94 (SD = 11.83, SE = 0.91). In all, 20 of the participants’ highest
education was high school; 40, some college; 16, a 2-year degree; 75, a
4-year degree; and 19, a postgrad or another professional degree. The
mean income bracket was between $35,001 and $50,000. Most parti-
cipants (74) had no formal education in computer science; 35 had

some programming experience; 45 took a college-level course; 13 held
an undergraduate degree; and 3 held a graduate degree in computer
science.

Procedure. Participants learned that we were interested in their atti-
tudes towards AI, which we defined as follows53: “Artificial Intelligence
(AI) refers to computer systems that make predictions, recommen-
dations, or decisions by learning from existing datapoints. This com-
puterised process is automated and occurs without explicit human
instructions”. They proceeded to questions about their intuitions on
“the extent to which people [with/without] training in computer sci-
ence can explain how an AI reaches certain predictions, recommen-
dations, or decisions in certain cases” (5-point rating scale from
“cannot explain at all” to “can explain fully”) and their general support
for AI (5-point rating scale from “strongly oppose” to “strongly sup-
port”). Next, we provided them with a precise definition of explain-
ability reading “By explainable we mean that an AI’s [decision/
recommendation] can be explained in non-technical terms. In other
words, it is possible to know and to understand how an AI arrives at its
[decision/recommendation]”. This was followed by a simple compre-
hension that all participants were ultimately allowed to pass, though
we excluded those who failed on two attempts from our analyses
(probe: “What ismeant by ‘explainableAI’?”; correct response: “That an
AI’s [decision/recommendation] can be explained in non-technical
terms”). Participants then learned that they would go through a series
of AI applications for each ofwhich theywould answer “how important
is it that the AI in this application is explainable, even if it performs
accurately” on a dichotomous 5-point rating scale from “not at all
important” to “extremely important”. Each participant saw either the
recommend or decide version of the application-descriptions. We had
a total of 27 decide applications and 25 recommend applications (see
SI Notes, Materials Study 1A for details) and each participant saw a
randomsubset of 20out of these, presentedon subsequent pageswith
a reminder about explainability’s definition displayed at the bottom
(“Reminder: Explainable means that the AI’s recommendation can be
explained in non-technical terms”). After providing their ratings for the
applications, participants indicated how important they considered
the respective motives “explain to justify/to verify/to improve/to
discover”53 (see SI Results, Study 1A). We then probed them again on
their support for AI and asked how likely they considered it that their
occupation would be replaced by AI at some point, and whether they
had any computer science knowledge. The survey concluded with
standard demographics (gender, age, income, education).

Study 1B
Participants. We recruited 293 US participants via Academic Prolific,
using the platform’s feature for collecting representative samples that
match census data in terms of age by sex by ethnic group proportions
(data collected 14/01/2021). Of those, in line with the pre-registration,
we excluded33participantswho failed comprehension checks onboth
attempts, orwho failed all attention checks. Thefinal sampleofN = 258
included 125 males, 131 females, 1 nonbinary person, and 1 who chose
“prefer not to say”with an average age of 45.53 (SD = 16.41, SE = 1.02). 2
of the participants’ highest education was less than high school; 22,
high school; 49, some college; 17, a 2-year degree; 112, a 4-year degree;
and 56, a postgrad or another professional degree. The mean income
bracket was between $35,001 and $50,000. Most participants (129)
had no formal education in computer science; 42 had some pro-
gramming experience; 65 took a college-level course; 15 held an
undergraduate degree; and 7 held a graduate degree in computer
science.

Procedure. Participants received the samedefinitions and instructions
as in Study 1A. However, across instructions, comprehension checks,
and dependent variable questions, we replaced the word “explainable”
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with “understandable” as a robustness check. Thus, as participants
went through the AI applications, they answered the question “In this
case, how important is it that the AI is understandable?” for each one.
In order to allow for more fine-grained responses, we changed the
answer format from a dichotomous measure to a continuous slider
withfive tickmarks and the same three labels as in Study 1A. Tocomply
with the data collection policy of Prolific, participants were not
screened out during the survey when they met the pre-registered
exclusion criteria (i.e., failing comprehension checks on both attempts
and/or all attention checks). We added a comprehension check to
verify that participants understood they should assume the AI to
perform accurately (probe: “What should you do in the following
task?”; correct response: “Consider how important it is that an AI is
understandable, even if it performs accurately”) and an attention
check that was not related to themain task. Analogously, we extended
the reminder displayed below the answer variable so that it read
“’understandable’means that theAI’s decision can be explained in non-
technical terms. Please consider how important it is that the AI is
understandable, even if it performs accurately”. We collected the same
control and demographic variables as in Study 1A.

Study 1C
Participants. We recruited 298 UK participants via Academic Prolific,
using the platform’s feature for collecting representative samples that
match census data in terms of age by sex by ethnic group proportions
(data collected 14/01/2021). Of those, in line with the pre-registration,
we excluded 52participantswho failed comprehension checks onboth
attempts, or who failed all attention checks. The resulting final sample
of N = 246 included 118 males and 128 females with an average age of
45.57 (SD = 15.94, SE = 1.02). 28 of the participants’ highest education
was less than high school; 57, high school; 102, some college; and 59, a
two-year degree. The mean income bracket was between $15,001 and
$25,000.Most participants (162) had no formal education in computer
science; 50had some programming experience; 18 took a college-level
course; 9 held an undergraduate degree; and 7 held a graduate degree
in computer science.

Procedure. We applied the exact same instructions and procedures as
for Study 1B.

Study 2
Participants. We recruited 120 US participants via MTurk (data col-
lected 24/10/2019). 36 participants failed comprehension checks on
two attempts and were excluded from all analyses, resulting in a final
sample of N = 84. The final sample included 46 males, 36 females, 1
“other”, and 1 “prefer not to say” with an average age of 37.38 (SD =
11.76, SE = 1.28). In all, 13 of the participants’ highest education was
high school; 25, some college; 7, a 2-year degree; 31, a 4-year degree;
and 8, a postgrad or another professional degree. The mean income
bracket was between $25,001 and $35,000. In total, 5 of the partici-
pants had no formal education in computer science; 42 had some
programming experience; 14 took a college-level course; 18 held an
undergraduate degree; and 5 held a graduate degree in computer
science.

Procedure. Participantswerepresentedwith the samedefinitions of AI
and explainability as in Study 1. We added two comprehension check
questions to ensure they understood the definition of explainability
and that their task was to consider the importance of explainable AI
assuming it would perform accurately. In order to allow more fine-
grained responses, we slightly changed answer format to a continuous
slider with five tick marks and the same three labels as before (“not at
all important”, “moderately important”, “extremely important”). We
fully randomized the order of applications across participants, as well
as the order of versions within each application (high/low stakes and

scarcity). We also extended the reminder displayed below the answer
variable so that it read “Explainablemeans that the AI’s decision can be
explained in non-technical terms. Please consider how important it is
that the AI is explainable, even if it performs accurately”. We collected
the same additional variables as in Studies 1 and 2, plus a question
asking whether they had heard about bias in AI, and if so, whether they
thought their answers had been influenced by this.

Study 3A
Participants. We recruited 302 US participants via Academic Prolific
(data collected 26-28/05/2021), using the platform’s feature for col-
lecting representative samples that match census data in terms of age
by sex by ethnic group proportions. In line with our pre-registration,
we excluded 41 participants who failed a comprehension check on two
attempts, leaving a final sample of N = 261. The final sample included
124 males, 130 females, 4 nonbinary, and 1 “prefer not to say” with an
average age of 44.88 (SD = 15.80, SE = 0.98). In all, 24 of the partici-
pants’ highest education was high school; 42 some college; 30, a two-
year degree; 109, a four-year degree; and 56, a postgrad or another
professional degree. The mean income bracket was between $35,001
and $50,000. Most participants (134) had no formal education in
computer science; 47 had some programming experience; 60 took a
college-level course; 15 held an undergraduate degree; and 5 held a
graduate degree in computer science.

Procedure. Participants were presented with the five vignettes that we
used for Study 2. However, this time we only used the introductory
part that outlined the general scenario (e.g., “It is flu season. An AI
decides whether or not a citizen will get a vaccine”). For each vignette,
participants were asked rate “How important is it that the given AI
model is explainable” on a slider ranging from “not at all important” to
“extremely important”. Importantly there always were four sliders,
representing four different AI models that differed in accuracy. Our
instructions sought to highlight the difference between those models
by explaining that “Each slider represents a different AImodel. Thefirst
slider represents an AI model performing at 90% accuracy; the second
slider represents a different AI model that performs at 80% accuracy,
and so forth until the fourth slider, which represents again a different
AI model that performs at 60% accuracy”. We counterbalanced the
order or AI models across participants. We also provided participants
with some exemplary importance ratings, such as “For some applica-
tions, you might think that an AI model being explainable is equally
important for any level of accuracy. In these cases, you wouldmove all
sliders to the same level” or “For other applications, you might think
that the importance of an AImodel being explainable depends on how
accurately it performs. In these cases, you would move the sliders
representing AI models differing in accuracy to different levels” (all
instructions are detailed in the pre-registration available at the Open
Science Framework under https://doi.org/10.17605/OSF.IO/DQ4VC).

Study 3B
Participants. We recruited 120 US participants via MTurk (data col-
lected 15-16/11/2019). To reduce the dropout from failed comprehen-
sion checks that we had witnessed in Study 2, we only let those
participants proceed to the full survey, who successfully passed
comprehension checks. Participants who failed to do so on two
attempts were paid a compensation fee for their time until that point
and were replaced. This left us with a final sample of N = 112 partici-
pants after excluding five duplicate submissions. The final sample
included 77males, 34 females, and 1 “prefer not to say”with an average
age of 36.45 (SD = 10.30, SE = 0.97). In total, 14 of the participants’
highest education was high school; 22, some college; 11, a 2-year
degree; 50, a 4-year degree; and 15, a postgrad or another professional
degree. The mean income bracket was between $35,001 and $50,000.
Most participants (45) had no formal education in computer science;
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21 had some programming experience; 29 took a college-level course;
7 held an undergraduate degree; and 10 held a graduate degree in
computer science.

Procedure. Participants first read definitions of AI and AI explain-
ability. In order to align our instructions across studies and to reflect
the continuous answer variables used in this study, we slightly amen-
ded the definition of AI explainability such that it read “By ‘explainable’
we mean that it is possible to understand how an AI arrives at its
decision. In other words, themore explainable an AI, themore one can
understand about how it makes its decisions. The less explainable an
AI, the less one can understand about how it makes its decisions”.
Additionally, participants were presented with a definition of ‘accu-
racy’ reading as follows: “By ‘accurate’ we mean that an AI’s decisions
are correct. In other words, the more accurate an AI, the fewer mis-
takes it makes when performing decisions. The less accurate an AI, the
more mistakes it makes when performing decisions. The instructions
also highlighted that, ideally, one would want an AI that is both com-
pletely accurate and completely explainable, but that, in practice, a
more accurate AI is often less explainable; vice versa, a more explain-
able AI is often less accurate. Correspondingly, we amended our
comprehension checks and added two additional questions ensuring
that participants had understood the definition of accuracy and the
tradeoff response-format. Participants then were presented with the
five applications and their four respective versions in randomized
order. On each round, they used the tradeoff-slider to indicate their
preferences over interpretability and accuracy by moving the slider’s
button from the middle position to either end. The ordering of the
accuracy and explainability labels, and correspondingly the valence of
the slider measure’s ends, was counter-balanced across participants.
Participants were reminded that “Accuracy depends on correctly
determining which standby passengers need to board urgently.
Explainability depends on understanding the criteria used to deter-
mine which standby passenger need to board urgently”, with the
reminder order mirroring the order of the two attributes encountered
in previous instructions and the slider set-up assigned to a given par-
ticipant. In order explore additional explanatory factors in people’s
preferences for accurate and interpretable AI that have been identified
as relevant or desirable in ethical frameworks onAI governance as well
as empirical research on preferences for the use of AI, we added ran-
domIy ordered questions probing participants’ perception of (i) the
reversibility for the AI’s decisions54, (ii) the level of expertise required
for a human toperform theAI’s decision48,55, (iii) the likelihoodof being
personally affected53, and (iv) the number of people affected53. Parti-
cipants answered these measures separately for each of the applica-
tions from the main task. Otherwise, we collected the same additional
variables as in Study 2.

Study 3C
Participants. In line with our pre-registration, we recruited 1501 US
participants via Prolific (data collected 25-27/08/2021), using the plat-
form’s feature for collecting representative samples that match census
data in termsof ageby sexby ethnic groupproportions. After excluding
27 incomplete and duplicate responses, as well as 127 participants who
failed a comprehension check on two attempts in line with the pre-
registration, we obtained a final sample of N = 1344. The final sample
included 720males, 605 females, 1 nonbinary, and 16 “prefer not to say”
with an average age of 39.26 (SD= 14.90, SE =0.41). In all, 8 of the
participants’ highest education was less than high school; 103, high
school; 279, some college; 106, a 2-year degree; 422, a 4-year degree;
and 423, a postgrad or another professional degree. The mean income
bracket was between $35,001 and $50,000.Most participants (610) had
no formal education in computer science; 211 had some programming
experience; 367 took a college-level course; 44 held an undergraduate
degree; and 111 held a graduate degree in computer science.

Procedure. Participants generally followed the same instructions and
procedures as in Study 3B. However, this time stakes and scarcity
varied only between participants: Each participant was randomly
allocated to one of the four conditions (low stakes, low scarcity; low
stakes, high scarcity; high stakes, low scarcity; high stakes, high scar-
city). They remained in the same condition while going through the
five different vignettes (allocating vaccines, prioritizing first respon-
ders, reviewing insurance claims, making hiring decisions, allocating
standby passengers) that were randomised in order with the only
exception that allocating vaccines always was the first vignette. We
slightly altered the vignettes from Study 3B such that they mentioned
the possible range stakes and scarcity (e.g., mild or deadly flu; abun-
dant or very limited vaccine supply; see SI Methods, Materials
Study 3C). Otherwise, all instructions, materials, and procedures fol-
lowed Study 3B.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All original data (de-identified) are available at the Open Science Fra-
mework (https://doi.org/10.17605/OSF.IO/DQ4VC).

Code availability
All analysis code, including the code for data preparation, is available
on the Open Science Framework (https://doi.org/10.17605/OSF.
IO/DQ4VC).
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