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Abstract

Green roofs have gained much attention as a modern roofing surface due to their potential to deliver many environmental
and social benefits. Studies have indicated that different GR designs deliver different ecosystem services, and there are
important factors that affect GR performance. This article reviewed significant factors that influence GR performance and
sustainability. Substrate and drainage layer material choice significantly affects stormwater retention potential, leachate
quality, plant survival, and determines GR environmental footprints. Subsequently, type of plants, their form, and kinds used
on GRs impact GR ecosystem function. Leaf area is the most studied trait due to its influence on the cooling potential and
energy performance. In order to achieve a sustainable GR, it is essential to select the type of plants that have a high survival
rate. Perennial herbs, particularly forbs and grass as dominant groups, are heat and drought tolerant, which make them suit-
able in GR experiment. Furthermore, selecting a suitable irrigation system is as important as two other factors for having
a sustainable GR. Irrigation is essential for plant survival, and due to the current pressure on valuable water sources, it is
important to select a sustainable irrigation system. This review presents three sustainable irrigation methods: (i) employing
alternative water sources such as rainwater, greywater, and atmospheric water; (ii) smart irrigation and monitoring; and (iii)
using adaptive materials and additives that improve GR water use. This review sheds new insights on the design of high-
performance, sustainable GRs and provides guidance for the legislation of sustainable GR.
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Global disruptions such as COVID-19 (Yu et al. 2021) and
climate change have brought attention to the importance
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and quality of our built and natural environments. How we
construct and build cities must change if we want to move
toward cities with more resilience, sustainability (Addanki
and Venkataraman 2017; Bibri and Krogstie 2017; Teix-
eira et al. 2021), and greater access to nature (Sharifi 2021).
Green infrastructure is an essential part of sustainable and
healthy cities that include parks, green spaces, and low-
impact development practices such as green roofs (GRs)
(Suppakittpaisarn et al. 2017; Langemeyer et al. 2020; Lib-
eralesso et al. 2020). Green infrastructure has a wide range
of environmental benefits (Santamouris and Osmond 2020;
Changsoon et al. 2021) and can increase the resilience and
health of the urban systems toward several risk categories
like mitigating stormwater runoff (Kim and Song 2019;
Parker and Zingoni de Baro 2019).
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GR guidelines and standards have been developed in
Europe and North America to enlighten about state-of-
the-art performance expectations for GRs. For exam-
ple, the “Guidelines for the Planning, Construction and
Maintenance of Green Roofing,” commonly referred to
as the German FLL Guidelines for GRs (FLL 2018), are
one the most widely used and detailed guidelines among
others (Dvorak 2011). The German FLL guidelines for
GRs specify desirable material choices, the weights of
various reclaimed materials that can be used as drain-
age layers, weights of common forms of plants, nutrient
and chemical ranges for substrates, and ranges of water
flow through and retention rates among many other sys-
tem elements (FLL 2018). The FLL guidelines for GRs
include information about how GR can be made to be
resilient and sustainable, such as how to minimize envi-
ronmental pollution and add positive benefits for urban
ecosystems and building owners and users.

Three types of GRs are recognized based upon their level
of complexity: extensive, semi-intensive, and intensive GRs
(Raji et al. 2015; FLL 2018). Extensive GRs are shallow
light-weight systems (60 to 150 kg/m?) that typically have
a growing medium depth of 5 to 15 cm (FLL 2018). Plant
diversity is generally limited due to the shallow substrate
depths; however, these are the most frequent kind of applica-
tion of GRs due to their low cost.

Semi-intensive GRs (also known as simple intensive)
have intermediate characteristics of extensive and inten-
sive GRs. This type has weight and thickness greater
than extensive GRs and lower than intensive GRs.
Semi-intensive GRs typically have substrate depths of
15-25 cm (FLL 2018). Semi-intensive GRs generally
accommodate a wide variety of types of vegetation due
to their substrate depth. Intensive GRs have deep sub-
strates (> 25 cm) and a wide variety of vegetation that
can include shrubs and trees (Droz et al. 2021b; Manso

Fig. 1 Layers common to mul-
tilayer GRs. Source: author’s
design
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et al. 2021). Our review addresses application of exten-
sive and semi-intensive GR, because of their intended
widespread application and environmental benefits.

GRs have several layers of materials (Fig. 1), including
the vegetation layer, substrate layer (growing media), water
retention layer, filter layer, drainage layer, root barrier, and
protection layer (Bozorg Chenani et al. 2015). Vegetation is
planted into the substrate; therefore, the materials and nutri-
ents of the substrate layer support plant growth and plants’
physiological performance (Young et al. 2014).

The water retention layer captures stormwater and
reduces rooftop runoff, and also provides water for
plants (Simmons et al. 2008). The filter layer is above
the drainage layer and prevents substrate fine particles
from passing through the drainage layer. By removing
excessive water through its porosity, the drainage layer
is responsible for providing a balance between drainage
and water retention and adequate root aeration. The pro-
tection layer and root barrier are placed at the lowest
level of the layers, protecting the building structure from
penetration of vegetation roots and small-sized particles
into the structures (Bozorg Chenani et al. 2015).

Some cities require the use of GRs on some buildings due
to the many ecosystem services that GRs provide. GRs can
reduce air pollution (Banirazi Motlagh et al. 2021), reduce
urban heat islands (Kolokotsa et al. 2013; Santamouris
2014; Imran et al. 2018; Yang et al. 2018; Asadi et al. 2020;
Tiwari et al. 2021), sequester carbon (Shafique et al. 2020;
Sultana et al. 2021; Seyedabadi et al. 2022), reduce rooftop
stormwater runoff (Shafique et al. 2018; Jusi¢ et al. 2019;
Kolasa-Wigcek and Suszanowicz 2021; Wang et al. 2022bj;
Wang et al. 2022a, b), cool down the ambient temperature
(Zhang et al. 2020; Dandou et al. 2021; Jamei et al. 2021;
Zheng et al. 2021), and mitigate urban heat islands (Agham-
ohammadi et al. 2021a, b; Aghamohammadi et al. 2021b)
and air pollution (Hong et al. 2021; Wang et al. 2021a, b).

Water Retention

Drainage Layer
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The vegetation and substrates of GRs are also known to
reduce energy demands (Aboelata 2021; Bevilacqua 2021;
Movahed et al. 2021; Rafael et al. 2021; Alim et al. 2022).
Because of the wide variety of ecosystems services pro-
vided by GRs, many cities have implemented legislation
and development incentives (Carter and Fowler 2008; Chen
2013). For example, in Toronto, Canada, commercial, insti-
tutional, and residential buildings with more than 2000 m?
roof area are required to include 20-60% of the roof area
as GRs (Chow et al. 2018). In Tokyo, Japan, new buildings
are required to include 20% roof vegetation coverage, while
15% GR coverage is required in Basel, Switzerland and 70%
in Portland, USA (Townshend and Duggie 2007). In Chi-
cago, the USA, up to 50% of the cost of implementation
will be supported if the GR covers higher than 50% of the
net roof area (Berardi et al. 2014). However, most of these
policy actions only focus on GR coverage and speeding
up the implementation of GRs around the cities, regard-
less of their performance and environmental impacts. In
spite of the fact that GR performance, sustainability, and
environmental impacts can be significantly altered by only
changing some of the influential factors.

Sustainable aspects of GRs include their inert materi-
als, live materials (vegetation), and the use of water. Inert
materials include the GR substrate and drainage layers,
both of which can be made from recycled, reused, and
locally sourced materials (“Substrate and drainage materi-
als” section).

The appropriate selection of vegetation is essential to
the overall performance of GRs (Lundholm and Williams
2015). In this paper, we investigate plant traits and other
factors related to plants that influence GR performance
(“Plants and green roof performance” section).

The third aspect influencing sustainable GRs is water-
use and irrigation. We investigate ways that irrigation
influences GR sustainability and improves its performance.
In some climates, irrigation is vital for GRs since the
plants’ survival relies on it, and also, GR cooling poten-
tial can be enhanced by a suitable irrigation approach (Van
Mechelen et al. 2015). Sustainable GRs employ alternative
water sources such as rainwater, greywater and innovative
sources (atmospheric water). GRs can make use of smart
irrigation and monitoring, and also adaptive materials and
additives can be used to improve water use in GRs (“Sus-
tainable irrigation” section).

Since GRs are becoming employed and legislated into
municipal ordinances, it is important to understand how GRs
can be made to be sustainable and resilient interventions. This
study aims to reveal influential factors of high-performing
GRs and GRs with minimal adverse environmental impacts.
To address these important aspects of GRs, we employ a sys-
tematic review of the literature to investigate these aims.

@ Springer

Methodology of the systematic literature
review

A systematic review of the literature was used to identify,
review, evaluate, synthesize, and report on the findings from
peer-reviewed research (Denyer and Tranfield 2009). A five-
phase process was used to establish a systematic review and is
described below, and its phasing is shown in Fig. 2. The process
included a pilot search and development of aims of the study,
the location of research, the selection and study of literature, the
analysis and synthesis of research, and the reporting of results.

Pilot search

A pilot search was conducted in order to gain an understanding
of the categorical nature of existing literature. We also con-
sulted with GR experts about the categorical topics of GRs to
understand if there might be gaps in the existing literature and
to develop the aims of this study (Counsell 1997).

Locating studies and relevant literature

Selecting suitable online search engines is important to
identify scientific peer-reviewed research. Web of Science,
Springer, MDPI, Google Scholar, and Scopus were used to
identify potential articles. Papers that included “green roof”
or “green infrastructure” in their keywords, title, and abstracts
were located. Keywords for searches included GR material,
plant, vegetation, water-use, irrigation, sustainable, ecosystem
services, and life cycle.

Study selection and evaluation

We established a set of inclusion and exclusion criteria for the
scope of the review. First, the time span of the existing litera-
ture was set between January 2000 and July 2022. Furthermore,
since English is the common language of peer-reviewed science,
only research written in English were selected. Authors worked
independently to identify high-quality peer-reviewed and relevant
studies. Types of literature included peer-reviewed journal arti-
cles, conference papers, book chapters, and books. The authors
read the abstracts and examined the compliance of the selected
studies with the aims. Afterwards, the remaining articles were
evaluated in greater detail. The authors synthesized their find-
ings and compiled the list of articles for analysis and synthesis.

Analysis and synthesis

In order to analyze the content of the selected literature, it was
sorted into categories based on their association with the research
questions and aims. The categories include GR ecosystem ser-
vices, GR sustainability, GR life cycle, GR plant types, GR
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Fig.2 Diagram of the five
phases of the systematic litera- Phase 1 Phase 2
ture review used in this study
Pilot search Locating the studies:
- Get a deep understanding of topic content Covering a large body of relevant studies:
- In-depth interview with professionals
- Finding the gaps -
- Formulate the study question 1- Web of Science
Research question: 2- Springer
How to improve GR performance and 3- MDPI
sustainability and reduce its adverse 4- Google Scholar
environmental impacts? 5- Scopus
- ) *Green Roof* '§
Finding the influential fact OR :
HCHIE UL DU IR0 *Green Infrastructure* by —
and considerations v
= Including one of the 2
X . @ following Keywords ﬁ
Q1: Which factors affect GR life cycle and S &
reduce its environmental footprint? = =
8 =
.: 2
Q2: What factors need to be considered for E . . g
improving GR ecosystem services? A *Material *Plant *Vegetation <
*Water use *Irrigation g
Q3:Which strategies can be used for *Sustainable *Life cycle E
improving GRs water use and irrigation? *Ecosystem services .g
@
Phase 5 Phase 4 Phase 3
Reporting the results: Analysis & synthesis: Selection process:
v v Inclusion / exclusion criteria
Reporting the results T
and discussion: - Tabulation of data - Published between 2000-2022
-Using 3 main parts for . ) ( 5 . .
= - Writt Engl
reporting all the results and Clogoies ot ritten in English —

presenting the outcomes:

1- Substrate and drainage
material

2- Plants and green roof
performance

3- Sustainable irrigation

-Conveying the necessary
information in each part for
answering the targeted
questions

materials, GR water-use, and irrigation. The authors then sur-
veyed each of these categories and summarized them to reach an
approach for presenting the results which targeted the questions

properly.
Reporting of results

We report the results and discussion in three sections, includ-
ing (1) substrate and drainage materials, (2) plants and GR per-
formance, and (3) sustainable irrigation. This study highlights
the current knowledge and suggestions of the scholars, reviews

- Examining the compliance of
found studies through reading
the abstracts.

-Survey each of the categories
and summarizing them

-Reach to an approach for

. - The authors synthesized their
presenting the results

findings and compiled the list
of articles for analysis and
synthesis.

critical points and outcomes, presents influential factors and
considerations, and uses figures and a table to answer the study
questions.

Results and discussion
Substrate and drainage materials

The literature indicates that the selection of substrate and
drainage materials for GR construction can influence the
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water holding capacity of the substrate, the runoff water
quality, plant growth, and environmental footprints.

Material impacts on GR water holding capacity

One of the main aims of GRs is to store and slow the flow of
water. Many researchers have utilized different materials in
order to increase the stormwater capacity of GRs (Table 1).
For instance, Vacek et al. (2017) used hydrophilic mineral
wool (HMW) in the substrate layer. It was observed that
HMW holds more water for longer periods than a substrate
with a standard dimple membrane. However, HMW pro-
duction increases adverse environmental impacts; because
the HMW manufacturing process consumes relatively high
amounts of energy (Vacek et al. 2017). Therefore, GR
designers have faced a challenge to find suitable materials
that improve GR water holding without increasing the envi-
ronmental footprints GRs.

In this regard, different materials like concrete waste,
biochar, mineral wool, etc. have been tested (Bisceglie et al.
2014; Cao et al. 2014; Vacek et al. 2017). Utilization of
some of these materials such as concrete waste would be
beneficial to reduce the consumption of natural materials,
and materials like biochar would help to reach a lighter
substrate layer. Table 1 presents the results of some studies
that have worked on different substrate and drainage layer
materials.

Material impacts on runoff quality

The leachate from GRs might contain different amounts
of pollutants, and its combination with stormwater runoff
turns it into a new non-point pollution source in urban areas.
Substrate and drainage layer materials significantly impact
the GR runoff quality (Xu et al. 2022). Whether GRs act
as a sink for substances through deposition or as non-point
sources of pollution depends on the substrate and drainage
materials (Berndtsson et al. 2009; Alsup et al. 2011; Karc-
zmarczyk et al. 2014; Wang et al. 2017; Baryta et al. 2018;
Jennett and Zheng 2018; Qiangian et al. 2019). Additionally,
the fact that water flowing from GRs has potential for non-
potable uses adds to the importance of using materials that
prevent water pollution (Santana et al. 2022).

In order to assess the impacts of GR substrate materials
on leachate quality, many studies on different materials have
been conducted. Some of them showed that some materi-
als like Arkalyte (an expanded clay) could lead to a high
concentration of heavy metals in the leachate that exceeded
standards (Alsup et al. 2011). Therefore, in order to avoid the
negative effects of materials on the leachate, different mate-
rials need to be tested. Table 2 provides an overview of the
studies that investigated materials’ impact on runoff quality.

@ Springer

Influence of GR substrate materials on plant growth

Selecting suitable GR materials in a way to maximize plant
growth and survival is complicated due to the great influ-
ence of materials on GR plants. Furthermore, when edible
plants are decided to be planted on GR, the importance of
substrate layer design would be greater. Since it is indicated
that plants’ nutrient levels are affected by GR substrate, and
Nitrates, Aluminum, Magnesium, Lead, and Selenium might
lead to safety issues for producing crops like lettuce and
tomato on GRs (Nektarios et al. 2022).

Therefore, many GR researchers have done studies and
tested different materials to investigate the impacts of sub-
strate materials on plant survival and physiological perfor-
mance. Table 3 summarizes the results of some of these
studies that tested different GR layer materials’ impacts on
the plants.

Materials and green roof environmental footprints

Substrate and drainage layer materials significantly affect
the environmental footprints of GR life cycle (Table 4)
(Gargari et al. 2016; Koroxenidis and Theodosiou 2021).
Generally, to avoid an unnecessary contribution of addi-
tional environmental pollution and greenhouse gases
(GHGs) emissions, long-distance transportation of mate-
rials must be avoided, when local materials are available
(Lira and Sposto 2016). In addition, material sourcing
that requires high energy consumption, water consump-
tion, and waste production as part of their manufacturing
must be avoided. For example, in order to show adverse
environmental impacts of the manufacturing of some
materials for GRs, Bianchini and Hewage (2012) ana-
lyzed air pollution attributed to GR material manufactur-
ing processes. The study demonstrated that air pollution
through the polymer production process can be balanced
by GRs in 13-32 years (Bianchini and Hewage 2012).
They suggested that there is a need to replace current
GR materials with more environmentally friendly and
sustainable products.

Using local materials is recommended to avoid environ-
mental pollution (Eksi et al. 2020). One example of sustain-
able sourcing of materials is GR on the EcoCenter education
building at Heron’s Head Park in San Francisco, California
(Dvorak and Drennan 2021). Designers sourced stone for
a rooftop pond for wildlife, and the gravel edging for the
entire GR, from a gravel quarry less than 1 km away. Addi-
tionally, the substrate on the GR of a kitchen house at the
Slide Ranch (north of San Francisco) is made entirely from
gravel, sand and soil found on the property (Dvorak and
Drennan 2021). Because the site had appropriate materi-
als to assemble a suitable substrate, no offsite delivery of
materials was needed.
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that the six types of substrates that were
studied had appropriate field capacity, fine
nutritional properties and pH suitable for
plant nutrition. By comparing the sub-
strates produced from green coconut fiber
with those from sugarcane bagasse, it was
found that the substrate with sugarcane
bagasse had nitrogen content closer to the
range reported as ideal. All of the sub-
strates showed suitable physical stability

The physico-chemical analysis showed

Summary of results

GR layer
Substrate

Humus generated from vermicomposting
and sugarcane bagasse or green coconut
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To select suitable materials for substrate and drainage
layer, GR designers need to consider all the aspects that
are influenced by the selection of GR materials. They need
to select the materials that improve GR performance and
reduce its environmental footprints. For example, recycled
and renewable materials have the potential to reduce the
carbon footprint of GRs by 73% (Tams et al. 2022); how-
ever, it is indicated that some recycled materials can cause
water contamination (Chen et al. 2018). Accordingly, assess-
ing the results of previous studies on different materials is
an important step in the material selection process to reach
sustainable GR.

Plants and green roof performance

One of the most critical aspects of establishing ecosystem
services on GRs is the selection of suitable plant forms and
taxa. Among the reviewed studies, the type of plants, their
form, and kinds used on GRs impact GR ecosystem func-
tions (Lundholm et al. 2010; Lundholm and Williams 2015;
Xie et al. 2018) and can significantly change GR perfor-
mance. Figure 3 illustrates the frequency of different GR
functions reported in our chosen studies. The effect of plants
on energy performance is the most frequently studied func-
tion. Other important functions include carbon sequestra-
tion, water retention, purification of water, and support of
biodiversity.

Carbon sequestration potential

The ability of plants to sequester carbon is multifactorial.
Different traits and environmental determinants are involved,
such as how plants use water, air temperature, and relative
humidity. Due to difficulties in measuring such traits on live
GRs, studies were conducted under controlled conditions.
In a review on influential factors that affect carbon seques-
tration on GRs, Wan Ismail et al. (2019) identified sixteen
influential factors that affect carbon sequestration on GRs.
GR plants assimilate carbon through photosynthesis
and return some of it to the atmosphere through respiration
(Kavehei et al. 2018; Shafique et al. 2020). Several stud-
ies (Chen 2015; Heusinger and Weber 2017; Cascone et al.
2018) have investigated different plant species and exam-
ined the carbon sequestration potential of different plants.
Some plants sequester more than others. Grasses for exam-
ple, offset more CO, emissions during the life cycle of GRs
(Kuronuma et al. 2018) and were found to reduce a build-
ing’s carbon footprint by about 26 kg/m? (Seyedabadi et al.
2021). A study (Kuronuma and Watanabe 2017) indicated
that physiological and morphological traits of vegetation
types have a considerable effect on the carbon sequestration
of GRs. In a study, Kuronuma et al. (2018) calculated the
total annual carbon sequestration of three grass species and

@ Springer
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Fig.3 Functional categories
and frequency of studies
investigating the roles of plants
on GRs
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a flowering plant and converted it to annual CO, seques-
tration, determined that Zoysia matrella (L.) Merr. seques-
tered 2.459, Festuca arundinacea (Schreb.) sequestered
2.754Cynodon dactylon (L.) Pers. sequestered 2.530 Sedum
aizoon (L.) sequestered 1.684 kg of CO, per square meter
per year (Kuronuma et al. 2018). Moreover, Charoenkit and
Yiemwattana (2016) revealed that the GRs annual carbon
storage capacity is between 0.37 and 30.12 kg/m?, and the
plant species have a significant role in this number (Char-
oenkit and Yiemwattana 2016).

Whittinghill et al. (2013) found the results quite
remarkable on GR plant type. Plants with woody struc-
ture and higher biomass volume are able to sequester more
carbon, e.g., Perennial herbs, grasses as well as ornamen-
tal landscapes (67.70 kg.m?). In line with Whittinghill’s
study, Rowe (2016) also represented that plants with the
greatest biomass act more effectively on carbon capturing
and storing.

Getter et al. (2009) conducted a study on some sedum-
based GRs to evaluate the natural capacity of plant selec-
tion on carbon sequestration. Sedum album L. stored
239 +53.6 C m2 (g), which shows the highest rate of
above-ground carbon storage among other sedum species.
In 2015, Luo and his colleagues used sewage sludge in a
GR to analyze the carbon accumulation in each selected
plant species. The highest carbon storage (4.23 kg C m~2)
and carbon sequestration (3.85 kg C m~2year~!) found in
Ligustrum X vicaryi Rehder. (Luo et al. 2015).

Importance of suitable plant species for air purification

The role of plant forms and different taxa of vegetation in
air pollution reduction is significant. There are two main

o

0 5 10 15

Number of studies

mechanisms in this function: trapping particulate mat-
ter and other pollutants physically (Yang et al. 2008) and
pollution absorption into plant tissues (Clark et al. 2008;
Currie and Bass 2008). Plant pollution uptake rate var-
ies between plant taxa. For instance, Speak et al. (2012)
studied the differences between diverse plant species and
showed a 664% difference between plants that trapped the
most particulates and the least. They expressed that this
difference is mainly due to leaf characteristics like leaf
hairs and ridges (Speak et al. 2012).

Moreover, a positive relationship was observed between
leaf hair densities, leaf wax quantities, and plant height
with particulate matter accumulation (Speak et al. 2012).
The importance of these findings shows itself in the
large-scale implementation of GRs. For example, Currie
and Bass (2008) used the urban forest effects (UFORE)
model and estimated that about 109 ha of GRs in Toronto,
Canada, with herbaceous plants, would reduce 7.87 met-
ric tons of air pollutants every year. In another research,
Yang et al. (2008) showed that by implementing 19.8 ha
of GRs in Chicago, Illinois, approximately 1675 kg of air
pollutants could be removed in 1 year.

Plants as cooling effects and temperature reduction
(energy performance)

Several studies have shown the effect of plant type on
temperature reduction (Lundholm et al. 2010; Maclvor
and Lundholm 2011; Maclvor et al. 2011; Sookhan et al.
2018). For the cooling effects of plants on GRs, the essen-
tial role of plants and vegetation is through evapotranspi-
ration (Bass et al. 2003). Also, plants increase the roof
albedo and reduce the urban heat island effect; in some
cases, plants drop the absorbed energy in half (Sanchez and
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Reames 2019). A study (Cao et al. 2019) showed that the
cooling generated by the GR is related to the yield of the
plants, which is strongly associated with the type of plants
with the different photosynthetic and water-use strategies.
In this study, C4 grasses demonstrated the highest tran-
spiration (4.4 mm day‘1 of Cynodon dactylon (L.) Pers.),
which means a greater cooling effect than the C3 grasses.
CAM plants contribute to the cooling effect by absorption
and insulation. Moreover, in a study for investigating the
energy performance of a GR, Foustalieraki et al. (2017)
indicated that different plant species offer different thermal
behavior on GRs and expressed that an optimum selec-
tion among different plant species is necessary to reach the
best GR performance. They also showed that having plants
with dense foliage (compacted leaves and/or canopy that
block the path of sunlight reaching the ground) will result
in more reduction in surface temperature (Foustalieraki
et al. 2017).

Studies that examined different vegetation found 9.7-24%
differences in substrate temperature between vegetation
types, with some proofs that this differentiation increased
over time as vegetation cover increased (Lundholm et al.
2010; Maclvor and Lundholm 2011; Maclvor et al. 2011,
Dvorak and Volder 2013a, b). Schindler et al. (2019) com-
pared two GRs with different vegetation types and observed
a 1.5 °C temperature difference between them and expressed
that high albedo, evapotranspiration, and shading are the
essential factors in a GR's cooling effect (Schindler et al.
2019). Many studies (Zhou et al. 2018; Samabh et al. 2020;
Cavadini and Cook 2021; Grala da Cunha et al. 2021; Tadeu
et al. 2021) unanimously expressed that the vegetation Leaf
Area Index (LAI) significantly impacts temperature. For
example, Rakotondramiarana et al. (2015) conducted a
study in Madagascar Island on an extensive GR and showed
that indoor air temperature decreases about 1 °C by increas-
ing LAI from 1 to 5 (more LAI means more dense foliage)
(Rakotondramiarana et al. 2015). The thermal behavior of
different types of vegetation can greatly change the energy
consumption of the building. Karachaliou et al. (2016), by
planting shrubs and perennial herbs with diverse thermal
behavior showed that different species of vegetation can
cause an 11% reduction in energy consumption for heating
the building and 19% for cooling the building (Karachaliou
et al. 2016).

Influence on water quality and water retention

Plants also influence the quality of runoff (Rowe 2011;
Hashemi et al. 2015) and stormwater reduction (Kemp et al.
2019). Gong et al. (2021) indicated that diverse plant species
have different effects on nutrient loads. Aitkenhead-Peterson
et al. (2011) compared the effects of different succulent spe-
cies on nitrate leachate and showed an 1120% difference

@ Springer

between the best and worst-performing. Moreover, they
showed that by cultivating different types of plants in the
same media, there was a striking reduction in the nitrogen
and phosphorus concentrations in the runoff water (Aitken-
head-Peterson et al. 2011).

Cook-Patton and Bauerle (2012) reviewed the benefits
of plant diversity on GRs and indicated that species differ
in when and how they absorb nutrients and showed that
through having higher plant diversity, more nitrogen was
consumed efficiently than when there were monocultures.
This means that the utilization of fertilizer nitrogen and
the possible leaching of the nitrogen from GRs could be
decreased by having diverse species on the roof (Czemiel
Berndtsson 2010). Regarding plant type effect on water
retention, Talebi et al. (2019) indicated that vegetation type
had a greater influence on water retention than increasing
the substrate storage. Maclvor et al. (2011) and Lundholm
et al. (2010) conducted studies on this subject. The first one
showed a 20% increase in retention in the best mixture treat-
ment compared with the best monoculture, and the latter one
found an 8.4% increase with using more species (Lundholm
et al. 2010; Maclvor et al. 2011).

Use of native plants for conservation of biodiversity

One of the unique opportunities to make GRs sustainable
is their potential to support local plants, plant communi-
ties, and wildlife (Brenneisen 2005; Chen et al. 2021;
Dvorak and Bousselot 2021). Although alien plants on
GRs can serve some forms of wildlife (Maclvor et al.
2015), native plants can serve local and migratory wild-
life (Cook-Patton 2015). The composition of wildlife
community and biodiversity is different between inten-
sive GRs and extensive GRs, and studies have shown that
community biodiversity is higher in intensive GRs (Coff-
man 2007; Nagase et al. 2018). To assess the elements
and GRs’ characteristics that enhance arthropod biodi-
versity and ecological functioning, Fabian et al. (2021)
conducted a study and analyzed these characteristics.
They selected 30 GRs situated in Argentina in different
urbanization contexts (from small towns in semi-rural
regions to large towns). They found that total species
richness, total abundance of arthropods, and species rich-
ness of most functional feeding groups were positively
associated with the GRs area. They also expressed that
promoting high plant diversity and lessening roof isola-
tion favored entomophagous arthropod diversity (Fabiin
et al. 2021).

Not only GRs are potential homes for the local biodi-
versity, i.e., spiders and beetles, but they also are a refuge
for rare and endangered species like birds. GRs provide a
safe habitat for invertebrates and vertebrates in urban areas
(Brenneisen 2003; Gedge and Kadas 2005).



Environmental Science and Pollution Research (2022) 29:78228-78254

78241

Current challenges and discussions

It has become clear that the GR ecosystem services rely on
the plant types, and individual traits or trait combinations
can influence them. However, the priority for selecting the
GR plants is their survival on the GR. GRs are often planted
with low water-using succulents to have a better chance of
survival. These plants can tolerate shallow substrates and
extremely hot and dry summers (Dvorak and Volder 2010;
Rayner et al. 2016). However, because of their low water-
use, these plants when compared to grasses and herbaceous
perennials, do not deliver the highest stormwater retention
and cooling (Azeiias et al. 2018a, b). Plants with high water-
use optimize stormwater mitigation on GRs as they assist
substrate drying after rainfall (Farrell et al. 2013). How-
ever, supplemental irrigation may be necessary to keep these
plants thriving in some climates. Therefore, shallow depth
substrates, low water availability, extreme climate events,
and prolonged drought challenge designers for suitable plant
selection. This selection must consider two important fac-
tors; plant survival and delivering the best GR performance.
Climates with hot and dry conditions throughout much of
the year may not need high functioning stormwater reten-
tion performance from GRs. Instead, cooling and shading
rooftops is a primary ecosystem service.

Many researchers have worked to specify the factors related
to plant survival on GR. Du et al. (2019) experimented on 15
shrub species from a range of climates and showed that plant
survival was not related to water-use, drought response, or cli-
mate of origin. They suggested that plant survival on GRs is
expected to be determined by a combination of physiological
traits (traits like leaf thickness, roots, and stomata). Another
study examined whether plant traits like succulence are related
to plant survival and resulted that survival was not related to
water-use, succulence, or leaf heat tolerance (Guo et al. 2021).
Farrell et al. (2012) evaluated severe drought impact on the sur-
vival of five succulent species and showed that plants survived
longer on the substrate with higher WHC. They expressed that
increasing leaf succulence is not related to plant survival, but
survival was related to reduced biomass under drought. That
study showed that to maximize survival, GRs should be planted
with species that have great leaf succulence and low water-use
in substrates with high WHC (Farrell et al. 2012). Taking to
account some fast traits, e.g., relative growth rate (RGR) and leaf
area for water-use in nine native plants, showed more plasticity
in water treatments (Schrieke and Farrell 2021).

Analysis of studies

An analysis was conducted on the plants investigated in
“Plants and green roof performance” section to determine
the trend in the GR plant studies. Most researched plant
families, measured traits, and lifeform were determined.

Plant families

Eighty-six plant families have been applied in our exam-
ined studies in order to find suitable species to achieve the
best performance. Three families represented the most spe-
cies-rich, namely Crassulaceae (22), Asteraceae (15), and
Poaceae (14) (Fig. 4).

Crassulaceae are widely distributed. This family com-
prises perennial herbs with fleshy leaves that are able to tol-
erate arid conditions, i.e., shortage of water and high temper-
atures. These features make the species (e.g., Sedum) perfect
to grow on GRs. Among 20 Sedum species, Sedum spurium
M.Bieb. and Sedum acre L. are the foremost planted taxa
in reviewed research experiments, nine and eight research,
respectively.

Poaceae, known as the grass family, is one the most spe-
cies-rich families in the plant realm that provides diverse
species with various characteristics which make them suit-
able for GRs.

Measured traits

Among all the plant traits, for assessing plants’ influence on
GR ecosystem services, most authors studied leaf area more
than other traits. Leaf area is related to the relative growth
rate (RGR) as well as net assimilation rate (NAR). As shown
in Fig. 5, the other traits are less focused.

Heat stress is one of the challenges on GRs that influences
the root that alters the water use efficiency as well as plant
survival. The root vulnerability to heat stress is discussed
by Savi et al. (2016) and Tomasella et al. (2022). While the
crucial role of this trait is one of the main determinants of
GRs performance, more investigations into this issue are
recommended.

Lifeforms of plants

The lifeform of GR vegetation is one of the significant plant
attributes which reveals the adaptive structure of a plant in a
given habitat. Perennial herbs are the most frequent lifeform
used on the GRs in research. Moreover, perennial herbs used
on GRs demonstrate ground cover, which protects the sur-
face from direct sunlight, consequently contributing to the
cooling effect (Table 5).

Perennial herbs are the dominant lifeform in conducting GR
experiments. To look more closely at the plant type of perennial
herbs, it was forbs that represented the greatest group, followed
by grass (Fig. 6). Heat and drought tolerance and having below
and above groundwater storage structures are the significant
features of the forbs, grass, and succulents which make them
suitable and popular in GR experiments. Using multiple life-
forms in GR showed better ecosystem performance compared
to monocultures (Lundholm et al. 2010).
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Fig.4 The taxonomic spectrum
of plant families and the number

of GR studies Xanthorrhoeaceae
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Sustainable irrigation

Irrigation is one of the critical aspects that must be con-
sidered for constructing and maintaining sustainable GRs.
Water is the most critical aspect of life on Earth, and due
to human destructive actions and climate change, there is
high stress on water resources and an urgent need for water
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resource management. There are several different strate-
gies and solutions for reducing water consumption. In the
review of the literature, it was found that GR water-use can
be reduced by using appropriate irrigation strategies (Bous-
selot et al. 2010; Van Mechelen et al. 2015).

In tropical areas or humid climates, it is possible to estab-
lish unirrigated GR if suitable vegetation and materials are
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Fig.5 Measured traits for plant
selection based on the review of

the literature .
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Table 5 Different plant lifeforms selected for GR from the research

Lifeform Frequency of
plants used for
GR

Perennial herbs 194

Shrubs 107

Annual herbs 25

Trees 13

Climbers 2

selected. Criteria for selecting vegetation for unirrigated
GR systems are explained in the FLL guidelines (Breuning
and Yanders 2008; FLL 2018). The guidelines specify that
GRs are designed to depend primarily on precipitation for
their water supply but considering all types of climate, such
as hot and dry climates where experiencing low precipita-
tions, it may not be possible to depend on precipitation alone
(Dvorak and Volder 2013a, b).

Therefore, there is a strict relationship between GR
irrigation management and GR plants survival, and it has
been indicated plant survival rate on unirrigated GRs has
not been satisfying (Dvorak and Volder 2013b). Besides,
some studies have shown that GR irrigation has a cooling
effect and increases evapotranspiration (Wang et al. 2021a,
b) and considerably improves building thermal performance

0 2 4 6 8 10 12 14

Number of studies

(Porcaro et al. 2021; Yazdani and Baneshi 2021). A study in
a semi-arid climate in Mexico showed that after irrigating
GR, the maximum temperature of vegetation and substrate
reduced by 6.4 and 4.8 °C, respectively (Chagolla-Aranda
etal. 2017). Lin and Lin (2011) showed that a substrate that
is irrigated twice a week is able to reduce the heat ampli-
tude under the roof slab surface up to 91.6%. However, in
some cases, due to the fact that water has higher thermal
conductivity than air, lower heat fluxes have been reported
from GRs with limited irrigation than well irrigated GRs
(Azeiias et al. 2018a, b). It means that higher substrate water
is not always effective in controlling evapotranspiration and
providing the related cooling effect (Jim and Peng 2012).

The optimal frequency and rate of irrigation required for
GRs have been investigated in various ways by several studies.
For example, a study in a Mediterranean climate on extensive
GRs with testing four types of plants showed that the GR
water requirement ranges between 2.6 and 9 L/m%/day, and it
differs due to plant type species (Schweitzer and Erell 2014).
In other studies conducted in the Mediterranean climate on the
GRs water-use in summer, the water required for GR irriga-
tion ranged from 1.96 L/m?%/day in Athena, Greece (Papafo-
tiou et al. 2013) to 7 L/m%day in Rende, Italy (Brunetti et al.
2018). Pirouz et al. (2021) showed that the average water-use
of GRs in the summer in humid regions is about 3.7 L/m*/day,
in the Mediterranean regions about 4.5 L/m*/day, and in arid
regions about 2.7 L/m?/day.
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Fig. 6 Plant types of perennial
herbs used in GR research

Number
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Therefore, it is necessary to know the sustainable irriga-
tion strategies to reach maximum performance of GR with
minimum water consumption. Reviewing the literature
showed that GR irrigation strategies can be divided into
three main sections: (1) Employing alternative sources,
(2) smart irrigation and monitoring, and (3) using adaptive
materials and additives that improve GR water-use.

Employing alternative sources

In recent years, it has become popular to utilize alterna-
tive water sources to avoid potable water use on GRs. This
section aims to discuss and introduce suitable alternative
sources to reduce potable water usage on GRs. Due to a
lack of comprehensive knowledge in this section, some of
the references are not GR related. In each section, litera-
ture gaps have been indicated.

Rainwater harvesting

One of the most available sources of free water that has a
long history of use is harvested rainwater. The effectiveness
of rainwater harvesting systems depends on the region’s cli-
mate type and precipitation frequency. The quantity of rain-
fall affects the degree of rainwater-use. Rainwater harvesting
has gained popularity for GRs in some regions (Almeida
et al. 2021; Burszta-Adamiak and Spychalski 2021). Dif-
ferent studies proposed multiple approaches for rainwater
harvesting, such as rainwater cisterns or tanks, treatment
trains, and constructed wetlands (Hardin et al. 2012; Coutts
et al. 2013; Chao-Hsien et al. 2014; Hafizi Md Lani et al.
2018; Kucukkaya et al. 2021). For example, Coutts et al.
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(2013) studied the potential of water-sensitive urban design
(WSUD) (WSUD is an approach to design urban areas to
make use of valuable resources like rainwater). They dem-
onstrated that WSUD provides a mechanism for retaining
water through stormwater harvesting and can be a dependa-
ble source of water across Australian urban environments for
landscape irrigation. In semi-arid regions, where rainfall is
infrequent, many GRs in western North America have made
use of harvested rainwater and have had success (Dvorak and
Skabelund 2021).

Some researchers have suggested blue-green roofs as a
way for using rainwater for irrigating. Generally, blue-green
roofs have an extra water retention layer that allows more
stormwater to be stored so that the reservoir can act as a
source of water for the GR through capillary rises (Busker
et al. 2022). Moreover, Droz et al. (2021a, b) showed that
blue-green roofs provided the most services with the lowest
number of trade-offs and expressed that the GR system type
is the most impactful on ecosystem services.

Chao-Hsien et al. (2014) examined the primary design
factors of a rainwater harvesting system for GRs and con-
ducted a case study on a university building in Keelung,
Northern Taiwan. For this building and climate, the optimal
tank volume was 9.41 m? and the potable water replacement
rate and probability of exceedance were 92.72% and 88.76%,
respectively.

Besides being a sustainable source for GR irrigation, har-
vesting rainwater reduces erosion and stormwater pollution
and helps reduce flooding in dense urban areas (Hardin et al.
2012; Islam et al. 2013). It is necessary to mention that rain-
water harvesting systems need maintenance. Some studies
have observed poor microbial water quality (Al-Batsh et al.
2019; Dissanayake and Han 2021). Other studies have shown
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that suitable treatment and disinfection methods can convert
harvested rainwater into drinking water (Alim et al. 2020).

Greywater recycling and green roof irrigation

Greywater is wastewater that includes water from baths,
showers, hand basins, washing machines, dishwashers,
and kitchen sinks, excluding streams from toilets (Eriks-
son et al. 2002). Some sources exclude kitchen wastewater
from the other greywater streams (Al-Jayyousi 2003; Wil-
derer 2004). Greywater use on GRs is an alternative and
sustainable method for GR irrigation. It is more complex
and more expensive than rainwater harvesting because it
requires a pipe system separate from blackwater. Also, one
of the advantages of greywater is the expanding place of its
generators in everyday use and its availability.

Several studies suggested using greywater for GR irriga-
tion (Mahmoudi et al. 2021). Chowdhury and Abaya (2018)
carried out an experimental study of greywater-irrigated GR
systems in Al Ain, United Arab Emirates. By monitoring the
greywater influents and the GR effluents from two intensive
and two extensive GRs irrigated with greywater, they observed
the changes in the greywater quality and organic treatments
(Chowdhury and Abaya 2018). They showed that treated grey-
water effluent from the GRs met the local standards for recy-
cled wastewater-based irrigation in parameters like pH, elec-
trical conductivity, salinity, and total dissolved solids (TDS).
For example, the values of mean TDS in the effluents from the
extensive and intensive systems were~ 1.7 g/l and~1.3 g/L,
respectively. They expressed that TDS removal was greater
in intensive GRs due to the greater depth of the soil-sand
medium in the intensive GR. One building in Seattle, Wash-
ington (Bullitt Center), uses harvested water for interior use,
then uses a constructed wetland GR as a final treatment of the
greywater. Research on this GR suggests that there is a proper
balance between the sourcing of water and cleaning capacity
of the vegetation on the GR (Dvorak and Rottle 2021). On the
base floor of this building, a 212-m? cistern is located to collect
69% (128,000 gallons) of the rooftop runoff, and the stored
water is used for potable and non-potable uses. After use in
the building, the water is pumped on the GR through a series
of drip lines so that the plants can absorb the nutrients. Then
the water is collected and pumped through the system several
more times to the point that the nutrients have been absorbed
(Center 2013; WBDG 2016).

Thomaidi et al. (2022) conducted an experiment in Les-
vos island, Greece, to assess the use of GRs as modified
shallow vertical flow constructed wetlands for greywater
treatment in buildings. They investigated the effects of dif-
ferent design parameters such as substrate material (perlite
or vermiculite), substrate depth, and plant species (Gera-
nium zonale L., Polygala myrtifolia L., or Atriplex halimus
L.) on the effluent quality. The GRs planted with Atriplex

halimus and with 20 cm of vermiculite substrate had the
best BOD (91%), TSS (93%), COD (91%), and turbidity
(93%) average removal efficiencies. They showed that sub-
strate depth is a highly influential factor in greywater treat-
ment and observed when the substrate depth was decreased
to 10 cm the average removal efficiencies were reduced to
60-75%. Also, the recirculation of a portion of the effluent
in the influent increased the turbidity, organic matter, and
nitrogen removal.

Liu et al. (2021) expressed that GRs irrigated with domes-
tic wastewater satisfied GR irrigation requirements and
improved the urban wastewater treatment system. Through
using greywater for GR irrigation and planting different
plant species, they showed that GRs can be considered as
a nature-based solution for domestic wastewater treatment
and revive the urban water resource (Liu et al. 2021). Using
greywater for GR irrigation can have multiple benefits. Yet,
there were no reported adverse effects on plants due to grey-
water for irrigation (Agra et al. 2018). In a study for indicat-
ing the plants’ response to greywater irrigation, Yalcinalp
et al. (2019) compared two different greywater models and
tap water for GR irrigation. They showed that the use of
greywater provides more positive effects on plant growth
compared to that of tap water. Also, utilizing greywater can
reduce the irrigation costs of the GR (Yalcinalp et al. 2019).
Hence, by using greywater in GRs, it is possible to sustain
plant growth, reduce the use of potable water, and reduce
demands on municipal wastewater treatment plants (Xu et al.
2020). One challenge with the use of greywater on GRs is
the testing and monitoring of water quality to ensure that
water quality is acceptable for local use. Special permits or
permissions may be required to secure the use of greywater
based on individual local authorities and guidelines.

Innovative sources for water consumption and irrigation
purposes

Atmospheric water harvesting (i.e., fog) is one of the unique
sources that has caught the attention of researchers (Bagheri
2018; Kim et al. 2018; Tu and Hwang 2020; Zhou et al.
2020). Water harvesting methods from the atmospheric fog
and dew have been found to be useful in different appli-
cations (Jarimi et al. 2020). Several studies (Beysens et al.
2007; Tomaszkiewicz et al. 2015) indicated that dew water
collection could serve as a potential water source in tropi-
cal, high humid, and specific climates. Also, some studies
showed that dew water harvesting is a sustainable and suit-
able source for agriculture purposes. Tomaszkiewicz et al.
(2017) in Beiteddine, Lebanon (semi-arid climate), assessed
the potential of dew harvesting during the dry season for
agriculture purposes. They showed that a dew harvesting
system with a size of 2 m? could produce 4.5 L/month,
which is sufficient for the irrigation of tree seedlings.
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In an innovative approach to improve GR water use effi-
ciency, Pirouz et al. (2021) assessed dew and fog harvesting
potential during the dry season. The average potential for
fog in humid regions is 1.2 to 15.6 L/m?/day and for dew is
0.1 to 0.3 L/m*day, in the Mediterranean regions for fog is
1.6 to 4.6 L/m?/day and for dew is 0.2 to 0.3 L/m?/day, and
in the arid regions the potential for fog is 1.8 and 11.8 L/
m?/day and for dew is 0.5 to 0.7 L/m?/day. The study’s con-
clusion demonstrated that fog harvesting could provide the
total water requirement of the GRs. Dew harvesting by PV
(photovoltaic) panels could provide 15 to 26% of the water
requirements (Pirouz et al. 2021). However, there is a need
to conduct practical studies in different climates to investi-
gate the potential of atmospheric water harvesting for GR
irrigation.

Smart irrigation and monitoring

One of the direct ways to manage water use and conservation
on GRs is the use of smart irrigation technology. Several
studies on GRs with smart irrigation systems indicated that
water requirements can be calculated by evapotranspiration
data (Bandara et al. 2016) and precipitation information
(Stovin et al. 2013) or by directly observing the substrate
moisture with sensors (Jim and Peng 2012). When substrate
moisture content drops below a certain level, the irrigation
system can be programmed to run. When sufficient irrigation
has been delivered or in the case of rainfall, the irrigation
system is prevented from running a cycle so there will be
no excessive watering and superfluous supply. This method
was applied by Tomasella et al. (2022) on shrub vegetated
Mediterranean extensive GRs, and results suggested that
maintaining substrate water level at a certain threshold was
significantly effective in optimizing GR benefits, reduc-
ing water consumption and favoring plant establishment.
Besides, significant water savings were reported compared
to the common irrigation timer maintenance method.

Other methods include a study (Gu et al. 2021) where
a neural network model is proposed in order to learn from
a process-based agricultural systems model. This process
determines irrigation timing and amount by predicting soil
moisture. In a similar study, Tsang and Jim (2016) used
artificial intelligence modeling to optimize GR irrigation
efficiency, and for simulating changes in soil moisture, used
fuzzy logic and an artificial neural network. They indicated a
20% reduction in water-use and improvement in plant cover-
age by applying this method.

Using adaptive materials and additives that improve GR
water-use

Designing GRs and selecting the appropriate materials and
vegetation type can be done in a way to reduce irrigation
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requirements and improve GR water-use. Increasing the
WHC potential of the substrate layer would greatly improve
the irrigation requirement of GRs. Some materials, as men-
tioned in “Material impacts on GR water holding capacity”
section, have the ability to increase the WHC.

In a study, Kanechi et al. (2014) by testing and comparing
three different substrates (amended soil, turf mat, furnace
bottom ash), showed that amended soil, due to the presence
of decomposing organic matter, had higher water and nutri-
ent holding capacities. Paradelo et al. (2019) investigated
WHC in modified compost-based substrates and showed
bentonite increased the WHC of the substrates. Some
authors worked on some additives, such as hydrophilic
gels, to improve the WHC (Williams et al. 2010; Sutton
et al. 2012). Savi et al. (2014) assessed a GR performance
amended with hydrogel and showed that hydrogels consid-
erably increased the water content of substrate at satura-
tion and water available to vegetation. However, increasing
the water holding potential of GRs must be done with great
attention to the roof’s capability to sustain heavier loads.
Because heavier loads on roofs could cause damage to build-
ings with weak or old structure. Other research shows how
the water retention layer can play an essential role in sustain-
ing soil moisture (Tan et al. 2017), and through retaining
water, it can reduce the irrigation requirement. A study by
Roehr and Kong (2010) showed that GR summer irrigation
decreased from 54.4 to 8.6 mm in Vancouver, Canada, by
adding a water retention layer (Roehr and Kong 2010).

However, the crucial role of plant type cannot be
neglected in irrigation (Zhang et al. 2021). Some plant types,
such as mosses, have high-water retention and can be ben-
eficial for the soil moisture content (Elumeeva et al. 2011).
Roehr and Kong (2010) expressed that if an average roof
area of 3700 m* ha is assumed in Shanghai, GRs with low
water-use plants could potentially reduce stormwater runoff
by 903.2 m?® per year and by using high water-use plants this
number reaches 1806.7 m® per year (Roehr and Kong 2010).
A study in Portugal for optimizing the water-use of GRs
suggested using native plant species due to better tolerance
against drought (Pago et al. 2019). This study showed that
the mixture of mosses and vascular plants were an interest-
ing solution for water-use improvement since mosses had a
large water retention capacity, and vascular plants can use
the retained water (Pago et al. 2019). Therefore, the selec-
tion of suitable plants and materials influences the GR water
requirement.

Conclusion

Due to the growing popularity of GRs and various attempts
to improve different aspects of GRs, it is crucial to learn
and know how to build sustainable GRs to maximize their
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ecosystem services and reduce their negative environmen-
tal impacts. In order to achieve these purposes, considera-
tions and influential factors must be known, and the role of
each of them needs to be distinguished. By following the
review methodology and its phases, this study focused on
three main topics: (1) substrate and drainage materials, (2)
plants and GR performance (biological GR components),
and (3) sustainable irrigation. In each of these three topics,
valid points are presented to be considered for building sus-
tainable GRs, with enhanced performance. The main points
include:

1) GR materials (Substrate and drainage layer)

e The key to reach sustainable GRs is using sustainable
materials in different layers of GRs. Substrate and
drainage layer materials affect the GR performance
and influence the adverse environmental impacts.
Substrate and drainage materials significantly affect
stormwater retention potential, leachate quality, and
plant survival and also determine GR environmental
footprints.

e The use of recycled, reused, or locally available
materials can reduce GR environmental footprint and
improve GR’s life cycle. However, the influence of
these materials on GR performance must be exam-
ined carefully. In some cases, using the materials that
improve GR sustainability results in a reduction in
GR performance.

e Transportation of GR materials is another issue that
can cause environmental pollution and CO, emis-
sions. The solution is using locally available materi-
als. However, the GR supply market has not devel-
oped in some regions, and demand for more research
and more suitable local materials is rising.

2) Plants on GRs

e GR vegetation is a critical element of the overall per-
formance of the GR. Different forms of plants have
different potentials in CO, sequestration, air pollu-
tion absorption, temperature reduction, stormwater
retention, local habitat provisions, and improving
water quality and consumption. However, plant sur-
vival must not compromise in the strive for improv-
ing GR performance. It has shown that having higher
plant diversity would benefit GR sustainability.

e Vegetation LAI has an important effect on tem-
perature reduction, as an increase in LAI can offer
more summertime cooling and reduce the urban
heat island effect. In ecoregions where there are few
plants with large leaves, it may be possible to cluster
plants or use different forms of plants to shade the
rooftop.

e Lifeform is one of the significant plant attributes
which reveals the adaptive structure of a plant in a
given habitat. Based on the conducted review, peren-
nial herbs are the most frequent lifeform for selected
vegetation on GRs. They do not need to be replanted
each year and are heat and drought tolerant.

3) Sustainable irrigation

e A critical aspect of a sustainable GR is managing
irrigation by avoiding excessive use of potable water.
Irrigation is vital for plant survival and has a major
influence on GR performance (i.e., temperature
reduction).

e Several ways to improve GR irrigation include employ-
ing alternative water sources, monitoring and smart
irrigation, adding additives, and using materials that
increase WHC. Lack of knowledge about sustainable
irrigation has caused many GRs to use the traditional
irrigation method and stress limited water sources.

e Using alternative irrigation sources like rainwater,
greywater, and atmospheric water, besides satisfy-
ing water-use of GRs, can be considered as sustain-
able water sources for other purposes. Smart irriga-
tion and using sensors in GRs reduce the amount
of irrigation requirement. Greywater shows promise
for satisfying GR irrigation demand since it has no
adverse effect on GR performance and can benefit
plant growth. Many projects have used GR for grey-
water treatment and have had success.

e Considering the potential of some vegetation and
some substrate and drainage materials to reduce the
water-use of GR is important. Materials and plant
species have the ability to increase WHC so that lit-
tle irrigation will be needed. Also, some additives
are introduced by researchers that have the ability to
reduce the water-use of GRs by increasing WHC.

The results of this study can be useful to GR designers
and legislators to establish and make use of knowledge to
support regulations that follow common goals and help
build sustainable GRs with better performance. This paper
addresses the current lack of knowledge and challenges of
building sustainable GRs. It may also be useful to help other
GR researchers better understand research gaps and needs
for future studies.
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