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Abstract

In low-dimensional data and within the framework of a classical linear regression model, we

intend to compare variable selection methods and investigate the role of shrinkage of

regression estimates in a simulation study. Our primary aim is to build descriptive models

that capture the data structure parsimoniously, while our secondary aim is to derive a predic-

tion model. Simulation studies are an important tool in statistical methodology research if

they are well designed, executed, and reported. However, bias in favor of an “own” preferred

method is prevalent in most simulation studies in which a new method is proposed and com-

pared with existing methods. To overcome such bias, neutral comparison studies, which dis-

regard the superiority or inferiority of a particular method, have been proposed. In this

paper, we designed a simulation study with key principles of neutral comparison studies in

mind, though certain unintentional biases cannot be ruled out. To improve the design and

reporting of a simulation study, we followed the recently proposed ADEMP structure, which

entails defining the aims (A), data-generating mechanisms (D), estimand/target of analysis

(E), methods (M), and performance measures (P). To ensure the reproducibility of results,

we published the protocol before conducting the study. In addition, we presented earlier ver-

sions of the design to several experts whose feedback influenced certain aspects of the

design. We will compare popular penalized regression methods (lasso, adaptive lasso,

relaxed lasso, and nonnegative garrote) that combine variable selection and shrinkage with

classical variable selection methods (best subset selection and backward elimination) with

and without post-estimation shrinkage of parameter estimates.

1. Introduction

Over the last decade, considerable attention has focused on penalized regression models, and

several methods have been proposed owing to their computational efficiency in variable selec-

tion with many potential candidate covariates [1]. There is a consensus that the choice of a

method depends on the aim of the study. This simulation study focuses on descriptive
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modeling that aims to capture the association between response and covariate variables. As

such, simple models, which are more interpretable and transferable than complex models con-

taining a large number of variables are preferred [2]. In an overview of methods for selection

of variables and functional forms for continuous variables, seven important topics that warrant

further research, ideally by well-designed and analyzed simulation studies, were highlighted

[3]. Here we will concentrate on (i) investigation and comparison of properties of variable

selection strategies and (ii) the role of shrinkage in the correction of selection bias introduced

by data-dependent modeling.

Following the general objectives of the STRengthening Analytical Thinking for Observa-

tional Studies (STRATOS) initiative (https://stratos-initiative.org/), which aims to derive evi-

dence supported guidance for the design and analysis of relevant issues in observational

studies [4], we will compare variable selection procedures that have been in existence for many

years. In penalized likelihood procedures that combine variable selection and shrinkage, we

will evaluate the nonnegative garrote (NNG) [5], lasso [6], adaptive lasso [7], and relaxed lasso

[8]. In addition, classical variable selection strategies, i.e., best subset selection and backward

elimination, will be considered, and since their regression estimates are not shrunken, we will

subject them to shrinkage obtained from post-selection shrinkage methods [5, 9, 10] and com-

pare the results with penalized likelihood methods. It is important to note that the NNG is

among the first proposed methods that combine variable selection and shrinkage. Therefore,

the new proposal for suitable initial estimates makes its application possible even in highly cor-

related (HCD) and high-dimensional data (HDD) [11]. The lasso was proposed about a year

after the NNG and is a special case of bridge regression introduced by Frank and Friedman

[12]. The lasso is the most popular regularized method, probably due to its application in

HDD and the availability of fast algorithms for the estimation of its solution [13]. However,

it’s well-known that the lasso has several weaknesses [7, 8], and various modifications like the

adaptive lasso and relaxed lasso have been proposed to correct the weaknesses.

Simulation studies are an important tool in statistical methodology research, provided that

they are well designed, executed, and reported. They can be used to explore situations for

which theoretical arguments are insufficient to determine whether the method of interest is

valid in a specific real-life application or not or explore situations of interest that cannot be

assessed using real data because the true values of the underlying parameters are needed. Addi-

tionally, simulation studies can highlight ideal and problematic scenarios for specific methods

[14, 15]. Morris and co-authors [16] reviewed 100 simulation studies published in Statistics in

Medicine in 2015 and found that simulation studies tend to be poorly reported and identified

several areas for improvement. They described and advocated the ADEMP structure. This

structured approach continues to gain more acceptance among researchers and we used it to

describe the protocol of our simulation study. We intend to conduct the simulation study in

low-dimensional data in the framework of a linear regression model with normal errors, but

methods can be used more generally in the context of generalized linear models and censored

survival data.

Bias in favor of a preferred method is probably more prevalent in simulation studies in

which a new method is proposed and compared with existing methods. In this case, a simula-

tion study is often used to demonstrate the benefits (and rarely the weaknesses) of a new

method over existing methods. The danger is that the researchers are likely to create settings in

which their methods perform well [14]. This is not good scientific practice, which is unfortu-

nately contributed by many factors. For instance, reviewers might easily reject a new method if

the authors highlight several limitations, while the pressure to publish for career reasons can

also lead to poor research [17].
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To overcome this problem, neutral comparison studies and good reporting of simulation

results have been proposed. Neutral comparison studies do not aim to demonstrate the superi-

ority or inferiority of a particular method but provide insight into the properties of methods

[18, 19]. An ideal form of neutral comparison studies requires the involvement of a group of

researchers who are well-versed with all methods of interest and do not have an interest in the

success of any of the methods [19]. That is an extremely difficult task, but we aim to conduct a

simulation study with key principles of neutral comparison studies in mind, though certain

unintentional biases can never be ruled out. To reduce biases caused by the design, the proto-

col was sent to some members of topic group 2 (Georg Heinze) and the simulation panel

(Anne-Laure Boulesteix and Tim Morris) of the STRATOS initiative for comments or sugges-

tions on all aspects of the design. As proposed by Morris and co-authors, we decided to

increase the transparency of our work by publishing this simulation protocol.

The paper is organized as follows: Section 2 provides an introduction to the simulation

design, followed by five subsections ordered according to the ADEMP structure. Subsection

2.2 describes the aims of the simulation study, while subsection 2.3 describes the data-generat-

ing mechanisms, such as the correlation structure and sample size, used in detail. Subsection

2.4 briefly describes the variable selection methods, while subsection 2.5 describes the perfor-

mance measures used to compare several approaches. Final remarks are given in section 3,

while the software implementation is relegated to the Appendix, which also contains a detailed

description of the methods.

2. Simulation design–improvement through the ADEMP structure

Simulation studies are important tools for assessing the properties of variable selection proce-

dures and comparing alternative methods. Borrowing information from published simulation

studies with related investigations is important to gain insight into the weaknesses and

strengths of designs. In the present study, we incorporated some information from several

published studies as discussed in section 1 of the S1 File. Besides borrowing some ideas from

the published studies, we used other different settings such as explained variation (R2), sample

size (n), correlation structure (C), and different settings of regression coefficients (β) for a

broader perspective. We will consider 15 covariates, of which 7 have effects. Some of the inves-

tigations will be repeated with 15 additional uncorrelated noise variables. Following the

ADEMP structure, we have summarized relevant issues in Table 1 and provided details in five

subsections 2.2 to 2.6.

2.1 Additional analyses

The main analysis will concentrate on a broad examination of 128 scenarios from a fully facto-

rial design. We will extend the main simulation study with three additional cases: (i) we will

take n = 400, βA, C1, R22{0.3,0.5,0.71} with 30 covariates (i.e., the 15 original covariates and 15

uncorrelated noise variables), in order to study the performance of different methods in the

presence of additional noise variables, (ii) we will set n = 800 with the original 15 covariates,

βA, C1, and R22{0.3,0.5,0.71}, in order to study the performance of the methods in larger sam-

ple size and (iii) we will rerun the simulations with n = 400, βA, C1, p = 15 original covariates

while varying R22{0.3,0.5,0.8,0.9} to study the consistency of methods as R2 approaches one.

2.2 Aims

Our study aims to: (i) compare variable selection methods using different tuning parameters

(Cross-validation(CV), Akaike Information Criterion (AIC) and Bayesian Information Crite-

rion (BIC)) or initial estimates in terms of selecting a ‘nearly true’ model and prediction errors,
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Table 1. Summary of the simulation design following the ADEMP structure.

Aims (section 2.2) • To compare variable selection methods using different tuning parameters (CV, AIC and BIC) or initial

estimates in terms of model selection and prediction.

• To assess the usefulness of post-estimation shrinkage in the prediction of classical variable selection

methods and compare the results with penalized methods.

• To compare the amount of shrinkage of regression coefficients of penalized and post-estimation

shrinkage methods.

• To assess the performance of different methods in the presence of relatively many noise variables, in

larger sample size, in relatively high correlation and when R2 approaches one.

Data generating mechanism (section 2.3) Training/development dataset

• (X ~ Np(0, S))where p = 15 and Σ 2 Rp�p; Sij is equal to the correlation coefficient between covariate xi

and xj

• Y = Xβ + � where β 2 (βA, βB, βC, βD) and � ~ N(0, σ2In)

True regression coefficients (β) for 15 covariates

βA: 1.5, 0, 1, 0, 1, 0, 0.5, 0, 0.5, 0, 0.5, 0, -0.5, 0, 0 –From [20]

βB: 1.5, 0, 0.5, 0, 0.5, 0, 0.25, 0, 0.25, 0, 0.25, 0, -0.25, 0, 0 –(modified βA)

βC: 1,0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0 –From [21]

βD: 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 –From [21]

Correlation structure (C)

C1: Taken from [20]–low collinearity

C2: Autoregressive structure with Sij = 0.3|i-j|-low collinearity

C3 Autoregressive structure with Sij = 0.8|i-j|–moderate collinearity

C4: Adapted from real study, body fat data–high collinearity

R2 and sample size (n)

R2 = {0.20, 0.30, 0.50, 0.71}; n = {100, 400}

Number of scenarios (full factorial design) and simulation runs

β × C × R2 × n = 4 × 4 × 4 × 2 = 128 scenarios

N = 2,000 simulation repetitions per scenario

Test dataset

• New simulations with the same design as training dataset (ntest = 100, 000)

Additional analysis

Additional analysis will be conducted with βA, C1, n = (400, 800) and a subset of R2 = {0.30, 0.50, 0.71, 0.8,

0.9}

Estimand/target of analysis (section 2.4) • Selection status of each covariate and identification of the true model

• Shrinkage factors for each regression estimate

• Model prediction errors

Methods (section 2.5) A. Variable selection methods

Method Tuning parameters Initial estimates

Lasso 10-fold CV, AIC & BIC N/A

Garrote 10-fold CV, AIC & BIC OLS, ridge and lasso

Alasso� 10-fold CV, AIC & BIC OLS, ridge and lasso

Rlasso� 10-fold CV, AIC & BIC N/A

Best subset 10-fold CV, AIC & BIC N/A

BE� 10-fold CV, AIC & BIC N/A

B. Post-estimation shrinkage methods:

(i) Global [10], (ii) parameterwise [9] and (iii) Breiman’s method [5]

Estimation method: (i) leave-one-out CV and (ii) 10-fold CV

Performance measures (section 2.6) • Inclusion and exclusion of variables: FNR & FPR–subsection 2.6.1

• classification of models: Probabilities–subsection 2.6.1

• Prediction accuracy: Model error (ME)–subsection 2.6.2

• Variability of ME within and between scenarios—section 5 in S1 File

�Alasso, Rlasso and BE denote adaptive lasso, relaxed lasso and backward elimination; while FNR and FPR denote false negative rates and false positive rates,

respectively.

https://doi.org/10.1371/journal.pone.0271240.t001

PLOS ONE Comparison of variable selection procedures-protocol of a simulation study

PLOS ONE | https://doi.org/10.1371/journal.pone.0271240 October 3, 2022 4 / 11

https://doi.org/10.1371/journal.pone.0271240.t001
https://doi.org/10.1371/journal.pone.0271240


(ii) assess the usefulness of post-estimation shrinkage factors in improving the prediction per-

formance of best subset selection and backward elimination, and compare results with penal-

ized regression methods, (iii) assess the performance of different selection methods in the

presence of many noise variables, in larger sample size, in relatively high correlation and when

R2 approaches one.

2.3 Data generating mechanisms

2.3.1 Training dataset and explained variation. A matrix of continuous covariates X 2
Rn�p will be drawn from a multivariate normal distribution with a mean vector of 0 and a vari-

ance-covariance matrix S 2 Rp�p
with Sij equal to the correlation coefficient between covari-

ate xi and xj (Table A in S1 File). We will consider X as random rather than fixed in each

simulation experiment. Given X, we will generate Y = Xβ + �, where � is assumed to follow an

n-variate normal distribution with a zero-mean vector and variance-covariance matrix σ2In, i.
e. � ~ N(0,σ2In) with In the n × n identity matrix; β is the true regression coefficient vector with

some elements equal to 0 (see Table 1). Henceforth, covariates with nonzero coefficients are

called signal variables, while those with zero coefficients are called noise variables. We will con-

sider six values of theoretical R2 namely 0.20, 0.30, 0.50, 0.71, 0.80 and 0.90 which correspond

to the SNR of 0.25, 0.42, 1.00, 2.5, 4.00 and 9, respectively. For a given value of SNR, vector of

true regression coefficients (β) and covariance matrix (S), the residual variance σ2 will be cal-

culated as [22]

s2 ¼
Var XTbð Þ

SNR
¼
b

T
Sb

SNR

2.3.2 True regression coefficients considered. It is well documented in the statistical lit-

erature that methods behave differently under specific settings of true regression coefficients

(β). In this study, we will consider four settings as shown in Table 1. The first set, denoted by

βA was investigated by [20] and aims to be more realistic since in real life there exists a mixture

of variables with strong, medium and weak effects. The second set βB is a modification of βA

with one large effect and several smaller effects. Small nonzero regression coefficients were

intentionally allowed to investigate the tendency of procedures to reduce false negative results.

The third and fourth sets (βC and βD) are generally not realistic but are often used to study the

theoretical properties of methods. Bertsimas and co-authors [21] used βC and found that the

lasso failed to distinguish between zero and nonzero components when the two components

were relatively highly correlated. Hastie and co-authors [22] investigated βD in low-dimen-

sional settings (n = 100, p = 10, ρ = 0.35) and found that the relaxed lasso performed best in

prediction both in low and high SNR. Therefore, it is important to investigate the properties of

other methods such as nonnegative garrote and adaptive lasso under these settings.

The seven nonzero coefficients in βC are distributed at (roughly) equally-spaced indices

between 1 and p, and the rest are equal to 0, in order to investigate situations in which zero

and nonzero components are weakly and strongly correlated. The first seven coefficients of βD

are nonzero, while the rest are 0. This will enable us to investigate situations where correlations

between signal covariates are high. Since the residual variance is a function of SNR, covariance

structure and effect size, as described in subsection 2.3.1, it is necessary to adapt the residual

variance for each vector of effect size in order to design models with a specified explained

variation.

2.3.3 Number of covariates, correlation structure and sample size. Number of covariates
(p). The results of variable selection methods are sensitive to the proportion of zero
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components. For instance, a simulation study conducted by [5, 23] revealed that the subset

selection yielded good predictions when the true data generating model contained fewer non-

zero coefficients. In order to compare methods on an equal footing, two different sets of covar-

iates will be considered with a fixed number of nonzero components. We will consider a

situation where the number of zero and nonzero components is approximately equal (7 zero

and 8 nonzero). In an additional analysis, we will investigate the effect of a larger number of

zero components (23 zeros and 8 nonzeros). This implies that the latter will not be executed in

a full factorial design but considered as part of the additional analysis as described in section 2.

Correlation structure (C) and multicollinearity. We will evaluate the correlation structure

studied by [20] in order to compare the results. The correlation coefficients for p = 15 covari-

ates are displayed in the lower triangular panel of Table A in the S1 File. It is evident that many

covariates are uncorrelated; which will enhance the understanding and interpretability of the

simulation results [24]. In addition, we will consider the autoregressive (AR) correlation struc-

ture where the correlation between covariates xi and xj is calculated by ρ|i−j| with ρ 2 {0.3, 0.8}.

This will allow us to investigate the performance of methods in instances when a signal vari-

able is weakly (ρ = 0.3) and strongly (ρ = 0.8) correlated with a noise variable. This type of cor-

relation is often used in simulation studies that compare methods, as demonstrated by [5, 21,

22]. Besides, we will use the correlation structure of 13 covariates from the body fat dataset

[25], as shown in the upper triangular panel of Table A in the S1 File. Since we are evaluating

15 variables, we will consider the remaining two variables (x14 and x15) uncorrelated with the

other variables. A high degree of multicollinearity is expected when the correlation structure

of body fat data is used; given that some variables exhibit VIF>10, hence the regression coeffi-

cients are likely to be poorly estimated. On the other hand, moderate collinearity is expected

when the AR(ρ = 0.8) correlation structure is used, while low collinearity is expected when the

AR(ρ = 0.3), and [20] correlation structures are used (Table A in S1 File).

Sample size (n). Numerous challenges are associated with a small sample size relative to the

number of parameters to be estimated. These include, (i) an increased risk of excluding impor-

tant variables when variable selection is conducted, (ii) classical variable selection methods

have low power to select important covariates, which can lead to poor predictive performance

when evaluated in new data, (iii) internal validation of models is done inefficiently, and (iv)

the tuning parameters of penalized regression methods are estimated with large uncertainty

[26–29]. When the aim is to build a model and the model-building process involves variable

selection, the sample size required should be adequate. This depends on other factors such as

the correlation structure of covariates and the strength of effects [30]. A pragmatic approach

based on simulation studies such as a range of 10 to 25 observations per regression parameter

estimated (OPP) has been recommended [24, 30–32] to ensure that: important variables are

included in the model, regression coefficients are accurately estimated, and to avoid serious

overfitting. In this study, we will consider the development sample sizes of n = (100, 400, 800)

with a minimum and maximum sample size of 100 (approx. 7 OPP) and 800 (approx. 53

OPP), respectively, for p = 15 covariates. Including a smaller sample size will allow us to eluci-

date its effects on variable selection and other aspects of model-building. The main analysis

will vary n = (100, 400) factorially with other simulation parameters. To shed light on the prop-

erties of variable selection strategies on a large sample size, we will conduct additional analysis

with n = 800 in combination with a subset of the simulation parameters as explained in section

2 on additional analysis.

Test dataset and number of simulations. To quantify the performance of fully specified pre-

diction models, test datasets will be independently generated using the same design as that of

training datasets, with the assumption that both datasets originate from the same underlying

population. Studies show that a small test dataset is unreliable, inaccurate, and biased and
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should be avoided when making decisions on whether to discard or recommend prediction

models [33, 34]. Therefore, the size of the test dataset should be adequate to reduce uncertain-

ties in performance measures when drawing reliable conclusions [29]. As such, we will con-

sider a sample of size ntest = 100,000.

Based on several reviews of simulation studies, a formal justification for the number of sim-

ulation repetitions used is hardly provided, even though it plays an important role in the calcu-

lation of the Monte Carlo error [16, 35]. The number of simulation repetitions depends on the

desired accuracy of an estimate of interest. To get a rough estimate of the number of repeti-

tions, we used the model error (ME) described in section 5 of the S1 File from the full least-

squares model (reference model) as a summary statistic of our interest and decided that the

Monte Carlo standard error (MCSE) of ME should be lower than 0.005 for better precision.

Since the variance of ME was unknown, we performed a small simulation to obtain its realistic

estimate as recommended by [35]. We used: p = 15 covariates, n = 400, R2 = 0.50, βA, ntest =

100,000 and N = 1,000 simulation repetitions. The estimate of the variance of ME, Var MÊ
� �

,

was 0.010 and we calculated the number of simulation repetitions using the formula [15]:

MCSE MEð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var MÊ
� �

N

s

This means that we need at least N = 400 repetitions to achieve MCSE(ME)� 0.005. (Fig A

in the S1 File) shows that as the number of repetitions increases, the standard error of ME

decreases. It was evident that using fewer than 400 repetitions led to high variability, but as N

becomes larger, the ME stabilizes. Even though the estimated number of repetitions was 400, it

was clear that the ME was not stable. Fig A in S1 File suggests that N� 1000 repetitions would

provide a reasonable ME with better accuracy (MCSE ranging from 0.003 to 0.001) than

N = 400. The second summary statistic of interest is the inclusion frequencies of variables. We

used the best subset selection with the BIC criterion to select variables using the same design,

i.e., p = 15, n = 400, R2 = 0.50, and βA. Fig B in S1 File shows the inclusion frequencies for the

first four variables (other variables are not shown) versus the number of simulation repetitions,

with variables x1 and x3 being signal variables and x2 (uncorrelated to the other variables) and

x4 being noise variables. The two signal variables were selected in all simulation runs; hence,

their inclusion frequencies are 1, whereas the inclusion frequencies of the two noise variables

varied depending on the number of simulation repetitions. It was evident that using fewer

than 2000 repetitions resulted in high variability in the inclusion frequency of noise variables

(especially x2), but as N became larger, the inclusion frequencies stabilized. Based on these

results, we will execute N = 2,000 simulation repetitions per scenario and for each repetition,

all procedures will be fitted, and evaluation metrics computed.

2.4 Estimands and other targets

The estimands of our interest are: (i) the selection status of each covariate (i.e., whether a vari-

able is selected or not) and identification of the true model, (ii) model prediction errors and

(iii) shrinkage factors for each regression estimate from penalized and post-estimation shrink-

age methods

2.5 Methods

Ethics committee(s)/institutional review board(s). This is a protocol for methodological

research that will be carried out through a simulation study that does not require any approval
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from an ethics committee or institutional review board. As such, an approval letter is not

necessary.

Variable selection and post-estimation shrinkage methods. In penalized likelihood pro-

cedures, the nonnegative garrote, lasso, adaptive lasso, and relaxed lasso will be evaluated,

while the best subset selection and backward elimination will be considered in traditional vari-

able selection strategies. In post-estimation shrinkage methods, we will consider global [10]

and parameterwise [9] shrinkage factors as well as a method proposed by [5]. We will also

include and extend the proposed methods for estimating shrinkage factors. As benchmarks,

we will compute an oracle estimator (which is the least-squares estimator of the true submodel

with seven signal variables) and the full model model with all covariates. Each method is

described in section 4 of the S1 File.

2.6 Performance measures

Model performance is quantified with respect to the correct inclusion and exclusion of vari-

ables and prediction error.

2.6.1 Inclusion and exclusion of variables. Measure 1a and 1b: False positives and false
negatives rates. For each scenario, we will report false positive rates (FPR) and false negative

rates (FNR) for individual variables as well as overall false positive and false negative rates for

a variable selection approach as described in section 5 of the S1 File. Graphical representations

will be used to compare the overall FPR and FNR for all approaches. For example, a plot of

FNR against SNR may allow us to uncover the relationship between FNR and SNR and ease

the comparison of different approaches.

Measure 2: Classification of selected models. Using the false positive and false negative rates

alone is less informative since it filters a large amount of information into a single number,

hence the need for a simple classification that provides more relevant information about mod-

els selected in each simulation run. Based on the inclusion and exclusion of variables obtained

by using 15 covariates (7 nonzero and 8 zero components), we intend to derive a multicategory

response variable named “model category” as shown in Table 2, where: a true model is a model

that selects the covariates that generated the outcome variable; an under-selection model is a

model that correctly selects 5 or 6 out of 7 signal variables while excluding all 8 noise variables;

an over-selection model is a model that identifies all 7 signal variables but includes at most two

noise variables; an almost-real model is a model that excludes at most two signal variables and

includes one or two noise variables, and a wrong model is a model that does not belong to the

aforementioned model categories. We will calculate the probability of each “model category”

in each scenario for different selection approaches and compare the results using a graphical

representation. For example, we will plot the probabilities of selecting the true model against

SNR (see an example in [22], Fig 6).

Table 2. Classification of selected models for 15 covariates (Taken from [24]).

Category Model Category # of SV� excluded # of NV� included

1 True 0 0

2 Under-selection 1 or 2 0

3 Over-selection 0 1 or 2

4 Almost-real 1 or 2 1 or 2

5 Wrong Models which cannot be classified in category 1, 2, 3 or 4

�SV and NV denote signal and noise variables, respectively

https://doi.org/10.1371/journal.pone.0271240.t002
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2.6.2 Prediction evaluation metrics. Prediction error (PE) refers to the average error in

predicting the outcome Y from covariate X for new observations that are not used in building

the prediction model [5]. The definition of PE and its estimates differ depending on whether X
is fixed or random and a substantial difference can be observed especially when n is small rela-

tive to the number of variables [36]. Here, we will estimate the PE of X random which is more

sensible in observational studies because X is often collected in an uncontrolled setting. We

intend to compare the predictive accuracy of all procedures using model error (ME) (as con-

ducted by [5]) and investigate the variability of ME within and between scenarios as described

in section 5 of the S1 File.

3. Final remarks

It is well-known that many simulation studies are often poorly designed, analyzed, and

reported [16]. In designing a simulation study, an experienced researcher can easily choose

relevant parameters that impact the model results in their favor. This is more prevalent when

a preferred method is being evaluated, and it is important to reduce the degree of bias by

attempting to design a neutral comparison study which disregards the superiority or inferiority

of a particular method [18, 19]. Since we intend to compare several procedures that have been

in existence for many years, we have no preferred method. Furthermore, to improve the design

of the study, we sought the views of interested STRATOS members and resolved to publish the

protocol before conducting the simulation study. We consider this an important step toward a

neutral comparison study, whose principal concepts are important and relevant, but whose

implementation is often very difficult in practice.

Supporting information

S1 File. Comparison of variable selection procedures and investigation of the role of

shrinkage in linear regression-protocol of a simulation study in low-dimensional data.

Table A in S1 File. Spearman correlation coefficients from body fat (C3) (upper triangular

panel) with two additional uncorrelated variables (x14 and x15). In the lower triangular panel

are correlation coefficients (C1) used by [3] where blank spaces represent zero correlation

coefficients. Variance inflation factors are given for the four correlation structures C1, C2, C3

and C4. Table B in S1 File. The Q values for each combination of correlation structures and

true regression coefficients. Fig A in S1 File. The full least-squares model error (ME) with

one standard error band for different number of simulation repetitions ranging from 100 to

5000 by 100. The model errors for different simulation repetitions differ slightly (ranging from

0.250 to 0.269), but the standard errors differ dramatically (ranging from 0.010 to 0.001 for

N = 100 and 5000, respectively). Fig B in S1 File. The best subset selection with the BIC crite-

rion for settings n = 400, C1, and βA. The inclusion frequency (of 4 out of 15 variables) with

one standard error band was calculated for various numbers of simulation repetitions, ranging

from 100 to 5000 by 100. Variables x1 and x3 are signal variables, while variables x2 (uncorre-

lated to the other variables) and x4 are noise variables. The inclusion frequencies of signal vari-

ables are 1 while the inclusion frequencies of noise variables vary depending on the number of

simulation repetitions. Fig C in S1 File. Shrinkage behaviour of the nonnegative garrote (left

panel) and the lasso (right panel) for the special setting where the columns of X are orthogonal.

The estimate of each procedure (solid line) is plotted against the OLS estimate. The dashed

line is the line of equality. Adapted from [6].
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