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Knowledge of how proteins interact with DNA is essential for understanding gene regulation. Although DNA-binding spec-

ificities for thousands of transcription factors (TFs) have been determined, the specific amino acid–base interactions com-

prising their structural interfaces are largely unknown. This lack of resolution hampers attempts to leverage these data in

order to predict specificities for uncharacterized TFs or TFs mutated in disease. Here we introduce recognition code learning

via automated mapping of protein–DNA structural interfaces (rCLAMPS), a probabilistic approach that uses DNA-binding

specificities for TFs from the same structural family to simultaneously infer both which nucleotide positions are contacted

by particular amino acids within the TF as well as a recognition code that relates each base-contacting amino acid to nucle-

otide preferences at the DNA positions it contacts. We apply rCLAMPS to homeodomains, the second largest family of TFs

in metazoans and show that it learns a highly effective recognition code that can predict de novo DNA-binding specificities

for TFs. Furthermore, we show that the inferred amino acid–nucleotide contacts reveal whether and how nucleotide pref-

erences at individual binding site positions are altered by mutations within TFs. Our approach is an important step toward

automatically uncovering the determinants of protein–DNA specificity from large compendia of DNA-binding specificities

and inferring the altered functionalities of TFs mutated in disease.

[Supplemental material is available for this article.]

Introduction

Protein–DNA interactions are critical for the proper functioning of
a wide range of biological processes within cells. Central among
them is the regulation of gene expression, which is orchestrated
by a complex network of sequence-specific interactions made by
transcription factor (TF) proteins. Althoughproper gene regulation
ensures that the appropriate genes are expressed in each spatiotem-
poral context,mutations—within either TFs themselves or the par-
ticular genomic regions that they are intended to interact with—
can alter gene expression programs and lead to disease phenotypes
(for review, see Lee and Young 2013). Because of the central impor-
tance of TF–DNA interactions in both healthy and disease states,
therehavebeen substantial efforts to characterize thedeterminants
of specificity in TF–DNA interactions (for review, see Inukai et al.
2017) and to catalog DNA-binding specificities (Noyes et al.
2008a; Berger and Bulyk 2009; Jolma et al. 2010; Yang et al. 2017)
and genomic occupancies (The ENCODE Project Consortium
2012; The ENCODE Project Consortium et al. 2020) of TFs.

To date, DNA-binding specificities and/or context-specific ge-
nomic binding regions for thousands of TFs across human and
other model organisms have been determined (Weirauch et al.
2014; Kulakovskiy et al. 2018; Castro-Mondragon et al. 2022).
These data have enabled large-scale construction of regulatory net-
works and have revealed the organization of regulatory circuits
(Gerstein et al. 2012). Further, these data have been used to train
machine learning models to uncover cooperative TF binding and

other regulatory “grammars” (Avsec et al. 2021; Miraldi et al.
2021) and to predict the impact ofmutationswithinnoncoding re-
gions of the genome (Zhou and Troyanskaya 2015; Martin et al.
2019). However, despite these extensive catalogs of DNA-binding
specificities for wild-type TFs, as yet very few methods have been
able to use these data in order to uncover the underlying determi-
nants of protein–DNA specificity; this prevents both the predic-
tion of de novo specificities for uncharacterized TFs (e.g.,
including those in nonmodel organisms or those that have proved
difficult to study experimentally) and the prediction of altered
DNA-binding specificities owing to mutations or SNPs within
TFs (e.g., as observed in several Mendelian disorders [Veraksa
et al. 2000], in cancers [Kobren et al. 2020], and across healthy pop-
ulations [Barrera et al. 2016]). The main challenge is that for the
vast majority of TFs for which DNA-binding specificities are
known, the specific amino acid–base interactions comprising the
underlying interaction interfaces are largely unknown, thus mak-
ing it difficult to infer base preferences for specific amino acids or
to determine which positions within their binding sites, if any,
would be altered by mutations at specific amino acid positions.

Here, we introduce recognition code learning via automated
mapping of protein–DNA structural interfaces (rCLAMPS), a gene-
ral probabilistic approach that uses DNA-binding specificities for
TFs from the same structural family to simultaneously infer both
which nucleotide positions are contacted by particular amino ac-
idswithin the TF aswell as a recognition code that relates base-con-
tacting amino acids to nucleotide preferences at theDNApositions
they contact. Our approach leverages the fact that protein–DNA
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interactions can be classified into structural families (Luscombe
andAustin 2000) and that proteins from the same structural family
have relatively well-conserved structural interfaces, where analo-
gous positions within TFs tend to interact with the same set of
DNA positions and these pairwise amino acid–base interactions
define a contact map. rCLAMPS takes as input a collection of posi-
tion weight matrices (PWMs) representing DNA-binding specifici-
ties for TFs from the same structural family and uses a contact map
representation of their protein–DNA structural interface. It per-
forms Gibbs sampling to infer for each TF the mapping from its
PWM columns to DNA positions within the contact map (i.e., de-
termining which PWM columns across the TFs are analogous to
each other) while simultaneously learning the parameters of a lin-
earmodel that describes the base preferences of amino acids in spe-
cific positions of the TFs. Our approach is general and can be
applied to PWMs for any family of DNA-binding proteins whose
interaction interfaces with DNA are structurally conserved enough
to be modeled by a pairwise amino acid–base position contact
map.

We show the efficacy of our method by applying it to home-
odomains, members of which play critical roles in development
and cell fate processes (Bürglin and Affolter 2016), and mutations
within which are associated with a plethora of diseases (Chi 2005).
We show that rCLAMPS accurately identifies analogous positions
across a diverse set of homeodomain PWMs by mapping TF–
PWM pairs to a canonical homeodomain contact map.
Additionally, we show via extensive testing that rCLAMPS infers
a recognition code that has excellent performance in predicting
de novo DNA-binding specificities for homeodomain proteins.
Furthermore, because rCLAMPS identifies which base positions
within a PWM are contacted by specific amino acids within a TF
and relies on an underlying linear model, we transfer existing spe-
cificity information from wild-type TFs to mutant TFs while mak-
ing predictions only for the affected base positions and show that
this improves the accuracy of predicted specificities formutant TFs
beyond that of de novo predictions. Finally, we show the general-
ity of our framework by applying it to Cys2-His2 zinc finger (C2H2-
ZF) proteins, the largest and most diverse class of TFs in humans
(Vaquerizas et al. 2009; Lambert et al. 2018). Overall, we establish
that our probabilistic framework yields a general, effective, and in-
terpretablemethod that newly enables fully automated analyses of
large compendia of known DNA-binding specificities in order to
uncover protein–DNA interaction interfaces, infer recognition
codes, and characterize mutant TFs.

Further related work

Because of the fundamental importance of sequence-specific pro-
tein–DNA interactions in gene regulation, the determinants of TF–
DNA interaction specificity have been studied extensively from
both structural and statistical perspectives (Luscombe and Austin
2000; Luscombe 2001; Rohs et al. 2009; Persikov and Singh
2011). Sequence-based machine learning methods to predict de
novo specificities for TFs have been developed for several structural
families, including C2H2-ZFs and homeodomains. Typically,
these approaches to infer recognition codes explicitly incorporate
prior knowledge of known DNA-contacting residues or curated
protein–DNA interface contact maps (Benos et al. 2002; Kaplan
et al. 2005; Noyes et al. 2008b; Persikov et al. 2009, 2015; Gupta
et al. 2014; Persikov and Singh 2014; Najafabadi et al. 2015).
That is, the pairwise contacts between specific amino acids in
the protein sequence and the DNA-binding sites are often known

via specialized experimental protein–DNA interaction assays that
position and orient the TF relative to a potential DNA-binding
site in a predetermined way (Noyes et al. 2008a,b; Chu et al.
2012; Persikov et al. 2014; Najafabadi et al. 2015); in contrast,
our approach does not require a priori knowledge of these contacts
and instead simultaneously infers them while learning a probabi-
listic recognition code. Alternatively, PWMs representing binding
specificities for TFs from the same structural family have been
aligned, and subsequently, machine learning models have been
trained on them to predict DNA-binding specificities, an approach
taken by the earliest method for homeodomains (Christensen
et al. 2012); however, because the PWMs for TFs from the same
structural familymay be quite varied, these types of approaches re-
quire some manual intervention, whereas rCLAMPS learns these
alignments automatically. Protein–nucleic acid recognition codes
have also been inferred from unaligned DNA sequences (Pelossof
et al. 2015); although elegant, this approach relies on relating k-
mers to quantitative binding measurements, and these are only
available for some experimental assays, whereas rCLAMPs uses
PWMs and can be applied to binding specificities determined
from any technical platform. Additionally, a model for predicting
DNA-binding preferences for C2H2-ZF proteins has been learned
from unaligned DNA sequences (Kaplan et al. 2005); however, un-
like rCLAMPS, this approach uses a manually curated contact map
and assumes that nucleotide preferences are largely determined by
single amino acid positions. Finally, several computational ap-
proaches have investigated large compendia of TFs and their corre-
sponding DNA-binding specificities to learn rules for when the
specificity of a characterized TF may be transferrable to an unchar-
acterized TF of the same family (Weirauch et al. 2014; Lambert
et al. 2019); although powerful, these approaches cannot predict
how a mutation within a TF will change its specificity. In contrast
to previous approaches, we leverage structural information to en-
able automated, simultaneous inference of protein–DNA interac-
tion interface mappings and an interpretable family-level DNA
recognition code; consequently, our approach enables us to deter-
mine when and how transfer of specificity information fromwild-
type to mutant TFs is appropriate at the resolution of individual
binding site positions.

Methods

Overview of approach

Our framework rCLAMPS takes a corpus of DNA-binding specific-
ities for a set of proteins from the same DNA-binding family; these
DNA-binding specificities are represented as PWMs. It also uses
protein–DNA co-complex structural data for that DNA-binding
family in order to determine conserved pairwise contacts between
positions in the proteins and positions within DNA that together
comprise a structural interface or “canonical” contact map (Fig. 1,
top middle). For all pairs of TF proteins and their corresponding
PWMs, the amino acids that correspond to each of the base-con-
tacting positions within the contact map are known; however,
the positions within the PWM that are contacted by these amino
acids are not known (Fig. 1, left). Our framework assumes that
for each base position within the contact map, the base preferenc-
es at that position can be described by a linearmodel with additive
contributions from amino acids occupying protein positions that
contact that base position; each base position in the model is
thus allowed to be involved in interactions with multiple amino
acid positions. We use a linear model as its correspondence with
the contact map makes it readily interpretable, especially for
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characterizing the impact of amino acid mutations on DNA-bind-
ing specificities. Initially, the parameters of the model are not
known. However, if the parameters were known, then the likeli-
hood of the data given each possible mapping of PWM columns
to the nucleotide positions within the contact map can be com-
puted. rCLAMPSuses aMarkov chainMonteCarloGibbs sampling
approach (Fig. 1, bottom middle) to simultaneously learn the pa-
rameters of the model and determine which columns within the
PWMs map to the same base position in the contact map (i.e.,
which columns across the PWMs are analogous to each other)
(Fig. 1, right).

Deriving a contact map representation of the protein–DNA

structural interface

For a DNA-binding domain of interest (i.e., a structural family of
TFs), we obtain fromBioLiP (Yang et al. 2013) all co-complex struc-
tures of proteins from that family interacting with DNA. For each
protein, we run HMMer with a Pfam model for that DNA-binding
domain tomap protein positions to HMMmatch states (Finn et al.
2014), thus finding analogous protein positions across the TFs. For
each co-complex structure, for each of its amino acids that corre-
sponds to anHMMmatch state, we then findDNAbases contacted
by it, defining a contact as a pair of nonhydrogen atoms between
an amino acid side-chain and a DNA base at a distance of at most
3.6 Å.Weperforma co-complex structural alignment based on this
set of contacts to ascertainwhich nucleotide positions across struc-
tures map to each other (for additional algorithmic and co-com-
plex structure processing details, see Wetzel and Singh 2020).
This structural alignment allows computation of an aggregate con-
tact frequencymatrixD, whereD[i, j] corresponds to the sequence-

weighted (Henikoff andHenikoff 1994) fraction of times across the
structures that the amino acid in match state i is in contact with
the nucleotide in structurally aligned binding site position j.
Without loss of generality, we index the binding site positions 5′

to 3′ for the strand that is more frequently contacted by the
proteins.

A contact map C (i.e., a set of (i, j) match state-to-binding site
position contact pairs) for the TF family is then constructed based
onD in the followingway:We first identify a set of base-contacting
match states based on a contact frequency threshold td, 0 < td<1;
match state i is included if in at least td of sequence-weighted
aligned co-complex structures, the amino acid inmatch state i con-
tacts any base. For each match state i that is base-contacting, we
then add contact pair (i, j) to C if D[i, j]≥ te, 0 < te<1. Note that
the contact map represents a consensus “canonical” representa-
tion of which amino acid and nucleotide position pairs tend to
be observed to be in contact across protein–DNA co-complex struc-
tures; a co-complex structure need not contain all contacts includ-
ed in the map.

For the homeodomain contact map derived here from 73
BioLiP structures, we set both td and te equal to 0.05. This results
in a contact map including eight contiguous base positions. We ul-
timately reduce this contact map to only the central six base posi-
tions of this contiguous region, which correspond to the “core”
homeodomain binding site illustrated by Noyes et al. (2008b).
These eliminated flanking positions of the homeodomain binding
sites display on average lower information content in their DNA-
binding specificities (see, e.g., Fig. 2 of Christensen et al. [2012], la-
beled as positions 1, 2, and 9) and less consistency across repeated
experiments for the same protein. For our extension of rCLAMPS
to C2H2-ZF proteins, which bind DNA via arrays of closely linked

Figure 1. Schematic of our procedure rCLAMPS for jointly learning protein–DNA interaction interfaces and structure-aware recognition codes for TFs
of the same structural family. (Middle, top) Our approach first analyzes protein–DNA co-complex structural data for a TF family to determine commonly
observed pairwise contacts between positions in the protein (orange circles) and positions within DNA (blue circles) that together comprise a structural
interface or “canonical” contact map. Here we show such a contact map for the homeodomain TF family, with protein positions corresponding to match
states in Pfam homeodomain model PF00046 (relabeled as canonical homeodomain positions from Noyes et al. 2008b). (Left) Given a set of TFs and their
corresponding DNA-binding specificities as PWMs, the positions (and amino acids) within each TF that interact with DNA are known (orange circles and
amino acids above), but initially the positions within the PWMs that are contacted by these amino acids are not known (dotted blue circles). (Middle, bot-
tom) We use a Gibbs sampling approach to map the PWM positions to DNA positions within the contact map wherein base preferences at each nucleotide
position are described in terms of additive amino acid–base contact energies. (Right) After Gibbs sampling is complete, we have a mapping of each TF–
PWM pair to the TF family contact map, along with a linear recognition code for the TF family that consists of pairwise energy estimates for each ami-
no-to-base pairing in each of the (i, j) amino acid–nucleotide position pairs in the contact map.
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individual C2H2-ZF domains (explained in detail below), 287 indi-
vidual C2H2-ZF domain–DNA interfaces were structurally aligned
and converted to a domain–DNA contact map representation as de-
scribed earlier (Wetzel and Singh 2020). This resulted in a 4-nt
domain–DNA contact map spanning four previously described spe-
cificity-determining base-contacting residues and nine previously
observed amino acid–base contacts (Persikov and Singh 2011).

Model representation

For a particular protein–DNA interaction interface, we consider a
model in which the free energy of binding is additive over amino
acid–binding site position pairs that are in the contactmapC. That
is, if ai is the amino acid in base-contacting position i and bj is the
nucleotide in amino acid–contacting position j and if ɛ(i, j, ai, bj)
represents the energetic contribution arising from the contact be-
tween bj and ai, then the free energy of the entire protein–DNA in-
terface is given by

∑

j

∑

i:(i,j)[C

1(i, j, ai, bj).

The energy contributions of each base j to the free energy of
the entire protein–DNA interface is given by

∑

i:(i,j)[C

1(i, j, ai, bj).

For a protein–DNA interaction interface, we assume that the
identity of a base at any position j of the binding site is condition-
ally independent of the identity of bases at all other positions, giv-
en the amino acid sequence of the protein. For each amino acid
position i and binding position j in the contactmap, we introduce,
respectively, random variables Ai that can take on each of the 20
amino acids and random variables Bj that can take on each of
the four nucleotide bases. When considering a specific protein se-
quence (i.e., where Ai= ai for all i), the Boltzmann distribution
specifies the natural log of the probability that a particular base b
is found in binding position j as

ln ( Pr (Bj = b|Ai = ai ∀i:(i, j) [ C))/−
∑

i:(i,j)[C

1(i, j, ai, b).

That is, if we know the amino acids occupying each position
of a protein, we estimate the probability of a particular base at that
jth binding site position by considering just the sum of the pair-
wise binding energies of that base and the amino acids it interacts
with according to our contactmapC. Initially, these pairwise bind-
ing energies are not known, but we describe belowhow to estimate
them from known protein–DNA structural interfaces.

Representations of DNA-binding specificities

For each TF, we assume that its DNA-binding specificity is repre-
sented as a PWM F, where entry fbj is the frequencywith which nu-
cleotide b is observed in column j in a set of aligned binding sites of
that TF. Note that although binding sites for a single TF are aligned
relative to one another, they are not yet mapped to our contact
map C. That is, the analogous positions across a set of PWMs for
a TF family are not typically known at the outset, and rCLAMPS
will infer this. We transform each PWM to an estimated position
count matrix (PCM) by simply multiplying each such frequency
by 100 and rounding to the nearest integer. We note that our ap-
proach can also be applied to PCMs derived directly from aligned
binding sites, but most commonly, specificity information for
TFs is encapsulated in databases as PWMs. Furthermore, having
the same number of total counts for each column of each PCM

guarantees that each specificity in our training set contributes
equally to the optimization procedure described below.

Estimating pairwise energy terms from mapped protein–DNA

structural interfaces

Here we show that if we have a set of TFs and their PWMs along
with a mapping of each TF’s PWM onto the structural interface
(as in Fig. 1, right), then we can estimate the pairwise energy terms
of our linear model. We transform each PWM into a PCM as de-
scribed above. Based on the Boltzmann distribution, for each
base position j, we can relate amino acid outcomes to base proba-
bilities via a log-linear model of the following formwith one equa-
tion for each base outcome b:

ln (Pr (Bj = b|Ai = ai ∀i:(i, j) [ C)) =
∑

i:(i,j)[C

∑

a

ui,j,a,bXi,j,a,b − ln (Zj),

where a ranges over the 20 amino acids, Xi,j,a,b is an indicator var-
iable that is set to one if the amino acid in position i is a, θi,j,a,b is the
coefficient to be estimated that represents the contact energy con-
tribution when nucleotide b in binding site position j is paired
with amino acid a in protein position i, and Zj is a partition func-
tion. In particular, denoting parameters and indicator variables for
the equation for base b in position j more compactly as �u j,b and
�Xj,b, respectively,

Zj =
∑

b

e�u j,b ·�Xj,b

enforces
∑

b Pr (Bj = b|Ai = ai ∀i:(i, j) [ C) = 1 for each combina-
tion of amino acid settings.

If we fix some an arbitrary base bo as a “reference” and in turn
fix �u j,bo = �0, then each θi,j,a,b can be interpreted as the expected
contribution of a particular amino acid a at protein position i to a
change in the energy of binding induced by swapping base b for
base bo in base position j. Equivalently, because �u j,bo = �0, θi,j,a,b is
the expected change in log-odds of observing base b relative to
base bo, given amino acid a at protein position i. Thus, in practice,
we solve an equivalent multinomial logistic regression with the sci-
kit-learn Python package and regularize the model by adding pseu-
docounts to the PCMs, corresponding to a flat Dirichlet prior.
Ultimately ɛ(i, j, ai, b) is set to the negative of its corresponding in-
ferred model coefficient, because custom dictates that more favor-
able energetic states are more negative whereas more favorable
log-odds are positive.

Mapping a PWM to the contact map using the energy terms

We next show that if we know the pairwise free energy binding
terms, then we can compute the likelihood of each mapping of
the TF’s PWM to the contact map. We are given a protein p with
PWM Fp= ( fbj) and compute the corresponding PCM Kp= (kbj).
We want to infer Sp, the index of the column of Fp that maps to
the first binding site position in the contact map C, as well as
the orientation Op of the PWM with respect to the contact map.
If Op=1, then Fp is mapped to C, and if Op=0, the reverse comple-
ment of Fp ismapped toC. For each possible setting ofOp and Sp, we
compute the probability of observing the bases occupying the
binding site positions in C in the PCM as follows. If Op=1 and w
is the number of nucleotide positions in our contact map C,
then the sum of the natural logs of probabilities of observing the
bases in the PCM is proportional to

−
∑w

j=1

∑

i:(i,j)[C

∑

b

1(i, j, ai, b) · kb,Sp+j−1,
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where b takes on each of the 4 nt. On the other hand, if Op=0, we
let �b denote the base complementary to b, and then the sum of the
natural logs of probabilities of observing the bases in the PCM is
proportional to

−
∑w

j=1

∑

i:(i,j)[C

∑

b

1(i, j, ai, �b) · k�b,Sp−j+1.

We refer to the set of mapping parameters for all proteins to-
gether as the registration R= {Rp}, where Rp= (Op, Sp).

Gibbs sampling to estimate energy and mapping parameters

Initially, the pairwise contact energy terms ɛ are not known to us,
and neither is the set of mapping parameters R. However, as we
showed above, if the mapping is known, then all the ɛ terms
can be estimated. On the other hand, if the ɛ terms are known,
we can compute the probability of the observed data for each set-
ting of the mapping parameters R as described in the preceding
section.

Thus, we use Gibbs sampling for parameter inference. The
Gibbs sampler initializes the mappings R randomly. During any
given iteration of the sampling procedure, we hold out a protein
p (and corresponding PCM Kp) and estimate the ɛ terms as de-
scribed above, using the mapping R−p (i.e., withholding Rp from
R). We then sample a new Rp proportional to the probability for
each offset and orientation of Kp, corresponding to a length w
binding site based on these newly estimated ɛ terms as described
in the preceding section. Sampling stops either when the joint
probability of the data given the current settings of ɛ terms become
bound in a small range over many iterations or, alternatively,
when a set maximum number of iterations is reached. In practice,
weuse a formof block sampling, inwhich themapping parameters
for proteins with identical residues in their base-contacting posi-
tions are held out together and updated jointly (i.e., without re-
computing the ɛ terms between members of the same blocks) in
order to avoid being drawn into spurious local modes. For homeo-
domains, we seed the sampling procedure with offset and orienta-
tion information for five protein–PWM pairs for which a
co-complex structure already exists for the protein and the binding
site in the structure aligns unambiguously to the corresponding
PWM. For C2H2-ZFs, we seed the sampling with experimentally
determined mappings from Enuameh et al. (2013) for six pro-
tein–PWM pairs spanning a diverse set of base-contacting amino
acid sequences and specificities.

Extending rCLAMPS to C2H2-ZF proteins

rCLAMPS is described above assuming that for each PWM–protein
pair in a given data set, there exists only a single protein domain
interacting with the DNA represented by the PWM. However,
C2H2-ZF proteins specify their DNA-binding sites via tandem ar-
rays of multiple, closely linked C2H2-ZF domains, wherein an in-
dividual C2H2-ZF domain binds a contiguous 3-nt subsequence, 3′

to 5′, along with a potential fourth, cross-strand contact that over-
laps the target of the N-terminal adjacent C2H2-ZF domainwithin
the same array. In this way, the protein’s binding site is composed
of partially overlapping specificities corresponding to individual
C2H2-ZFs in the array (Persikov et al. 2015). In general, multiple
arrays of C2H2-ZF domains may exist within a single protein,
and only a subset of contiguous domains within an array may be
engaged with the DNA. For simplicity, here we focus on a subset
of C2H2-ZF proteins for which a single short array of domains
can be assumed a priori to engage the DNA.

To extend rCLAMPS to this subset of C2H2-ZFs, we consider a
contact map for domain–DNA interactions in which each domain

within a C2H2-ZF array interacts with a 4-nt region of the corre-
sponding PWM. Although the energies are estimated for a single-
domain 4-nt interface, each PWM–protein pair is modeled by
rCLAMPS as a set of n C2H2-ZF domains, each interacting with a
4-nt binding subsite that overlaps its N-terminal adjacent C2H2-
ZF domain’s subsite (if one exists). Thus if a protein has n domains,
it is considered to have a single length 3n+1 nt binding site, the
registration and orientation of which (within the PWM) are un-
known before running rCLAMPs, and the total energetic contribu-
tion to binding of a set of contacts is additive across these n
domain–DNA interfaces.

De novo prediction of PWMs

Once we have learned pairwise contact energy terms ɛ for a family
of DNA-binding proteins as described above, then for a given pro-
tein p from that family, we first use Pfam to identify the amino ac-
ids within it that comprise the protein positions within the
contact map. Next, for each binding site position jwithin the con-
tact map C, we use

e
−

∑
i:(i,j)[C

1(i,j,ai ,b)

∑
b
e
−

∑
i:(i,j)[C

1(i,j,ai ,b)

to calculate the probability with which each base b occurs
in column j and set element fbj of a predicted PWM Fp to this
value.

For a C2H2-ZF protein with an array of n domains, we predict
its PWM by first predicting n PWMs (one for each domain) in the
same manner described above. These n PWMs are then combined
by concatenating the PWMs for each domain (in C-to-N-terminal
order) with a 1-nt overlap, resulting in a single PWM with 3n+1
columns. In particular, for each pair of adjacent domains (k and
k+1, k<n, C-to-N-terminal order), the fourth PWM position pre-
dicted for domain k is averaged with the first PWM position
predicted for domain k+1.

Predicting PWMs for highly similar TFs

If we have two TFs that are nearly identical in the amino acids
that comprise the structural interface and if we know the PWM
for one of them and this PWM has been mapped to the structural
interface, then the PWM for the other TF can be predicted via a
hybrid approach that transfers some PWM columns and predicts
others de novo. In particular, given a TF p that is extremely se-
quence-similar to (i.e., is a mutant version of) another TF p′, for
which we already know its PWM Fp′ and mapping Rp′ , we may
transfer some information from Fp′ to infer a new PWM, Fp.
Specifically, if the two proteins vary in a single DNA-contacting
position i, then for each binding site position j that does not con-
tact protein position i according to our contact map C, we simply
set column j of Fp equal to the column of Fp′ that maps to bind-
ing site position j (i.e., according to Rp′ ). In practice, because
there may be many such near-mutant proteins (like p′) for each
given binding site position j, we use a weighted column transfer
of the mapped column j across all such proteins, weighting each
column by the corresponding near-mutant protein’s overall frac-
tion of DNA-binding domain identity to p (considering only
match positions and using a minimum identity threshold of
0.8). On the other hand, for each column j where no qualifying
near-mutant protein exists in our data set of mapped TF specific-
ities, we simply predict column j of Fp de novo as described in the
preceding section.
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PWM and protein data sets

PWMs for each of 623 wild-type homeodomain TFs were extracted
from the Cis-BP database (build 2.00) (Weirauch et al. 2014), con-
sidering only specificities for which a single homeodomain was
the only DNA-binding domain in the protein and using the
PWM from the most recent publication. Additionally, PWMs for
151 synthetic homeodomains from Chu et al. (2012) and 30 mu-
tant homeodomains from Barrera et al. (2016) were added to our
data set. After removing PWMs corresponding to proteins missing
DNA-contacting HMM match states, we had PWMs for a total of
763 distinct homeodomain proteins. Before training our models,
we rescaled PWMs to account for differences in information con-
tent across data sets (using a method described by Najafabadi
et al. 2015). Proteins corresponding to each PWMwere download-
ed from UniProt (using the longest isoform for each) (The UniProt
Consortium 2021) and mapped to HMM match states using
HMMer v.3 with the PF00046 HMM (Finn et al. 2014). For
C2H2-ZF proteins, a total of 263 PWM–protein pairs were extract-
ed from Cis-BP (Weirauch et al. 2014) and Fly Factor Survey
(Enuameh et al. 2013), considering only proteins for which the
set of C2H2-ZF domains interacting with DNA could be unambig-
uously determined. Further details on collection of PWM–protein
pairs and how the data were split for various testing tasks are de-
scribed in Supplemental Methods 1.1.

Evaluating agreement between PWMs for the same protein

We compare two PWMs for the same protein based on the Pearson
correlation coefficient (PCC) of their corresponding columns
when mapped to the binding site positions of our contact
map C. For predicted PWMs, this mapping is known. For experi-
mental PWMs for which this mapping is not known, we use the
set of contiguous experimental PWM columns that best align to
the predicted PWM using a previously described method
(Persikov and Singh 2014). PCC is particularly suitable for many
of our analyses owing to its insensitivity to information content
differences of PWMs across data sets.

Results

We show the effectiveness of our frame-
work to simultaneously learn probabilis-
tic recognition codes and the contacts
comprising protein–DNA interaction in-
terfaces from compendia of DNA-bind-
ing specificities by applying it to
homeodomains and C2H2-ZFs, the larg-
est TF families in metazoans.

Accurate de novo prediction of PWMs

via a structure-aware recognition code

We ran rCLAMPS with the homeodo-
main contactmap and a set of 763 home-
odomain proteins along with their DNA-
binding specificities. Because models ex-
plored by Gibbs sampling can be sensi-
tive to starting parameters, we ran
Gibbs sampling 100 times and consid-
ered the mapping R of PWMs to our con-
tact map C with the highest observed
likelihood score. We note that as with
any Monte Carlo style algorithm, the
more times our algorithm is run, the

higher the likelihood of obtaining an optimal solution.
Although we have no guarantee that the optimal mapping is
found within 100 runs, mappings found from several of the start-
ing points result in likelihoods similar to that of the highest likeli-
hood mapping (Supplemental Fig. S1).

We first show that the inferredmappings of the PWMs can be
used to yield recognition codes that are highly effective in predict-
ing the DNA-binding specificities of held-out homeodomain pro-
teins. That is, for each protein z, we re-estimate the energies εwhile
withholding that protein and any other protein with identical
DNA-contacting residues and then predict the protein’s DNA-
binding specificity de novo as described above. Because we are us-
ing the inferred recognition code to make a prediction, the map-
ping of each column in this predicted PWM to the contact map
C is known.We compare this predicted PWMto the corresponding
experimental PWM as described above. Over all TFs z, >91% of the
predicted columns are in agreement with the corresponding actual
columns (i.e., have PCCs≥0.5) (Fig. 2, left). Generally, the experi-
mental PWM columns are more likely to be predicted accurately
when their information content is higher or when their amino
acid residue contacts have been observed frequently across the
data set (Supplemental Fig. S2).

Considering each binding site position separately, the medi-
an per-column PCCs when comparing predicted and experimen-
tally measured columns are 1.0, 0.99, 1.0, 0.99, 0.96, and 0.88
for columns 1–6, respectively (Fig. 2, right). We find that 95%,
91%, 97%, 91%, 88%, and 86% of the predicted columns in posi-
tions 1–6, respectively, agreewith the actual columns. As expected
based on the determinants of homeodomain specificity, the stron-
gest agreement is observed for base position 3, corresponding to a
highly conserved asparagine-to-adenine contact. Columns also
agree quite well for positions 4, 5, and 6, which are among the
most variable positions of the core binding site for naturally occur-
ring homeodomains and for which our data set contains synthetic
homeodomains explicitly designed to vary specificity in these po-
sitions (Chu et al. 2012). Thus, even though the amino acid–base

Figure 2. Probabilistic DNA recognition code for homeodomains derived from automatically
inferred structural mappings has excellent de novo predictive performance. We compare agreement
between predicted PWM columns and corresponding experimental PWM columns for 763 homeodomain
proteins in a strict holdout validation setup. (Left) Considering all homeodomain binding site positions to-
gether, as different thresholds of PCC are considered (x-axis), the fraction of column pairs that have PCC
greater than this threshold is plotted (y-axis). Our nominal threshold for agreement (PCC≥0.5) is shown
as a dashed vertical line. (Right) For each binding site position within the homeodomain contact map
(x-axis), we display the PCC agreement scores (y-axis) for the paired columns at that binding site position,
visualized as letter-value (or boxen) plots. In a letter-value plot, the widest box shows the value range
spanned by half the data (from the 25th to 75th percentiles), whereas each successively narrower pair of
boxes together show the value range spanned by half the remaining data. The PCCs at the 25th percentile
for positions 1–6 are 0.98, 0.90, 1.00, 0.97, 0.79, and 0.69, respectively.
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contacts comprising structural interfaces are automatically in-
ferred, models trained assuming that these structural interfaces
are correct have excellent predictive performance. Moreover, our
structure-aware approach is expressive enough to describe a highly
accurate recognition code for homeodomains, yet constrained
enough to allow excellent generalization for predicting novel
homeodomain specificities.

Linear approach is competitive with state-of-the-art

combinatorial models

We compare the predictive performance of rCLAMPS to that of ex-
isting state-of-the-art methods for predicting homeodomain DNA-
binding specificities. In particular, we consider two random forest
approaches: one that was trained using naturally occurring home-
odomains (rf_extant) (Christensen et al. 2012) and another that
showed the utility of incorporating synthetic homeodomain train-
ing data (rf_joint) (Chu et al. 2012). For both of these approaches,
the data set of TF–PWM pairs required heuristic alignment of
PWMs to uncover corresponding base positions across the
PWMs; this was followed by feature selection before a random for-
est was trained for each base position. To provide a fair comparison
of de novo predictive performance across methods on diverse pro-
teins, we reserve half of the synthetic (at random) and all of the
mutant homeodomain proteins as a test set and rerun rCLAMPS
on the remaining 593 pairs that do not overlap these reserved pro-
teins in terms of DNA-contacting residue combinations. Of the
141 proteins unseen by either rCLAMPS or rf_extant, our model
predicts 90% of columns correctly, 5% more than rf_extant.
Notably, rCLAMPS displays greater accuracy for five out the six
core binding site positions for homeodomains, with the most
marked improvements in positions 3 through 5 (Supplemental
Fig. S3). This is consistent with earlier observations that rf_extant
struggles to predict the more variable DNA-binding specificities in
positions 4 through 6 introduced by the synthetic homeodomains
(Chu et al. 2012). Our comparison to rf_joint is more limited, as
the 77 proteins not in either method’s training set cover only 16
distinct DNA-binding residue combinations. Nonetheless, on
this limited test set, both methods predict 94% of columns accu-
rately. Although rf_joint predicts one more column correctly in
each of binding site positions 1, 2, and 4, our model predicts two
more columns correctly in position 5 (Supplemental Fig. S4).
Thus, despite the fact that these previous approaches used combi-
natorialmodels that required hyperparameter tuning, aswell as ex-
tensive preprocessing for alignment of PWMs and homeodomain
position feature selection (Christensen et al. 2012), our automated
probabilistic approach requiring only interpretable linear parame-
ter fitting provides comparable de novo predictive power.

Learning structural mappings allows effective transfer of

specificity information from wild-type to mutant TFs

Although de novo DNA-binding specificity prediction is necessary
for predicting binding preferences of completely uncharacterized
TFs, in the context of natural variation and disease, there is great
interest in predicting the changes in DNA-binding specificities in-
duced via single–amino acid alterations to wild-type TFs. Mutated
TFs are seen in cancer (Kobren et al. 2020) and in inherited diseases
(Chi 2005; Hamosh et al. 2005). If such an alteration occurs in a
DNA-contacting residue, as a first approximation, de novo predic-
tion is necessary only for the binding site positions contacted by
that altered residue,whereas the specificity for the remaining bind-
ing site positions can be transferred directly from the wild type.

The primary obstacle preventing such a “hybrid” approach is
that for the vast majority of TFs, the underlying amino acid–base
contacts involved in the interaction are unknown. However,
because rCLAMPS infers both a structural mapping of the underly-
ing amino acid–base contacts and a per-binding site position de
novo recognition code, we next use such a hybrid inference
approach.

To test our hybrid approach, we considered the 593 proteins
given as input to rCLAMPS from the previous section as “wild-
type” specificities and inferred specificities for each of 88 “mutant”
proteins in the held-out test set. A protein from the held-out set is
considered to be a mutant to a given wild-type protein if it is at
least 80% identical to the wild type throughout all positions in
thematch states of the DNA-binding domain and differs in exactly
one DNA-contacting residue. Across these 88 mutants’ inferred
specificities, our hybrid approach infers 353 of the columns via
transfer from corresponding wild-type specificities and requires
de novo predictions for 175 columns. Comparing these inferred
columns to their experimental counterparts, we find that 90% of
the columns predicted de novo are accurate versus 93% for the
transferred columns (Fig. 3, left), suggesting a potential advantage
to using the transfer approach when possible. Additionally, the
transferred columns are more accurate than the identical column
positions for the same proteins when predicted de novo by either
rCLAMPS or by rf_extant (Fig. 3, right). We note that the rf_joint
method includes all but 19 of the mutant proteins in its training
set (spanning only eight distinct DNA-contacting residue
combinations). On this extremely small and not very diverse set
of proteins, both our hybrid approach and rf_joint predict each
of the 76 columns for which transfer was possible accurately
(Supplemental Fig. S5). Taken together, our results illustrate that
the protein–DNA interface mappings inferred by our approach ef-
fectively enable transfer of wild-type homeodomain specificity

Figure 3. Column transfer via learned structural mappings is highly ef-
fective for predicting DNA-binding specificities for mutant TFs. (Left) For
the hybrid approach, the PWM columns are binned according to whether
they are predicted de novo or via transfer, and the PCCs of the predicted
versus actual columns are shown in letter-value plots. Although 90% of de
novo predictions are in agreement with their experimentally determined
counterparts, an even higher 93% of predictions via transfer are in agree-
ment. (Right) For each of the homeodomains that were also not part of the
rf_extant training set and by considering only columns for which transfer
was used by our hybrid approach, we compute the PCC between the ac-
tual specificity for a column and that predicted by our hybrid approach
(hybrid), our de novo linear approach (rCLAMPS), and the rf_extantmodel
(rf_extant). We find that 93% of transferred predictions are in agreement
with their experimentally determined counterparts, compared with 91%
and 85% of de novo predictions for rCLAMPS and rf_extant, respectively.
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information at the level of individual binding site positions and in
turn allow inference of more accurate DNA-binding specificities
for mutant homeodomains than de novo prediction alone.

Accurate and automated mapping of TF–PWM pairs

to a structural interface

Because homeodomain proteins and their DNA-binding specifici-
ties are highly conserved across organisms (Nitta et al. 2015), we
next use an across-species approach to externally validate ourmap-
ping of TF–PWM pairs using previously determined known pro-
tein–DNA interfaces. Specifically, in the first large-scale assay of
homeodomains in the fruit fly, DNA-binding specificities were
characterized in a specialized experimental system that specifically
allowed for a global alignment (with known orientation) of all the
DNA sequences selected by all the DNA-binding domains assayed
(Noyes et al. 2008b). Bymanually aligning a single PWM from this
set relative to the start of our contact matrix and shifting registra-
tions of all others identically,we obtain an experimentally inferred
mapping of each of these fly PWMs. Of 593 homeodomains for
which rCLAMPS inferred structural mappings, 235 of them map
to fly proteins characterized in this previous assay as they are iden-
tical in their base-contacting positions. Thus, we compare corre-
spondences between the experimentally determined fly
mappings and themappings of their base-contacting residue-iden-
tical counterparts in our data set.

Overall, 97% (228/235) of our inferredmappings are identical
to their experimentally determined counterparts (Fig. 4, left,
green). Further, after separating the homeodomain proteins ac-
cording to “specificity groups” as determined by the investigators
of the experimental approach via hierarchical clustering of their
DNA-binding motifs (Noyes et al. 2008b), we find that the map-
pings are either completely or nearly completely correct for 10
out of 11 of these diverse specificity groups (Fig. 4, right, green),
with poor agreement occurring for only the relatively small
Iroquois group.

To illustrate the advantage of our approach that jointly con-
siders the proteins and the binding siteswhen aligning specificities
for a family of TFs, we compare our results to a tool that considers

only binding site information. In particular, we consider STAMP
(Mahony et al. 2007), which is a multiple PWM alignment tool
that uses a guide tree based on pairwise PWM alignments (i.e.,
without considering the protein sequences associated with the
PWMs). We run STAMP on the same set of PWMs and use default
parameters. Although STAMP does not map its aligned set of
PWMs to the homeodomain contact map, we consider the map-
ping of the alignment that gives the best possible results for
STAMP. This results in a correct mapping for 80% of the TFs (Fig.
4, left, red). STAMP does well on the most abundant groups (e.g.,
Antp and En); this is as expected because these PWMs are similar
to each other and align well to each other. In contrast, STAMP
struggles on groups that diverge more substantially from the ca-
nonical homeodomain motif pattern (e.g., the NK-2 group) or
groups that tend to have reverse palindromic PWMs with more
subtle specificity differences between the two sides of the palin-
drome (e.g., the Abd-B group). This is also as expected, because
STAMP’s intended use is to align similar PWMs, not a diverse set
of PWMs, as can be seen for different TFs from the same structural
family. Thus, for TF families with diverse or complexDNA-binding
specificity determinants, our framework can effectively harness
the shared information between the proteins and their corre-
sponding PWMs to produce a multiple PWM alignment that is
in outstanding agreement with a ground truth experimental
alignment.

Accurate de novo prediction and interface mapping for C2H2-ZF

proteins

To empirically examine the generalizability of our framework, we
run our extended version of rCLAMPS using the C2H2-ZF
domain–DNA contact map along with 263 C2H2-ZF PWM–pro-
tein pairs, sampling 250 random starting positions and orienta-
tions for the PWMs, and consider the mapping of protein–DNA
interfaces with the highest likelihood across all runs. Despite the
fact that the C2H2-ZF family contains by far the most diverse set
of DNA-binding specificities, with domains capable of interacting
with all 64 DNA triplets via different combinations of DNA-con-
tacting residues (Persikov et al. 2015), our linear recognition
code was able to predict C2H2-ZF DNA-binding specificities quite
well. Specifically, in a strict holdout validation analogous to that
used for homeodomains (i.e., analogous to Fig. 2), 1446 out of
2041 (71%) PWM columns predicted by rCLAMPS de novo agree
with corresponding experimental columns (Supplemental Fig.
S6, left), with slightly higher performance for PWMs from the
Fly Factor Survey (72%) than for other PWMs. We note that
C2H2-ZFs have historically been the most difficult family for
which to experimentally determine DNA-binding specificities
(Barazandeh et al. 2018); indeed in previous work, we examined
across-data set agreement of high-throughput specificities for indi-
vidual C2H2-ZF domains identical in their DNA-contacting resi-
dues, finding that they agreed in only 75% of columns even
after optimal within-data set regularization (Wetzel and Singh
2020). Considering each binding site position of the C2H2-ZF
domain–DNA interface separately, the median per-column PCCs
when comparing predicted and experimentallymeasured columns
are 0.86, 0.92, and 0.99 for binding site positions 1 through 3, re-
spectively (Supplemental Fig. S6, right). For 36 of the PWM–pro-
tein pairs included in our data set, per-domain PWMs were
previously experimentally inferred (Enuameh et al. 2013), allow-
ing for easy inference of the proper starting positions and orienta-
tions of the protein–DNA interfaces within the corresponding full-

Figure 4. Inferred mappings to contact map are highly accurate. We
comparemappings inferred by rCLAMPS (green) and computed based on
direct PWM multiple alignment performed by STAMP (red) to those that
are known experimentally for TFs that have identical amino acids within
their base-contacting positions. (Left) The fraction of predicted mappings
that is identical to the experimentalmappings. (Right) The number of iden-
tical mappings when homeodomains are classified with respect to “specif-
icity groups” as determined byNoyes et al. (2008b). Small circles represent
the total number of homeodomains considered in each of these specificity
groups.
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length PWMs. Overall, the mappings inferred by rCLAMPS agree
for 30 (83%) of these. Taken together, these results indicate that
rCLAMPS is a general and effective approach for automatically in-
ferring both TF family-specific recognition codes and protein–
DNA interfaces from large PWM collections.

Discussion

We describe a novel probabilistic framework that enables fully au-
tomated analyses of large compendia of TF DNA-binding specific-
ities to jointly discovermappings of underlying sets of amino acid–
base contacts and structure-aware TF family-wide recognition
codes. In principle, our approach can be applied to PWMs for
any family of DNA-binding proteins whose interaction interfaces
with DNA are structurally conserved enough to be modeled by a
pairwise amino acid–base position contact map. Using the home-
odomain family as a test case, we show that the physically inter-
pretable recognition code learned is both expressive enough and
generalizable enough to allow state-of-the-art de novo prediction
of homeodomain DNA-binding specificities. Furthermore, we
show that having extremely accurate mappings of TF–PWM inter-
faces allows single-base-position resolution transfer of specificity
information from wild-type to mutant proteins, in turn enabling
inference of even more accurate DNA-binding specificities.
Finally, we show the generality of our framework by applying it
to a very different TF family from the homeodomains, namely
C2H2-ZFs where all C2H2-ZF domains are known to engage with
DNA.

Our linear model and set of mapped TF–DNA interfaces can
serve as a jumping off point for training models that account for
higher-order interactions, and without the need to rely on experi-
mentally curated contact maps (Benos et al. 2002; Kaplan et al.
2005; Noyes et al. 2008b; Persikov et al. 2009, 2015; Persikov
and Singh 2014; Najafabadi et al. 2015), specialized experimental
setups that place the protein in a fixed orientation with the bind-
ing site (Noyes et al. 2008a,b; Chu et al. 2012; Persikov et al. 2014;
Najafabadi et al. 2015), or complicated and partly curatedmultiple
motif alignment strategies (Christensen et al. 2012; Chu et al.
2012). Indeed, in a preliminary exploration in which we trained
machine learning methods that allow nonlinear effects between
amino acids on base preferences (including gradient boosting
[Friedman 2000] and random forests [Breiman 2001]) on our set
of mapped TF–DNA interfaces, we found that they provide subtle
improvements in predictive performance for some base positions.
However, we do not report those results here as the pairwise ener-
getic approximation provided by rCLAMPS allows for statistically
interpretable coefficients while still providing state-of-the-art pre-
dictive performance. Optimizing these nonlinear, more expressive
models is likely to be a fruitful avenue for further research.
Additionally, exploration of informative priors for the protein–
DNA recognition codes learned by rCLAMPS could likely improve
its performance and make it possible to predict changes in specif-
icity induced even by amino acid–base contacts not directly ob-
served in the PWM–protein pair training set. For example, one
could imagine introducing parameter priors based onmore general
amino acid–base contacts observed across domains with similar
structural motifs (Suzuki 1994; Suzuki and Yagi 1994; Luscombe
2001) or based on previous DNA-recognition patterns observed
in large synthetic TF–DNA interaction screens for certain TF fami-
lies (Najafabadi et al. 2015; Persikov et al. 2015). Further, DNA
shape has been shown to be an important determinant for both in-
trinsic and context-specific DNA recognition by homeodomain

and other TF families (Gordân et al. 2013; Dror et al. 2014; Zhou
et al. 2015; Mathelier et al. 2016; Yang et al. 2017; Kribelbauer
et al. 2020); thus, extending our model to include DNA shape in-
formation based on binding sites’ flanking nucleotide contexts
may lead to more accurate predictions of the effects of TF muta-
tions on DNA-binding activity.

rCLAMPS can in principle be applied to a broad range of TF
families. The primary requirements for applying our framework
in its current form are the availability of a set of structural co-com-
plex interfaces fromwhich to infer a family-wide aggregate contact
map, availability of a sufficient number of PWM–protein pairs
from which to learn a family-wide recognition code, and a priori
knowledge for each PWM–protein pair of which DNA-binding
domain(s) within the protein interacts with the set of DNA se-
quences represented by the PWM. In theory, however, rCLAMPS
can be extended to relax this third requirement via the use of latent
variables, allowing automated inference of more complex situa-
tions that can arise in TF–DNA interactions. For example, some
C2H2-ZF TFs contain multiple distinct arrays of domains, and it
is generally unknown a priori which array or arrays, or even which
domains within these arrays, are involved in DNA binding for a
given PWM. Such situations could be handled by rCLAMPS via in-
clusion of additional latent parameters representing the engaged
array or arrays, as well as the first and last domain within it that
are engaged; alternatively, variable interaction interface align-
ments could be introduced through clever algorithmic work. On
a similar note, many TFs engage their binding sites as homodimers
or heterodimers (Jolma et al. 2013). In such a case, although the
current implementation of rCLAMPS would find only half-sites
within the PWM that are a good match to the learned recognition
code, additional latent parameters could be included to help deter-
minewhether the PWM is a bettermatch to a single binding site or
a pair of half-sites, with or without half-site overlap. Although rig-
orous testing of such extensions is beyond the scope of this article,
they highlight the overall flexibility of the framework and repre-
sent opportunities to build upon it.

Overall, we expect that our general approach can be applied
to the thousands of extantDNA-binding specificities across a range
of organisms and to a diverse set of DNA-binding families; this
would drastically improve our understanding of the determinants
of DNA-binding specificity and in turn help efforts to predict the
potential downstream regulatory impacts ofmutationswithin TFs.

Software availability

Open-source software implementing methods and analyses de-
scribed in this work, along with examples of how to predict spec-
ificities for novel TFs using the models described and how to
interpret the models’ learned parameters, are available at GitHub
(https://github.com/jlwetzel-slab/rCLAMPS) and as Supplemental
Code.
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