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Abstract
Green roofs have gained much attention as a modern roofing surface due to their potential to deliver many environmental 
and social benefits. Studies have indicated that different GR designs deliver different ecosystem services, and there are 
important factors that affect GR performance. This article reviewed significant factors that influence GR performance and 
sustainability. Substrate and drainage layer material choice significantly affects stormwater retention potential, leachate 
quality, plant survival, and determines GR environmental footprints. Subsequently, type of plants, their form, and kinds used 
on GRs impact GR ecosystem function. Leaf area is the most studied trait due to its influence on the cooling potential and 
energy performance. In order to achieve a sustainable GR, it is essential to select the type of plants that have a high survival 
rate. Perennial herbs, particularly forbs and grass as dominant groups, are heat and drought tolerant, which make them suit-
able in GR experiment. Furthermore, selecting a suitable irrigation system is as important as two other factors for having 
a sustainable GR. Irrigation is essential for plant survival, and due to the current pressure on valuable water sources, it is 
important to select a sustainable irrigation system. This review presents three sustainable irrigation methods: (i) employing 
alternative water sources such as rainwater, greywater, and atmospheric water; (ii) smart irrigation and monitoring; and (iii) 
using adaptive materials and additives that improve GR water use. This review sheds new insights on the design of high-
performance, sustainable GRs and provides guidance for the legislation of sustainable GR.
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Introduction

Global disruptions such as COVID-19 (Yu et al. 2021) and 
climate change have brought attention to the importance 
and quality of our built and natural environments. How we 
construct and build cities must change if we want to move 
toward cities with more resilience, sustainability (Addanki 
and Venkataraman 2017; Bibri and Krogstie 2017; Teix-
eira et al. 2021), and greater access to nature (Sharifi 2021). 
Green infrastructure is an essential part of sustainable and 
healthy cities that include parks, green spaces, and low-
impact development practices such as green roofs (GRs) 
(Suppakittpaisarn et al. 2017; Langemeyer et al. 2020; Lib-
eralesso et al. 2020). Green infrastructure has a wide range 
of environmental benefits (Santamouris and Osmond 2020; 
Changsoon et al. 2021) and can increase the resilience and 
health of the urban systems toward several risk categories 
like mitigating stormwater runoff (Kim and Song 2019; 
Parker and Zingoni de Baro 2019).
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GR guidelines and standards have been developed in 
Europe and North America to enlighten about state-of-
the-art performance expectations for GRs. For exam-
ple, the “Guidelines for the Planning, Construction and 
Maintenance of Green Roofing,” commonly referred to 
as the German FLL Guidelines for GRs (FLL 2018), are 
one the most widely used and detailed guidelines among 
others (Dvorak 2011). The German FLL guidelines for 
GRs specify desirable material choices, the weights of 
various reclaimed materials that can be used as drain-
age layers, weights of common forms of plants, nutrient 
and chemical ranges for substrates, and ranges of water 
flow through and retention rates among many other sys-
tem elements (FLL 2018). The FLL guidelines for GRs 
include information about how GR can be made to be 
resilient and sustainable, such as how to minimize envi-
ronmental pollution and add positive benefits for urban 
ecosystems and building owners and users.

Three types of GRs are recognized based upon their level 
of complexity: extensive, semi-intensive, and intensive GRs 
(Raji et al. 2015; FLL 2018). Extensive GRs are shallow 
light-weight systems (60 to 150 kg/m2) that typically have 
a growing medium depth of 5 to 15 cm (FLL 2018). Plant 
diversity is generally limited due to the shallow substrate 
depths; however, these are the most frequent kind of applica-
tion of GRs due to their low cost.

Semi-intensive GRs (also known as simple intensive) 
have intermediate characteristics of extensive and inten-
sive GRs. This type has weight and thickness greater 
than extensive GRs and lower than intensive GRs. 
Semi-intensive GRs typically have substrate depths of 
15–25 cm (FLL 2018). Semi-intensive GRs generally 
accommodate a wide variety of types of vegetation due 
to their substrate depth. Intensive GRs have deep sub-
strates (> 25 cm) and a wide variety of vegetation that 
can include shrubs and trees (Droz et al. 2021b; Manso 

et al. 2021). Our review addresses application of exten-
sive and semi-intensive GR, because of their intended 
widespread application and environmental benefits.

GRs have several layers of materials (Fig. 1), including 
the vegetation layer, substrate layer (growing media), water 
retention layer, filter layer, drainage layer, root barrier, and 
protection layer (Bozorg Chenani et al. 2015). Vegetation is 
planted into the substrate; therefore, the materials and nutri-
ents of the substrate layer support plant growth and plants’ 
physiological performance (Young et al. 2014).

The water retention layer captures stormwater and 
reduces rooftop runoff, and also provides water for 
plants (Simmons et al. 2008). The filter layer is above 
the drainage layer and prevents substrate fine particles 
from passing through the drainage layer. By removing 
excessive water through its porosity, the drainage layer 
is responsible for providing a balance between drainage 
and water retention and adequate root aeration. The pro-
tection layer and root barrier are placed at the lowest 
level of the layers, protecting the building structure from 
penetration of vegetation roots and small-sized particles 
into the structures (Bozorg Chenani et al. 2015).

Some cities require the use of GRs on some buildings due 
to the many ecosystem services that GRs provide. GRs can 
reduce air pollution (Banirazi Motlagh et al. 2021), reduce 
urban heat islands (Kolokotsa et al. 2013; Santamouris 
2014; Imran et al. 2018; Yang et al. 2018; Asadi et al. 2020; 
Tiwari et al. 2021), sequester carbon (Shafique et al. 2020; 
Sultana et al. 2021; Seyedabadi et al. 2022), reduce rooftop 
stormwater runoff (Shafique et al. 2018; Jusić et al. 2019; 
Kolasa-Więcek and Suszanowicz 2021; Wang et al. 2022b; 
Wang et al. 2022a, b), cool down the ambient temperature 
(Zhang et al. 2020; Dandou et al. 2021; Jamei et al. 2021; 
Zheng et al. 2021), and mitigate urban heat islands (Agham-
ohammadi et al. 2021a, b; Aghamohammadi et al. 2021b) 
and air pollution (Hong et al. 2021; Wang et al. 2021a, b). 

Fig. 1   Layers common to mul-
tilayer GRs.  Source: author’s 
design
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The vegetation and substrates of GRs are also known to 
reduce energy demands (Aboelata 2021; Bevilacqua 2021; 
Movahed et al. 2021; Rafael et al. 2021; Alim et al. 2022). 
Because of the wide variety of ecosystems services pro-
vided by GRs, many cities have implemented legislation 
and development incentives (Carter and Fowler 2008; Chen 
2013). For example, in Toronto, Canada, commercial, insti-
tutional, and residential buildings with more than 2000 m2 
roof area are required to include 20–60% of the roof area 
as GRs (Chow et al. 2018). In Tokyo, Japan, new buildings 
are required to include 20% roof vegetation coverage, while 
15% GR coverage is required in Basel, Switzerland and 70% 
in Portland, USA (Townshend and Duggie 2007). In Chi-
cago, the USA, up to 50% of the cost of implementation 
will be supported if the GR covers higher than 50% of the 
net roof area (Berardi et al. 2014). However, most of these 
policy actions only focus on GR coverage and speeding 
up the implementation of GRs around the cities, regard-
less of their performance and environmental impacts. In 
spite of the fact that GR performance, sustainability, and 
environmental impacts can be significantly altered by only 
changing some of the influential factors.

Sustainable aspects of GRs include their inert materi-
als, live materials (vegetation), and the use of water. Inert 
materials include the GR substrate and drainage layers, 
both of which can be made from recycled, reused, and 
locally sourced materials (“Substrate and drainage materi-
als” section).

The appropriate selection of vegetation is essential to 
the overall performance of GRs (Lundholm and Williams 
2015). In this paper, we investigate plant traits and other 
factors related to plants that influence GR performance 
(“Plants and green roof performance” section).

The third aspect influencing sustainable GRs is water-
use and irrigation. We investigate ways that irrigation 
influences GR sustainability and improves its performance. 
In some climates, irrigation is vital for GRs since the 
plants’ survival relies on it, and also, GR cooling poten-
tial can be enhanced by a suitable irrigation approach (Van 
Mechelen et al. 2015). Sustainable GRs employ alternative 
water sources such as rainwater, greywater and innovative 
sources (atmospheric water). GRs can make use of smart 
irrigation and monitoring, and also adaptive materials and 
additives can be used to improve water use in GRs (“Sus-
tainable irrigation” section).

Since GRs are becoming employed and legislated into 
municipal ordinances, it is important to understand how GRs 
can be made to be sustainable and resilient interventions. This 
study aims to reveal influential factors of high-performing 
GRs and GRs with minimal adverse environmental impacts. 
To address these important aspects of GRs, we employ a sys-
tematic review of the literature to investigate these aims.

Methodology of the systematic literature 
review

A systematic review of the literature was used to identify, 
review, evaluate, synthesize, and report on the findings from 
peer-reviewed research (Denyer and Tranfield 2009). A five-
phase process was used to establish a systematic review and is 
described below, and its phasing is shown in Fig. 2. The process 
included a pilot search and development of aims of the study, 
the location of research, the selection and study of literature, the 
analysis and synthesis of research, and the reporting of results.

Pilot search

A pilot search was conducted in order to gain an understanding 
of the categorical nature of existing literature. We also con-
sulted with GR experts about the categorical topics of GRs to 
understand if there might be gaps in the existing literature and 
to develop the aims of this study (Counsell 1997).

Locating studies and relevant literature

Selecting suitable online search engines is important to 
identify scientific peer-reviewed research. Web of Science, 
Springer, MDPI, Google Scholar, and Scopus were used to 
identify potential articles. Papers that included “green roof” 
or “green infrastructure” in their keywords, title, and abstracts 
were located. Keywords for searches included GR material, 
plant, vegetation, water-use, irrigation, sustainable, ecosystem 
services, and life cycle.

Study selection and evaluation

We established a set of inclusion and exclusion criteria for the 
scope of the review. First, the time span of the existing litera-
ture was set between January 2000 and July 2022. Furthermore, 
since English is the common language of peer-reviewed science, 
only research written in English were selected. Authors worked 
independently to identify high-quality peer-reviewed and relevant 
studies. Types of literature included peer-reviewed journal arti-
cles, conference papers, book chapters, and books. The authors 
read the abstracts and examined the compliance of the selected 
studies with the aims. Afterwards, the remaining articles were 
evaluated in greater detail. The authors synthesized their find-
ings and compiled the list of articles for analysis and synthesis.

Analysis and synthesis

In order to analyze the content of the selected literature, it was 
sorted into categories based on their association with the research 
questions and aims. The categories include GR ecosystem ser-
vices, GR sustainability, GR life cycle, GR plant types, GR 
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materials, GR water-use, and irrigation. The authors then sur-
veyed each of these categories and summarized them to reach an 
approach for presenting the results which targeted the questions 
properly.

Reporting of results

We report the results and discussion in three sections, includ-
ing (1) substrate and drainage materials, (2) plants and GR per-
formance, and (3) sustainable irrigation. This study highlights 
the current knowledge and suggestions of the scholars, reviews 

critical points and outcomes, presents influential factors and 
considerations, and uses figures and a table to answer the study 
questions.

Results and discussion

Substrate and drainage materials

The literature indicates that the selection of substrate and 
drainage materials for GR construction can influence the 

Fig. 2   Diagram of the five 
phases of the systematic litera-
ture review used in this study
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water holding capacity of the substrate, the runoff water 
quality, plant growth, and environmental footprints.

Material impacts on GR water holding capacity

One of the main aims of GRs is to store and slow the flow of 
water. Many researchers have utilized different materials in 
order to increase the stormwater capacity of GRs (Table 1). 
For instance, Vacek et al. (2017) used hydrophilic mineral 
wool (HMW) in the substrate layer. It was observed that 
HMW holds more water for longer periods than a substrate 
with a standard dimple membrane. However, HMW pro-
duction increases adverse environmental impacts; because 
the HMW manufacturing process consumes relatively high 
amounts of energy (Vacek et  al. 2017). Therefore, GR 
designers have faced a challenge to find suitable materials 
that improve GR water holding without increasing the envi-
ronmental footprints GRs.

In this regard, different materials like concrete waste, 
biochar, mineral wool, etc. have been tested (Bisceglie et al. 
2014; Cao et al. 2014; Vacek et al. 2017). Utilization of 
some of these materials such as concrete waste would be 
beneficial to reduce the consumption of natural materials, 
and materials like biochar would help to reach a lighter 
substrate layer. Table 1 presents the results of some studies 
that have worked on different substrate and drainage layer 
materials.

Material impacts on runoff quality

The leachate from GRs might contain different amounts 
of pollutants, and its combination with stormwater runoff 
turns it into a new non-point pollution source in urban areas. 
Substrate and drainage layer materials significantly impact 
the GR runoff quality (Xu et al. 2022). Whether GRs act 
as a sink for substances through deposition or as non-point 
sources of pollution depends on the substrate and drainage 
materials (Berndtsson et al. 2009; Alsup et al. 2011; Karc-
zmarczyk et al. 2014; Wang et al. 2017; Baryła et al. 2018; 
Jennett and Zheng 2018; Qianqian et al. 2019). Additionally, 
the fact that water flowing from GRs has potential for non-
potable uses adds to the importance of using materials that 
prevent water pollution (Santana et al. 2022).

In order to assess the impacts of GR substrate materials 
on leachate quality, many studies on different materials have 
been conducted. Some of them showed that some materi-
als like Arkalyte (an expanded clay) could lead to a high 
concentration of heavy metals in the leachate that exceeded 
standards (Alsup et al. 2011). Therefore, in order to avoid the 
negative effects of materials on the leachate, different mate-
rials need to be tested. Table 2 provides an overview of the 
studies that investigated materials’ impact on runoff quality.

Influence of GR substrate materials on plant growth

Selecting suitable GR materials in a way to maximize plant 
growth and survival is complicated due to the great influ-
ence of materials on GR plants. Furthermore, when edible 
plants are decided to be planted on GR, the importance of 
substrate layer design would be greater. Since it is indicated 
that plants’ nutrient levels are affected by GR substrate, and 
Nitrates, Aluminum, Magnesium, Lead, and Selenium might 
lead to safety issues for producing crops like lettuce and 
tomato on GRs (Nektarios et al. 2022).

Therefore, many GR researchers have done studies and 
tested different materials to investigate the impacts of sub-
strate materials on plant survival and physiological perfor-
mance. Table 3 summarizes the results of some of these 
studies that tested different GR layer materials’ impacts on 
the plants.

Materials and green roof environmental footprints

Substrate and drainage layer materials significantly affect 
the environmental footprints of GR life cycle (Table 4) 
(Gargari et al. 2016; Koroxenidis and Theodosiou 2021). 
Generally, to avoid an unnecessary contribution of addi-
tional environmental pollution and greenhouse gases 
(GHGs) emissions, long-distance transportation of mate-
rials must be avoided, when local materials are available 
(Lira and Sposto 2016). In addition, material sourcing 
that requires high energy consumption, water consump-
tion, and waste production as part of their manufacturing 
must be avoided. For example, in order to show adverse 
environmental impacts of the manufacturing of some 
materials for GRs, Bianchini and Hewage (2012) ana-
lyzed air pollution attributed to GR material manufactur-
ing processes. The study demonstrated that air pollution 
through the polymer production process can be balanced 
by GRs in 13–32 years (Bianchini and Hewage 2012). 
They suggested that there is a need to replace current 
GR materials with more environmentally friendly and 
sustainable products.

Using local materials is recommended to avoid environ-
mental pollution (Eksi et al. 2020). One example of sustain-
able sourcing of materials is GR on the EcoCenter education 
building at Heron’s Head Park in San Francisco, California 
(Dvorak and Drennan 2021). Designers sourced stone for 
a rooftop pond for wildlife, and the gravel edging for the 
entire GR, from a gravel quarry less than 1 km away. Addi-
tionally, the substrate on the GR of a kitchen house at the 
Slide Ranch (north of San Francisco) is made entirely from 
gravel, sand and soil found on the property (Dvorak and 
Drennan 2021). Because the site had appropriate materi-
als to assemble a suitable substrate, no offsite delivery of 
materials was needed.
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To select suitable materials for substrate and drainage 
layer, GR designers need to consider all the aspects that 
are influenced by the selection of GR materials. They need 
to select the materials that improve GR performance and 
reduce its environmental footprints. For example, recycled 
and renewable materials have the potential to reduce the 
carbon footprint of GRs by 73% (Tams et al. 2022); how-
ever, it is indicated that some recycled materials can cause 
water contamination (Chen et al. 2018). Accordingly, assess-
ing the results of previous studies on different materials is 
an important step in the material selection process to reach 
sustainable GR.

Plants and green roof performance

One of the most critical aspects of establishing ecosystem 
services on GRs is the selection of suitable plant forms and 
taxa. Among the reviewed studies, the type of plants, their 
form, and kinds used on GRs impact GR ecosystem func-
tions (Lundholm et al. 2010; Lundholm and Williams 2015; 
Xie et al. 2018) and can significantly change GR perfor-
mance. Figure 3 illustrates the frequency of different GR 
functions reported in our chosen studies. The effect of plants 
on energy performance is the most frequently studied func-
tion. Other important functions include carbon sequestra-
tion, water retention, purification of water, and support of 
biodiversity.

Carbon sequestration potential

The ability of plants to sequester carbon is multifactorial. 
Different traits and environmental determinants are involved, 
such as how plants use water, air temperature, and relative 
humidity. Due to difficulties in measuring such traits on live 
GRs, studies were conducted under controlled conditions. 
In a review on influential factors that affect carbon seques-
tration on GRs, Wan Ismail et al. (2019) identified sixteen 
influential factors that affect carbon sequestration on GRs.

GR plants assimilate carbon through photosynthesis 
and return some of it to the atmosphere through respiration 
(Kavehei et al. 2018; Shafique et al. 2020). Several stud-
ies (Chen 2015; Heusinger and Weber 2017; Cascone et al. 
2018) have investigated different plant species and exam-
ined the carbon sequestration potential of different plants. 
Some plants sequester more than others. Grasses for exam-
ple, offset more CO2 emissions during the life cycle of GRs 
(Kuronuma et al. 2018) and were found to reduce a build-
ing’s carbon footprint by about 26 kg/m2 (Seyedabadi et al. 
2021). A study (Kuronuma and Watanabe 2017) indicated 
that physiological and morphological traits of vegetation 
types have a considerable effect on the carbon sequestration 
of GRs. In a study, Kuronuma et al. (2018) calculated the 
total annual carbon sequestration of three grass species and Ta
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a flowering plant and converted it to annual CO2 seques-
tration, determined that Zoysia matrella (L.) Merr. seques-
tered 2.459, Festuca arundinacea (Schreb.) sequestered 
2.754Cynodon dactylon (L.) Pers. sequestered 2.530 Sedum 
aizoon (L.) sequestered 1.684 kg of CO2 per square meter 
per year (Kuronuma et al. 2018). Moreover, Charoenkit and 
Yiemwattana (2016) revealed that the GRs annual carbon 
storage capacity is between 0.37 and 30.12 kg/m2, and the 
plant species have a significant role in this number (Char-
oenkit and Yiemwattana 2016).

Whittinghill et  al. (2013) found the results quite 
remarkable on GR plant type. Plants with woody struc-
ture and higher biomass volume are able to sequester more 
carbon, e.g., Perennial herbs, grasses as well as ornamen-
tal landscapes (67.70 kg.m2). In line with Whittinghill’s 
study, Rowe (2016) also represented that plants with the 
greatest biomass act more effectively on carbon capturing 
and storing.

Getter et al. (2009) conducted a study on some sedum-
based GRs to evaluate the natural capacity of plant selec-
tion on carbon sequestration. Sedum album L. stored 
239 ± 53.6 C m−2 (g), which shows the highest rate of 
above-ground carbon storage among other sedum species. 
In 2015, Luo and his colleagues used sewage sludge in a 
GR to analyze the carbon accumulation in each selected 
plant species. The highest carbon storage (4.23 kg C m−2 ) 
and carbon sequestration (3.85 kg C m−2

year
−1 ) found in 

Ligustrum × vicaryi Rehder. (Luo et al. 2015).

Importance of suitable plant species for air purification

The role of plant forms and different taxa of vegetation in 
air pollution reduction is significant. There are two main 

mechanisms in this function: trapping particulate mat-
ter and other pollutants physically (Yang et al. 2008) and 
pollution absorption into plant tissues (Clark et al. 2008; 
Currie and Bass 2008). Plant pollution uptake rate var-
ies between plant taxa. For instance, Speak et al. (2012) 
studied the differences between diverse plant species and 
showed a 664% difference between plants that trapped the 
most particulates and the least. They expressed that this 
difference is mainly due to leaf characteristics like leaf 
hairs and ridges (Speak et al. 2012).

Moreover, a positive relationship was observed between 
leaf hair densities, leaf wax quantities, and plant height 
with particulate matter accumulation (Speak et al. 2012). 
The importance of these findings shows itself in the 
large-scale implementation of GRs. For example, Currie 
and Bass (2008) used the urban forest effects (UFORE) 
model and estimated that about 109 ha of GRs in Toronto, 
Canada, with herbaceous plants, would reduce 7.87 met-
ric tons of air pollutants every year. In another research, 
Yang et al. (2008) showed that by implementing 19.8 ha 
of GRs in Chicago, Illinois, approximately 1675 kg of air 
pollutants could be removed in 1 year.

Plants as cooling effects and temperature reduction 
(energy performance)

Several studies have shown the effect of plant type on 
temperature reduction (Lundholm et al. 2010; MacIvor 
and Lundholm 2011; MacIvor et al. 2011; Sookhan et al. 
2018). For the cooling effects of plants on GRs, the essen-
tial role of plants and vegetation is through evapotranspi-
ration (Bass et al. 2003). Also, plants increase the roof 
albedo and reduce the urban heat island effect; in some 
cases, plants drop the absorbed energy in half (Sanchez and 

Fig. 3   Functional categories 
and frequency of studies 
investigating the roles of plants 
on GRs
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Reames 2019). A study (Cao et al. 2019) showed that the 
cooling generated by the GR is related to the yield of the 
plants, which is strongly associated with the type of plants 
with the different photosynthetic and water-use strategies. 
In this study, C4 grasses demonstrated the highest tran-
spiration (4.4 mm day−1 of Cynodon dactylon (L.) Pers.), 
which means a greater cooling effect than the C3 grasses. 
CAM plants contribute to the cooling effect by absorption 
and insulation. Moreover, in a study for investigating the 
energy performance of a GR, Foustalieraki et al. (2017) 
indicated that different plant species offer different thermal 
behavior on GRs and expressed that an optimum selec-
tion among different plant species is necessary to reach the 
best GR performance. They also showed that having plants 
with dense foliage (compacted leaves and/or canopy that 
block the path of sunlight reaching the ground) will result 
in more reduction in surface temperature (Foustalieraki 
et al. 2017).

Studies that examined different vegetation found 9.7–24% 
differences in substrate temperature between vegetation 
types, with some proofs that this differentiation increased 
over time as vegetation cover increased (Lundholm et al. 
2010; MacIvor and Lundholm 2011; MacIvor et al. 2011, 
Dvorak and Volder 2013a, b). Schindler et al. (2019) com-
pared two GRs with different vegetation types and observed 
a 1.5 °C temperature difference between them and expressed 
that high albedo, evapotranspiration, and shading are the 
essential factors in a GR's cooling effect (Schindler et al. 
2019). Many studies (Zhou et al. 2018; Samah et al. 2020; 
Cavadini and Cook 2021; Grala da Cunha et al. 2021; Tadeu 
et al. 2021) unanimously expressed that the vegetation Leaf 
Area Index (LAI) significantly impacts temperature. For 
example, Rakotondramiarana et  al. (2015) conducted a 
study in Madagascar Island on an extensive GR and showed 
that indoor air temperature decreases about 1 °C by increas-
ing LAI from 1 to 5 (more LAI means more dense foliage) 
(Rakotondramiarana et al. 2015). The thermal behavior of 
different types of vegetation can greatly change the energy 
consumption of the building. Karachaliou et al. (2016), by 
planting shrubs and perennial herbs with diverse thermal 
behavior showed that different species of vegetation can 
cause an 11% reduction in energy consumption for heating 
the building and 19% for cooling the building (Karachaliou 
et al. 2016).

Influence on water quality and water retention

Plants also influence the quality of runoff (Rowe 2011; 
Hashemi et al. 2015) and stormwater reduction (Kemp et al. 
2019). Gong et al. (2021) indicated that diverse plant species 
have different effects on nutrient loads. Aitkenhead-Peterson 
et al. (2011) compared the effects of different succulent spe-
cies on nitrate leachate and showed an 1120% difference 

between the best and worst-performing. Moreover, they 
showed that by cultivating different types of plants in the 
same media, there was a striking reduction in the nitrogen 
and phosphorus concentrations in the runoff water (Aitken-
head-Peterson et al. 2011).

Cook-Patton and Bauerle (2012) reviewed the benefits 
of plant diversity on GRs and indicated that species differ 
in when and how they absorb nutrients and showed that 
through having higher plant diversity, more nitrogen was 
consumed efficiently than when there were monocultures. 
This means that the utilization of fertilizer nitrogen and 
the possible leaching of the nitrogen from GRs could be 
decreased by having diverse species on the roof (Czemiel 
Berndtsson 2010). Regarding plant type effect on water 
retention, Talebi et al. (2019) indicated that vegetation type 
had a greater influence on water retention than increasing 
the substrate storage. Maclvor et al. (2011) and Lundholm 
et al. (2010) conducted studies on this subject. The first one 
showed a 20% increase in retention in the best mixture treat-
ment compared with the best monoculture, and the latter one 
found an 8.4% increase with using more species (Lundholm 
et al. 2010; MacIvor et al. 2011).

Use of native plants for conservation of biodiversity

One of the unique opportunities to make GRs sustainable 
is their potential to support local plants, plant communi-
ties, and wildlife (Brenneisen 2005; Chen et al. 2021; 
Dvorak and Bousselot 2021). Although alien plants on 
GRs can serve some forms of wildlife (MacIvor et al. 
2015), native plants can serve local and migratory wild-
life (Cook-Patton 2015). The composition of wildlife 
community and biodiversity is different between inten-
sive GRs and extensive GRs, and studies have shown that 
community biodiversity is higher in intensive GRs (Coff-
man 2007; Nagase et al. 2018). To assess the elements 
and GRs’ characteristics that enhance arthropod biodi-
versity and ecological functioning, Fabián et al. (2021) 
conducted a study and analyzed these characteristics. 
They selected 30 GRs situated in Argentina in different 
urbanization contexts (from small towns in semi-rural 
regions to large towns). They found that total species 
richness, total abundance of arthropods, and species rich-
ness of most functional feeding groups were positively 
associated with the GRs area. They also expressed that 
promoting high plant diversity and lessening roof isola-
tion favored entomophagous arthropod diversity (Fabián 
et al. 2021).

Not only GRs are potential homes for the local biodi-
versity, i.e., spiders and beetles, but they also are a refuge 
for rare and endangered species like birds. GRs provide a 
safe habitat for invertebrates and vertebrates in urban areas 
(Brenneisen 2003; Gedge and Kadas 2005).
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Current challenges and discussions

It has become clear that the GR ecosystem services rely on 
the plant types, and individual traits or trait combinations 
can influence them. However, the priority for selecting the 
GR plants is their survival on the GR. GRs are often planted 
with low water-using succulents to have a better chance of 
survival. These plants can tolerate shallow substrates and 
extremely hot and dry summers (Dvorak and Volder 2010; 
Rayner et al. 2016). However, because of their low water-
use, these plants when compared to grasses and herbaceous 
perennials, do not deliver the highest stormwater retention 
and cooling (Azeñas et al. 2018a, b). Plants with high water-
use optimize stormwater mitigation on GRs as they assist 
substrate drying after rainfall (Farrell et al. 2013). How-
ever, supplemental irrigation may be necessary to keep these 
plants thriving in some climates. Therefore, shallow depth 
substrates, low water availability, extreme climate events, 
and prolonged drought challenge designers for suitable plant 
selection. This selection must consider two important fac-
tors; plant survival and delivering the best GR performance. 
Climates with hot and dry conditions throughout much of 
the year may not need high functioning stormwater reten-
tion performance from GRs. Instead, cooling and shading 
rooftops is a primary ecosystem service.

Many researchers have worked to specify the factors related 
to plant survival on GR. Du et al. (2019) experimented on 15 
shrub species from a range of climates and showed that plant 
survival was not related to water-use, drought response, or cli-
mate of origin. They suggested that plant survival on GRs is 
expected to be determined by a combination of physiological 
traits (traits like leaf thickness, roots, and stomata). Another 
study examined whether plant traits like succulence are related 
to plant survival and resulted that survival was not related to 
water-use, succulence, or leaf heat tolerance (Guo et al. 2021). 
Farrell et al. (2012) evaluated severe drought impact on the sur-
vival of five succulent species and showed that plants survived 
longer on the substrate with higher WHC. They expressed that 
increasing leaf succulence is not related to plant survival, but 
survival was related to reduced biomass under drought. That 
study showed that to maximize survival, GRs should be planted 
with species that have great leaf succulence and low water-use 
in substrates with high WHC (Farrell et al. 2012). Taking to 
account some fast traits, e.g., relative growth rate (RGR) and leaf 
area for water-use in nine native plants, showed more plasticity 
in water treatments (Schrieke and Farrell 2021).

Analysis of studies

An analysis was conducted on the plants investigated in 
“Plants and green roof performance” section to determine 
the trend in the GR plant studies. Most researched plant 
families, measured traits, and lifeform were determined.

Plant families

Eighty-six plant families have been applied in our exam-
ined studies in order to find suitable species to achieve the 
best performance. Three families represented the most spe-
cies-rich, namely Crassulaceae (22), Asteraceae (15), and 
Poaceae (14) (Fig. 4).

Crassulaceae are widely distributed. This family com-
prises perennial herbs with fleshy leaves that are able to tol-
erate arid conditions, i.e., shortage of water and high temper-
atures. These features make the species (e.g., Sedum) perfect 
to grow on GRs. Among 20 Sedum species, Sedum spurium 
M.Bieb. and Sedum acre L. are the foremost planted taxa 
in reviewed research experiments, nine and eight research, 
respectively.

Poaceae, known as the grass family, is one the most spe-
cies-rich families in the plant realm that provides diverse 
species with various characteristics which make them suit-
able for GRs.

Measured traits

Among all the plant traits, for assessing plants’ influence on 
GR ecosystem services, most authors studied leaf area more 
than other traits. Leaf area is related to the relative growth 
rate (RGR) as well as net assimilation rate (NAR). As shown 
in Fig. 5, the other traits are less focused.

Heat stress is one of the challenges on GRs that influences 
the root that alters the water use efficiency as well as plant 
survival. The root vulnerability to heat stress is discussed 
by Savi et al. (2016) and Tomasella et al. (2022). While the 
crucial role of this trait is one of the main determinants of 
GRs performance, more investigations into this issue are 
recommended.

Lifeforms of plants

The lifeform of GR vegetation is one of the significant plant 
attributes which reveals the adaptive structure of a plant in a 
given habitat. Perennial herbs are the most frequent lifeform 
used on the GRs in research. Moreover, perennial herbs used 
on GRs demonstrate ground cover, which protects the sur-
face from direct sunlight, consequently contributing to the 
cooling effect (Table 5).

Perennial herbs are the dominant lifeform in conducting GR 
experiments. To look more closely at the plant type of perennial 
herbs, it was forbs that represented the greatest group, followed 
by grass (Fig. 6). Heat and drought tolerance and having below 
and above groundwater storage structures are the significant 
features of the forbs, grass, and succulents which make them 
suitable and popular in GR experiments. Using multiple life-
forms in GR showed better ecosystem performance compared 
to monocultures (Lundholm et al. 2010).
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Sustainable irrigation

Irrigation is one of the critical aspects that must be con-
sidered for constructing and maintaining sustainable GRs. 
Water is the most critical aspect of life on Earth, and due 
to human destructive actions and climate change, there is 
high stress on water resources and an urgent need for water 

resource management. There are several different strate-
gies and solutions for reducing water consumption. In the 
review of the literature, it was found that GR water-use can 
be reduced by using appropriate irrigation strategies (Bous-
selot et al. 2010; Van Mechelen et al. 2015).

In tropical areas or humid climates, it is possible to estab-
lish unirrigated GR if suitable vegetation and materials are 

Fig. 4   The taxonomic spectrum 
of plant families and the number 
of GR studies
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selected. Criteria for selecting vegetation for unirrigated 
GR systems are explained in the FLL guidelines (Breuning 
and Yanders 2008; FLL 2018). The guidelines specify that 
GRs are designed to depend primarily on precipitation for 
their water supply but considering all types of climate, such 
as hot and dry climates where experiencing low precipita-
tions, it may not be possible to depend on precipitation alone 
(Dvorak and Volder 2013a, b).

Therefore, there is a strict relationship between GR 
irrigation management and GR plants survival, and it has 
been indicated plant survival rate on unirrigated GRs has 
not been satisfying (Dvorak and Volder 2013b). Besides, 
some studies have shown that GR irrigation has a cooling 
effect and increases evapotranspiration (Wang et al. 2021a, 
b) and considerably improves building thermal performance 

(Porcaro et al. 2021; Yazdani and Baneshi 2021). A study in 
a semi-arid climate in Mexico showed that after irrigating 
GR, the maximum temperature of vegetation and substrate 
reduced by 6.4 and 4.8 °C, respectively (Chagolla-Aranda 
et al. 2017). Lin and Lin (2011) showed that a substrate that 
is irrigated twice a week is able to reduce the heat ampli-
tude under the roof slab surface up to 91.6%. However, in 
some cases, due to the fact that water has higher thermal 
conductivity than air, lower heat fluxes have been reported 
from GRs with limited irrigation than well irrigated GRs 
(Azeñas et al. 2018a, b). It means that higher substrate water 
is not always effective in controlling evapotranspiration and 
providing the related cooling effect (Jim and Peng 2012).

The optimal frequency and rate of irrigation required for 
GRs have been investigated in various ways by several studies. 
For example, a study in a Mediterranean climate on extensive 
GRs with testing four types of plants showed that the GR 
water requirement ranges between 2.6 and 9 L/m2/day, and it 
differs due to plant type species (Schweitzer and Erell 2014). 
In other studies conducted in the Mediterranean climate on the 
GRs water-use in summer, the water required for GR irriga-
tion ranged from 1.96 L/m2/day in Athena, Greece (Papafo-
tiou et al. 2013) to 7 L/m2/day in Rende, Italy (Brunetti et al. 
2018). Pirouz et al. (2021) showed that the average water-use 
of GRs in the summer in humid regions is about 3.7 L/m2/day, 
in the Mediterranean regions about 4.5 L/m2/day, and in arid 
regions about 2.7 L/m2/day.

Fig. 5   Measured traits for plant 
selection based on the review of 
the literature
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Table 5   Different plant lifeforms selected for GR from the research

Lifeform Frequency of 
plants used for 
GR

Perennial herbs 194
Shrubs 107
Annual herbs 25
Trees 13
Climbers 2
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Therefore, it is necessary to know the sustainable irriga-
tion strategies to reach maximum performance of GR with 
minimum water consumption. Reviewing the literature 
showed that GR irrigation strategies can be divided into 
three main sections: (1) Employing alternative sources, 
(2) smart irrigation and monitoring, and (3) using adaptive 
materials and additives that improve GR water-use.

Employing alternative sources

In recent years, it has become popular to utilize alterna-
tive water sources to avoid potable water use on GRs. This 
section aims to discuss and introduce suitable alternative 
sources to reduce potable water usage on GRs. Due to a 
lack of comprehensive knowledge in this section, some of 
the references are not GR related. In each section, litera-
ture gaps have been indicated.

Rainwater harvesting

One of the most available sources of free water that has a 
long history of use is harvested rainwater. The effectiveness 
of rainwater harvesting systems depends on the region’s cli-
mate type and precipitation frequency. The quantity of rain-
fall affects the degree of rainwater-use. Rainwater harvesting 
has gained popularity for GRs in some regions (Almeida 
et al. 2021; Burszta-Adamiak and Spychalski 2021). Dif-
ferent studies proposed multiple approaches for rainwater 
harvesting, such as rainwater cisterns or tanks, treatment 
trains, and constructed wetlands (Hardin et al. 2012; Coutts 
et al. 2013; Chao-Hsien et al. 2014; Hafizi Md Lani et al. 
2018; Kucukkaya et al. 2021). For example, Coutts et al. 

(2013) studied the potential of water-sensitive urban design 
(WSUD) (WSUD is an approach to design urban areas to 
make use of valuable resources like rainwater). They dem-
onstrated that WSUD provides a mechanism for retaining 
water through stormwater harvesting and can be a dependa-
ble source of water across Australian urban environments for 
landscape irrigation. In semi-arid regions, where rainfall is 
infrequent, many GRs in western North America have made 
use of harvested rainwater and have had success (Dvorak and 
Skabelund 2021).

Some researchers have suggested blue-green roofs as a 
way for using rainwater for irrigating. Generally, blue-green 
roofs have an extra water retention layer that allows more 
stormwater to be stored so that the reservoir can act as a 
source of water for the GR through capillary rises (Busker 
et al. 2022). Moreover, Droz et al. (2021a, b) showed that 
blue-green roofs provided the most services with the lowest 
number of trade-offs and expressed that the GR system type 
is the most impactful on ecosystem services.

Chao-Hsien et al. (2014) examined the primary design 
factors of a rainwater harvesting system for GRs and con-
ducted a case study on a university building in Keelung, 
Northern Taiwan. For this building and climate, the optimal 
tank volume was 9.41 m3 and the potable water replacement 
rate and probability of exceedance were 92.72% and 88.76%, 
respectively.

Besides being a sustainable source for GR irrigation, har-
vesting rainwater reduces erosion and stormwater pollution 
and helps reduce flooding in dense urban areas (Hardin et al. 
2012; Islam et al. 2013). It is necessary to mention that rain-
water harvesting systems need maintenance. Some studies 
have observed poor microbial water quality (Al-Batsh et al. 
2019; Dissanayake and Han 2021). Other studies have shown 

Fig. 6   Plant types of perennial 
herbs used in GR research
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that suitable treatment and disinfection methods can convert 
harvested rainwater into drinking water (Alim et al. 2020).

Greywater recycling and green roof irrigation

Greywater is wastewater that includes water from baths, 
showers, hand basins, washing machines, dishwashers, 
and kitchen sinks, excluding streams from toilets (Eriks-
son et al. 2002). Some sources exclude kitchen wastewater 
from the other greywater streams (Al-Jayyousi 2003; Wil-
derer 2004). Greywater use on GRs is an alternative and 
sustainable method for GR irrigation. It is more complex 
and more expensive than rainwater harvesting because it 
requires a pipe system separate from blackwater. Also, one 
of the advantages of greywater is the expanding place of its 
generators in everyday use and its availability.

Several studies suggested using greywater for GR irriga-
tion (Mahmoudi et al. 2021). Chowdhury and Abaya (2018) 
carried out an experimental study of greywater-irrigated GR 
systems in Al Ain, United Arab Emirates. By monitoring the 
greywater influents and the GR effluents from two intensive 
and two extensive GRs irrigated with greywater, they observed 
the changes in the greywater quality and organic treatments 
(Chowdhury and Abaya 2018). They showed that treated grey-
water effluent from the GRs met the local standards for recy-
cled wastewater-based irrigation in parameters like pH, elec-
trical conductivity, salinity, and total dissolved solids (TDS). 
For example, the values of mean TDS in the effluents from the 
extensive and intensive systems were ~ 1.7 g/L and ~ 1.3 g/L, 
respectively. They expressed that TDS removal was greater 
in intensive GRs due to the greater depth of the soil–sand 
medium in the intensive GR. One building in Seattle, Wash-
ington (Bullitt Center), uses harvested water for interior use, 
then uses a constructed wetland GR as a final treatment of the 
greywater. Research on this GR suggests that there is a proper 
balance between the sourcing of water and cleaning capacity 
of the vegetation on the GR (Dvorak and Rottle 2021). On the 
base floor of this building, a 212-m3 cistern is located to collect 
69% (128,000 gallons) of the rooftop runoff, and the stored 
water is used for potable and non-potable uses. After use in 
the building, the water is pumped on the GR through a series 
of drip lines so that the plants can absorb the nutrients. Then 
the water is collected and pumped through the system several 
more times to the point that the nutrients have been absorbed 
(Center 2013; WBDG 2016).

Thomaidi et al. (2022) conducted an experiment in Les-
vos island, Greece, to assess the use of GRs as modified 
shallow vertical flow constructed wetlands for greywater 
treatment in buildings. They investigated the effects of dif-
ferent design parameters such as substrate material (perlite 
or vermiculite), substrate depth, and plant species (Gera-
nium zonale L., Polygala myrtifolia L., or Atriplex halimus 
L.) on the effluent quality. The GRs planted with Atriplex 

halimus and with 20 cm of vermiculite substrate had the 
best BOD (91%), TSS (93%), COD (91%), and turbidity 
(93%) average removal efficiencies. They showed that sub-
strate depth is a highly influential factor in greywater treat-
ment and observed when the substrate depth was decreased 
to 10 cm the average removal efficiencies were reduced to 
60–75%. Also, the recirculation of a portion of the effluent 
in the influent increased the turbidity, organic matter, and 
nitrogen removal.

Liu et al. (2021) expressed that GRs irrigated with domes-
tic wastewater satisfied GR irrigation requirements and 
improved the urban wastewater treatment system. Through 
using greywater for GR irrigation and planting different 
plant species, they showed that GRs can be considered as 
a nature-based solution for domestic wastewater treatment 
and revive the urban water resource (Liu et al. 2021). Using 
greywater for GR irrigation can have multiple benefits. Yet, 
there were no reported adverse effects on plants due to grey-
water for irrigation (Agra et al. 2018). In a study for indicat-
ing the plants’ response to greywater irrigation, Yalcinalp 
et al. (2019) compared two different greywater models and 
tap water for GR irrigation. They showed that the use of 
greywater provides more positive effects on plant growth 
compared to that of tap water. Also, utilizing greywater can 
reduce the irrigation costs of the GR (Yalcinalp et al. 2019). 
Hence, by using greywater in GRs, it is possible to sustain 
plant growth, reduce the use of potable water, and reduce 
demands on municipal wastewater treatment plants (Xu et al. 
2020). One challenge with the use of greywater on GRs is 
the testing and monitoring of water quality to ensure that 
water quality is acceptable for local use. Special permits or 
permissions may be required to secure the use of greywater 
based on individual local authorities and guidelines.

Innovative sources for water consumption and irrigation 
purposes

Atmospheric water harvesting (i.e., fog) is one of the unique 
sources that has caught the attention of researchers (Bagheri 
2018; Kim et al. 2018; Tu and Hwang 2020; Zhou et al. 
2020). Water harvesting methods from the atmospheric fog 
and dew have been found to be useful in different appli-
cations (Jarimi et al. 2020). Several studies (Beysens et al. 
2007; Tomaszkiewicz et al. 2015) indicated that dew water 
collection could serve as a potential water source in tropi-
cal, high humid, and specific climates. Also, some studies 
showed that dew water harvesting is a sustainable and suit-
able source for agriculture purposes. Tomaszkiewicz et al. 
(2017) in Beiteddine, Lebanon (semi-arid climate), assessed 
the potential of dew harvesting during the dry season for 
agriculture purposes. They showed that a dew harvesting 
system with a size of 2  m2 could produce 4.5 L/month, 
which is sufficient for the irrigation of tree seedlings.
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In an innovative approach to improve GR water use effi-
ciency, Pirouz et al. (2021) assessed dew and fog harvesting 
potential during the dry season. The average potential for 
fog in humid regions is 1.2 to 15.6 L/m2/day and for dew is 
0.1 to 0.3 L/m2/day, in the Mediterranean regions for fog is 
1.6 to 4.6 L/m2/day and for dew is 0.2 to 0.3 L/m2/day, and 
in the arid regions the potential for fog is 1.8 and 11.8 L/
m2/day and for dew is 0.5 to 0.7 L/m2/day. The study’s con-
clusion demonstrated that fog harvesting could provide the 
total water requirement of the GRs. Dew harvesting by PV 
(photovoltaic) panels could provide 15 to 26% of the water 
requirements (Pirouz et al. 2021). However, there is a need 
to conduct practical studies in different climates to investi-
gate the potential of atmospheric water harvesting for GR 
irrigation.

Smart irrigation and monitoring

One of the direct ways to manage water use and conservation 
on GRs is the use of smart irrigation technology. Several 
studies on GRs with smart irrigation systems indicated that 
water requirements can be calculated by evapotranspiration 
data (Bandara et al. 2016) and precipitation information 
(Stovin et al. 2013) or by directly observing the substrate 
moisture with sensors (Jim and Peng 2012). When substrate 
moisture content drops below a certain level, the irrigation 
system can be programmed to run. When sufficient irrigation 
has been delivered or in the case of rainfall, the irrigation 
system is prevented from running a cycle so there will be 
no excessive watering and superfluous supply. This method 
was applied by Tomasella et al. (2022) on shrub vegetated 
Mediterranean extensive GRs, and results suggested that 
maintaining substrate water level at a certain threshold was 
significantly effective in optimizing GR benefits, reduc-
ing water consumption and favoring plant establishment. 
Besides, significant water savings were reported compared 
to the common irrigation timer maintenance method.

Other methods include a study (Gu et al. 2021) where 
a neural network model is proposed in order to learn from 
a process-based agricultural systems model. This process 
determines irrigation timing and amount by predicting soil 
moisture. In a similar study, Tsang and Jim (2016) used 
artificial intelligence modeling to optimize GR irrigation 
efficiency, and for simulating changes in soil moisture, used 
fuzzy logic and an artificial neural network. They indicated a 
20% reduction in water-use and improvement in plant cover-
age by applying this method.

Using adaptive materials and additives that improve GR 
water‑use

Designing GRs and selecting the appropriate materials and 
vegetation type can be done in a way to reduce irrigation 

requirements and improve GR water-use. Increasing the 
WHC potential of the substrate layer would greatly improve 
the irrigation requirement of GRs. Some materials, as men-
tioned in “Material impacts on GR water holding capacity” 
section, have the ability to increase the WHC.

In a study, Kanechi et al. (2014) by testing and comparing 
three different substrates (amended soil, turf mat, furnace 
bottom ash), showed that amended soil, due to the presence 
of decomposing organic matter, had higher water and nutri-
ent holding capacities. Paradelo et al. (2019) investigated 
WHC in modified compost-based substrates and showed 
bentonite increased the WHC of the substrates. Some 
authors worked on some additives, such as hydrophilic 
gels, to improve the WHC (Williams et al. 2010; Sutton 
et al. 2012). Savi et al. (2014) assessed a GR performance 
amended with hydrogel and showed that hydrogels consid-
erably increased the water content of substrate at satura-
tion and water available to vegetation. However, increasing 
the water holding potential of GRs must be done with great 
attention to the roof’s capability to sustain heavier loads. 
Because heavier loads on roofs could cause damage to build-
ings with weak or old structure. Other research shows how 
the water retention layer can play an essential role in sustain-
ing soil moisture (Tan et al. 2017), and through retaining 
water, it can reduce the irrigation requirement. A study by 
Roehr and Kong (2010) showed that GR summer irrigation 
decreased from 54.4 to 8.6 mm in Vancouver, Canada, by 
adding a water retention layer (Roehr and Kong 2010).

However, the crucial role of plant type cannot be 
neglected in irrigation (Zhang et al. 2021). Some plant types, 
such as mosses, have high-water retention and can be ben-
eficial for the soil moisture content (Elumeeva et al. 2011). 
Roehr and Kong (2010) expressed that if an average roof 
area of 3700 m2/ha is assumed in Shanghai, GRs with low 
water-use plants could potentially reduce stormwater runoff 
by 903.2 m3 per year and by using high water-use plants this 
number reaches 1806.7 m3 per year (Roehr and Kong 2010). 
A study in Portugal for optimizing the water-use of GRs 
suggested using native plant species due to better tolerance 
against drought (Paço et al. 2019). This study showed that 
the mixture of mosses and vascular plants were an interest-
ing solution for water-use improvement since mosses had a 
large water retention capacity, and vascular plants can use 
the retained water (Paço et al. 2019). Therefore, the selec-
tion of suitable plants and materials influences the GR water 
requirement.

Conclusion

Due to the growing popularity of GRs and various attempts 
to improve different aspects of GRs, it is crucial to learn 
and know how to build sustainable GRs to maximize their 
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ecosystem services and reduce their negative environmen-
tal impacts. In order to achieve these purposes, considera-
tions and influential factors must be known, and the role of 
each of them needs to be distinguished. By following the 
review methodology and its phases, this study focused on 
three main topics: (1) substrate and drainage materials, (2) 
plants and GR performance (biological GR components), 
and (3) sustainable irrigation. In each of these three topics, 
valid points are presented to be considered for building sus-
tainable GRs, with enhanced performance. The main points 
include:

1)	 GR materials (Substrate and drainage layer)

•	 The key to reach sustainable GRs is using sustainable 
materials in different layers of GRs. Substrate and 
drainage layer materials affect the GR performance 
and influence the adverse environmental impacts. 
Substrate and drainage materials significantly affect 
stormwater retention potential, leachate quality, and 
plant survival and also determine GR environmental 
footprints.

•	 The use of recycled, reused, or locally available 
materials can reduce GR environmental footprint and 
improve GR’s life cycle. However, the influence of 
these materials on GR performance must be exam-
ined carefully. In some cases, using the materials that 
improve GR sustainability results in a reduction in 
GR performance.

•	 Transportation of GR materials is another issue that 
can cause environmental pollution and CO2 emis-
sions. The solution is using locally available materi-
als. However, the GR supply market has not devel-
oped in some regions, and demand for more research 
and more suitable local materials is rising.

2)	 Plants on GRs

•	 GR vegetation is a critical element of the overall per-
formance of the GR. Different forms of plants have 
different potentials in CO2 sequestration, air pollu-
tion absorption, temperature reduction, stormwater 
retention, local habitat provisions, and improving 
water quality and consumption. However, plant sur-
vival must not compromise in the strive for improv-
ing GR performance. It has shown that having higher 
plant diversity would benefit GR sustainability.

•	 Vegetation LAI has an important effect on tem-
perature reduction, as an increase in LAI can offer 
more summertime cooling and reduce the urban 
heat island effect. In ecoregions where there are few 
plants with large leaves, it may be possible to cluster 
plants or use different forms of plants to shade the 
rooftop.

•	 Lifeform is one of the significant plant attributes 
which reveals the adaptive structure of a plant in a 
given habitat. Based on the conducted review, peren-
nial herbs are the most frequent lifeform for selected 
vegetation on GRs. They do not need to be replanted 
each year and are heat and drought tolerant.

3)	 Sustainable irrigation

•	 A critical aspect of a sustainable GR is managing 
irrigation by avoiding excessive use of potable water. 
Irrigation is vital for plant survival and has a major 
influence on GR performance (i.e., temperature 
reduction).

•	 Several ways to improve GR irrigation include employ-
ing alternative water sources, monitoring and smart 
irrigation, adding additives, and using materials that 
increase WHC. Lack of knowledge about sustainable 
irrigation has caused many GRs to use the traditional 
irrigation method and stress limited water sources.

•	 Using alternative irrigation sources like rainwater, 
greywater, and atmospheric water, besides satisfy-
ing water-use of GRs, can be considered as sustain-
able water sources for other purposes. Smart irriga-
tion and using sensors in GRs reduce the amount 
of irrigation requirement. Greywater shows promise 
for satisfying GR irrigation demand since it has no 
adverse effect on GR performance and can benefit 
plant growth. Many projects have used GR for grey-
water treatment and have had success.

•	 Considering the potential of some vegetation and 
some substrate and drainage materials to reduce the 
water-use of GR is important. Materials and plant 
species have the ability to increase WHC so that lit-
tle irrigation will be needed. Also, some additives 
are introduced by researchers that have the ability to 
reduce the water-use of GRs by increasing WHC.

The results of this study can be useful to GR designers 
and legislators to establish and make use of knowledge to 
support regulations that follow common goals and help 
build sustainable GRs with better performance. This paper 
addresses the current lack of knowledge and challenges of 
building sustainable GRs. It may also be useful to help other 
GR researchers better understand research gaps and needs 
for future studies.
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