TABLE 6. Model Performance on Validation and Testing Datasets (AECOPD).
Validation | Accuracy | Sensitivity | Specificity | Precision | F1 |
---|---|---|---|---|---|
DNN | 0.921 | 0.904 | 0.940 | 0.943 | 0.923 |
Random forest | 0.914 | 0.877 | 0.955 | 0.955 | 0.914 |
Decision tree | 0.792 | 0.712 | 0.881 | 0.867 | 0.782 |
Testing | Accuracy | Sensitivity | Specificity | Precision | F1 |
Deep neural network | 0.724 | 0.625 | 0.783 | 0.633 | 0.629 |
Random forest | 0.804 | 0.689 | 0.811 | 0.686 | 0.680 |
Decision tree | 0.705 | 0.524 | 0.814 | 0.628 | 0.571 |