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Diffusion Tensor Imaging Reveals Elevated Diffusivity
of White Matter Microstructure that Is Independently
Associated with Long-Term Outcome after Mild
Traumatic Brain Injury:
A TRACK-TBI Study
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Claudia S. Robertson,10 Murray B. Stein,4,11 Nancy Temkin,3 Michael A. McCrea,12 Harvey S. Levin,13

Amy J. Markowitz,3,4,* Sonia Jain,4 Geoffrey T. Manley,3,4 and Pratik Mukherjee1,2,14,*;
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Abstract
Diffusion tensor imaging (DTI) literature on single-center studies contains conflicting results regarding
acute effects of mild traumatic brain injury (mTBI) on white matter (WM) microstructure and the prognostic
significance. This larger-scale multi-center DTI study aimed to determine how acute mTBI affects WM
microstructure over time and how early WM changes affect long-term outcome. From Transforming Research
and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI), a cohort study at 11 United States level 1 trauma
centers, a total of 391 patients with acute mTBI ages 17 to 60 years were included and studied at two weeks and
six months post-injury. Demographically matched friends or family of the participants were the control group
(n = 148). Axial diffusivity (AD), fractional anisotropy (FA), mean diffusivity (MD), and radial diffusivity (RD) were
the measures of WM microstructure. The primary outcome was the Glasgow Outcome Scale Extended (GOSE)
score of injury-related functional limitations across broad life domains at six months post-injury. The AD, MD,
and RD were higher and FA was lower in mTBI versus friend control (FC) at both two weeks and six months
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post-injury throughout most major WM tracts of the cerebral hemispheres. In the mTBI group, AD and, to a
lesser extent, MD decreased in WM from two weeks to six months post-injury. At two weeks post-injury, global
WM AD and MD were both independently associated with six-month incomplete recovery (GOSE <8 vs = 8)
even after accounting for demographic, clinical, and other imaging factors. DTI provides reliable imaging bio-
markers of dynamic WM microstructural changes after mTBI that have utility for patient selection and treat-
ment response in clinical trials. Continued technological advances in the sensitivity, specificity, and
precision of diffusion magnetic resonance imaging hold promise for routine clinical application in mTBI.
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Introduction
Traumatic brain injury (TBI) is a major cause of death

and disability worldwide, with more than 13 million peo-

ple estimated to live with disabilities related to TBI in

Europe and the United States,1 most classified as mild

(mTBI) according to admission Glasgow Coma Scale

(GCS) score of 13–15.2 The ‘‘mild’’ terminology is

increasingly recognized as a misnomer, given accumulat-

ing evidence that acute mTBI causes somatic symptoms,

cognitive dysfunction, and disability that can persist for

months or years after head trauma, and higher mortality

rate.3–5 Pre-clinical models show that mTBI causes axo-

nal shearing injury of white matter (WM) microstructure

that can affect long-term cognitive and behavioral func-

tion.6 The absence of objective tools to non-invasively

measure microstructural pathology remains a barrier to

clinical care.7,8

Diffusion tensor imaging (DTI) is the most extensively

used technique to study microstructural properties of

WM in vivo.9,10 Single-center DTI of acute mTBI reports

microstructural WM disruption leading to neurocognitive

and behavioral deficits.11–15 Fractional anisotropy (FA),

the most commonly reported DTI measure, provides a

summary metric of diffusion directionality thought to be

linked to WM microstructure. Previous DTI studies, how-

ever, have produced conflicting results: some articles

report abnormally reduced WM FA in acute mTBI and

others find elevations or no change in FA.16

Contributors to this discordance include small effect

sizes of FA changes, cross-sectional studies of small

samples (n < 40), and the dynamic nature of microstruc-

tural WM alterations after acute mTBI. Hence, there

are no definitive conclusions regarding progression of

WM microstructural injury over time and the relation-

ship of early WM microstructural damage to long-term

outcome after mTBI.17

Leveraging the large, multi-center Transforming

Research and Clinical Knowledge in TBI (TRACK-

TBI) study, we aimed to establish the longitudinal DTI

changes of WM microstructure after mTBI, from two

weeks post-injury to six months later, when acute and

subacute head trauma effects have largely stabilized.

We also investigated the association of early WM micro-

structure (at two weeks) with six-month incomplete

recovery using the Glasgow Outcome Scale Extended

(GOSE), the most frequently selected primary outcome

of efficacy in clinical trials of TBI.

The objective is to clarify previous contradictory

results and generalize findings across multiple sites with

heterogeneous populations, magnetic resonance (MR)

scanner manufacturers and models, and magnetic reso-

nance imaging (MRI) software versions, all of which

are known to affect DTI results.18 To achieve this, we

used a standardized MR scan protocol, including DTI

pulse sequence parameters, with quantitative precision

across centers verified using both an ice water diffusion

phantom developed by the National Institute of Standards

and Technology (NIST) and also a traveling human

volunteer.19

Given previous inconsistent results with the FA metric,

we also measured its two principal diffusivities: axial dif-

fusivity (AD) and radial diffusivity (RD), as well as the

mean diffusivity (MD) metric for a more comprehensive

investigation of WM microstructural changes of mTBI.

Methods
Participants
Participants were enrolled at 11 academic level 1 trauma

centers in the United States within 24 h of injury, after

evaluation in the Emergency Department (ED) or hospi-

tal inpatient unit for TBI; all received head computed to-

mography (CT) per order of the evaluating physician. 20

Exclusion criteria are specified in the Supplementary

Material. Written consent was obtained from all subjects

and the protocol was approved by the University of

California, San Francisco and all enrollment site Institu-

tional Review Boards.

A total of 1132 patients with mTBI met inclusion cri-

teria of admission GCS 13–15, had clinical head CT

scans, and were enrolled within 24 h of injury (Fig. 1).

Of these mTBI participants, 592 underwent MRI at both

two weeks (range: 10–18 days) and six months post-injury

(range: 160–203 days). Children age <17 years and adults

>60 years were excluded because of known rapid WM

microstructural changes of, respectively, development

and aging. Of 484 participants with mTBI in the target

age range, 93 were excluded for incomplete DTI scans

at one or both time points—e.g., excessive motion during
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scan and/or visible image artifacts. Accordingly, 391 pati-

ents were available for analysis, of whom 367 had GOSE

scores recorded at six-month follow-up.

Friends or family of the TBI-injured participants,

demographically matched by age, sex, and education,

served as the ‘‘friend control’’ (FC) group (n = 148) and

underwent 3T MRI including DTI.

Demographic, clinical, and outcome measures
Within 24 h of injury, we collected demographic data,

clinical characteristics, and cause of injury, categorized

as incidental falls, road traffic incidents, violence/

assaults, and other causes. The GCS score was acquired

on presentation to the ED. The six-month follow-up

GOSE was administered to capture disability related to

the TBI only, with exclusion of disability associated

with co-occurring polytrauma (e.g., orthopedic injur-

ies).21–23 The GOSE was dichotomized as <8 (incomplete

recovery) versus = 8 (complete recovery) as the primary

outcome for the analysis, because incomplete recovery

is common in mTBI but is not reliably predicted by clin-

ical injury severity factors such as the GCS or by conven-

tional CT or MRI findings.

MRI acquisition
The MRI with DTI was conducted at the 11 level 1

trauma centers in the United States using 3T MR scan-

ners. Standardization of DTI measures across all 13

MR scanners at the 11 sites was achieved using both an

isotropic diffusion phantom developed at the NIST and

a traveling volunteer, as reported previously,19 and as

given in more detail in the Supplementary Material.

Whole-brain DTI acquisition was performed with a

multi-slice single-shot spin echo echoplanar pulse sequ-

ence using 64 diffusion-encoding directions, isotropically

distributed over the surface of a sphere with electrostatic

repulsion, acquired at b = 1300 s/mm2, eight acquisitions

at b = 0 s/mm2, slices of 2.7-mm thickness each with no

gap between slices, a 128 · 128 matrix, and a field of

view (FOV) of 350 · 350 mm, resulting in 2.7-mm isotro-

pic voxels. The remainder of the MRI protocol and DTI

pre-processing and post-processing details are given in

the Supplementary Material.

Statistical analysis
Tract-Based Spatial Statistics (TBSS) in FSL24 was used

to skeletonize and register the diffusion maps for each

subject to perform data-driven whole-brain voxelwise

group analysis and tract-specific region of interest (ROI)

measurements along the white matter skeleton using

14 WM tracts from the Johns Hopkins University

( JHU) ICBM-DTI-81 White-Matter Labeled Atlas25

(Table 1), previously reported to be commonly injured

in mTBI.16 Further details of the TBSS analysis26,27 are

provided in the Supplementary Material.

Radiological analysis
The CT and MRI scans were interpreted by a board-

certified neuroradiologist blinded to the patients’ clinical

information using the National Institutes of Health Com-

mon Data Elements (CDEs) for TBI pathoanatomical

classification of intracranial lesions such as contusions,

axonal injury, and subdural hematomas.28 Patients with

acute abnormal CT or MRI findings related to the recent

injury were categorized as ‘‘CT+’’ or ‘‘MRI+,’’ respec-

tively. Because the study was limited to patients with

mTBI, the final dataset did not include patients with

large, deep anatomic lesions that could meaningfully

interfere with DTI measurements within the skeletonized

core of major WM tracts.

Association analysis with GOSE at six
months post-injury
Demographics, clinical, and initial CT characteristics

were compared between mTBI participants with incom-

plete (GOSE <8) versus complete (GOSE = 8) recovery

at six months post-injury. Between-group comparisons

used the Wilcoxon Rank Sum test for continuous vari-

ables and the Fisher exact test for categorical variables.

Bivariate and multi-variable (adjusting for demographic

and other known risk factors such as history of psychiat-

ric illness, previous TBI, and CT imaging results) associ-

ations between individual tract-specific DTI metrics at

FIG. 1. CONSORT diagram for inclusion of
enrolled TRACK-TBI patients into this analysis.
TBI, traumatic brain injury; MRI, magnetic
resonance imaging; DTI, diffusion tensor
imaging; GCS, Glasgow Coma Scale; QC, quality
control.
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two weeks post-injury and incomplete recovery (GOSE

<8 vs. = 8) at six months post-injury were assessed using

logistic regression models.

Standardized score for each DTI measure was calcu-

lated using its mean and standard deviation from the anal-

ysis sample. This way, we could better compare the effect

across the different DTI measures. The Benjamini-

Hochberg (BH) method was used to adjust for multiple

testing.29 Statistical analyses were performed in R ver-

sion 3.6.1.

Results
Demographic, clinical
and CT/MRI characteristics
There were no significant group differences in age (mTBI:

34.6 – 12.5 years; FC: 33.6 – 11.4 years; p = 0.35), sex

(mTBI: 132 women, 259 men; FC: 48 women, 100

men; p = 0.77), or years of education (mTBI: 14.2 – 2.8;

FC: 14.3 – 2.8; p = 0.80). Sex distribution and educational

levels of both groups were representative of the larger

population of >1000 enrolled TRACK-TBI mTBI partic-

ipants,4 including those who did not undergo MRI; how-

ever, the average age was lower than the TRACK-TBI

mTBI population average of 40.9 years because of the

use of an age ceiling of 60 years in this analysis.

Of the 367 mTBI patients with six-month GOSE out-

come, 28.4% had CT findings indicative of recent trauma

on day of injury, and 46.9% had such findings on two-

week post-injury 3T MRI (and see Supplementary

Table S1). The Marshall CT severity scores at the time

of entry at the ED and Injury Scoring Scale peripheral

injury scores are provided in Supplementary Tables S1

and S2, respectively.

Cross-sectional and longitudinal DTI analysis
of mTBI versus FCs
The initial 3T MRI with DTI was acquired at two weeks

after injury (14.4 – 2.2 days; range 9–19 days). At this

first time point, voxelwise TBSS analysis showed that

the mTBI group had significantly higher AD, MD, and

RD than the FC group, with more extensive involvement

of the cerebral hemispheres than of the brainstem or cer-

ebellum (Fig. 2). Post hoc ROI measurements confirmed

significantly higher levels of AD, MD, and RD in all 14

major WM tracts examined (Table 1), with the exception

of the genu and splenium of the corpus callosum (GCC

and SCC, respectively) for RD.

Effect sizes for the group difference globally for the

WM of the whole brain were d = 0.39 for AD, d = 0.54

for MD and d = 0.40 for RD. The largest effect sizes for

individual tracts, with Cohen d values approaching or

exceeding 1.0 for AD, were found in the body of the cor-

pus callosum (BCC), in long association fasciculi, specif-

ically the superior longitudinal fasciculus (SLF), and theT
a
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external capsule (EC), as well as anterior and superior

projection fasciculi of the anterior limb of the internal

capsule (ALIC) and superior corona radiata (SCR).

Voxelwise TBSS analysis at two weeks post-injury

showed significantly lower FA in the mTBI group com-

pared with the FC group (Fig. 2), primarily in association

tracts such as the EC and the superior fronto-occipital fas-

ciculus (SFO) and commissural fibers of the GCC

(Table 1).

Longitudinal TBSS voxelwise comparison of two-

week versus six-month DTI of the mTBI cohort showed

significant decreases over time in AD and, to a lesser

extent, MD (Fig. 3). No significant longitudinal changes

were observed for FA or RD. As a result, although AD,

MD, and RD remained significantly higher and FA

remained significantly lower for mTBI versus FC at the

six-month time point (Supplementary Fig. S1), the effect

sizes of the tract-specific group differences in AD and, to

a lesser extent, MD were less than at two weeks post-

injury (Supplementary Table S3).

The largest effect sizes were again observed for AD in

the commissural fibers of the BCC, the long association

tracts of the SLF and EC, as well as projection fasciculi

of the ALIC and SCR.

FIG. 2. Diffusion tensor imaging (DTI) of patients with mild traumatic brain injury (mTBI) (n = 391) at two
weeks post-injury versus demographically matched controls (n = 148). For each DTI metric, 30 representative
axial images are shown with the right side of the image corresponding to the left side of the brain. The red
to yellow color scale indicates significantly greater DTI metric of mTBI compared with controls ( p < 0.05)
with brighter yellow colors denoting a greater level of statistical significance. The blue to light blue color
scale denotes significantly lower DTI metric of mTBI compared with controls ( p < 0.05), with lighter blue
colors denoting a greater level of statistical significance. While higher axial diffusivity (AD), mean diffusivity
(MD), and radial diffusivity (RD) are widespread, the lower fractional anisotropy (FA) in mTBI versus the
control group (FC) is less extensive. The posterior fossa showed group FA differences in the left posterior
cerebral peduncle and at the decussation of the superior cerebellar peduncles.
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Long-term outcome of mTBI: demographics,
clinical characteristics, structural CT, and MRI
The mTBI cohort was nearly evenly split at the six-month

time point between GOSE = 8 (n = 173) and GOSE <8

(n = 194) (and see Supplementary Fig, S2 for GOSE

score distribution). Consistent with mTBI literature and

a previous TRACK-TBI analysis, female sex and history

of previous TBI were both significantly more represented

in the group with incomplete recovery (Supplementary

Table S1).3

A greater proportion of CT scans were positive for

recent trauma in the GOSE <8 group (32.6% vs.

23.7%), but this difference did not reach statistical signif-

icance. There was no difference between groups in the

proportion of 3T MR scans that were positive for trauma

(47.4% vs. 46.2%), despite the higher rate of positive

findings on MR (46.9%) than CT (28.4%).

Long-term outcome of mTBI: DTI
Voxelwise TBSS analysis of DTI acquired at two weeks

post-injury demonstrated that AD and, to a lesser extent,

MD was significantly higher in the six-month GOSE

score = 8 group versus GOSE score <8 (Fig. 4). No signif-

icant group differences were found for FA or RD.

Confirming the group-level voxelwise TBSS findings,

bivariate association analysis of patient-specific measure-

ments globally over the entire WM of the brain at two

weeks post- injury showed higher global AD was signif-

icantly associated with reduced odds of GOSE score <8

at six-month follow-up (odds ratio [OR] = 0.75; confi-

dence interval [CI] = 0.61–0.92) per SD higher in global

AD; raw p = 0.006, Benjamini-Hochberg (BH)-adjusted

p = 0.03). The AD of eight of the 14 WM tracts exam-

ined showed the same significant bivariate association

as global AD at BH-adjusted p < 0.05, with the strongest

effects observed in long association tracts such as the

SLF (OR = 0.69 [CI = 0.56-0.85]; raw p < 0.001, BH-

adjusted p = 0.015) and SFO (OR = 0.73 [CI = 0.59-0.90];

p = 0.004, BH-adjusted p = 0.03).

The association of two-week AD with six-month

GOSE was consistently stronger for the left-sided tract

than the right. In multi-variable models of six-month

GOSE <8 versus GOSE = 8 outcome, global AD remained

significantly associated with outcome (OR = 0.77 [CI =
0.61–0.96]; p = 0.023), independent of demographic,

clinical, and CT factors (Table 2). This was also true of

AD in the SLF (OR = 0.73 [CI = 0.58–0.92]; p = 0.007)

and the SFO (OR = 0.77 [CI = 0.61–0.97]; p = 0.027).

Left-sided tracts were more strongly correlated with

six-month GOSE than right-sided tracts.

We checked VIF for the final multi-variable logistic

regression models, and there was no multi-collinearity

issue. The C-index for the final model with global AD

(i.e., Table 2) is 0.677 compared with the model without

FIG. 3. Diffusion tensor imaging (DTI) of mild traumatic brain injury (mTBI) (n = 391) at two weeks versus
six months after head trauma. Conventions are as in Figure 2. The blue to light blue color scale indicates a
significantly lower DTI metric at the second time point compared with the first time point ( p < 0.05), with
lighter blue colors denoting a greater level of statistical significance. While lowered axial diffusivity (AD)
over time is widespread, there is lowered mean diffusivity (MD) over time primarily in projection and
commissural tracts. The posterior fossa also shows decreasing MD over time particularly in the midbrain
including the decussation of the superior cerebellar peduncles. Fractional anisotropy (FA) and radial
diffusivity (RD) showed no statistically significant longitudinal changes.
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the DTI predictor (C-index = 0.665); the improvement in

area under the curve was not significant at the p < 0.05

threshold.

Global FA, MD, and RD at two weeks did not show

significant bivariate associations with six-month GOSE.

There were strong trends toward significant bivariate

associations of two-week MD with six-month GOSE

in the SLF (OR = 0.76 [CI = 0.62–0.94]; raw p = 0.011,

BH-adjusted p value = 0.06) and SFO (OR = 0.75 [CI =
0.61–0.93]; raw p = 0.007, BH-adjusted p value = 0.06).

As indicated by the voxelwise TBSS results, the asso-

ciation of MD with six-month GOSE was consistently

stronger for the left-sided tract—e.g., SLF-L (OR = 0.73

[CI = 0.58–0.91) than the right; e.g., SLF-R (OR = 0.84

[CI = 0.69–1.03]). In multi-variable models of six-month

GOSE <8 versus GOSE = 8, MD in the SLF (OR = 0.78

[CI = 0.63–0.98]; p = 0.035) and the SFO (OR = 0.77

[CI = 0.61–0.98]; p = 0.030) remained significant inde-

pendent correlates. As with AD, MD of left-sided tracts

was more strongly associated with GOSE than right-

sided tracts.

Discussion
In this prospective longitudinal multi-center study of DTI

in mTBI, to our knowledge the largest to date, we dem-

onstrate widespread higher WM levels of AD, MD, and

RD, and lower levels of FA, at two weeks after trauma

compared with matched controls. The changes in MD,

and especially AD, partially resolve by six months

post-injury, whereas those of FA and RD do not. Higher

FIG. 4. Diffusion tensor imaging (DTI) of mild traumatic brain injury (mTBI) with Glasgow Outcome Scale
Extended (GOSE) = 8 at six months post-injury (n = 173) versus those with GOSE <8 at six months (n = 194).
Conventions are as in Figure 2. The red to yellow color scale indicates a significantly higher DTI metric in
the GOSE = 8 group compared with the GOSE <8 group ( p < 0.05), with lighter yellow colors denoting a
greater degree of statistical significance. The axial diffusivity (AD) is significantly higher throughout much of
the white matter, especially the long association and projection tracts, in the GOSE = 8 group compared
with the GOSE <8 group. In the posterior fossa, there was particular involvement of the superior cerebellar
peduncles centered at their decussation. The significantly higher level of mean diffusivity (MD) in the
GOSE = 8 versus GOSE <8 groups primarily involves long association and projection tracts, although with a
left hemispheric predominance.

Table 2. Two-Week Global White Matter Axial Diffusivity
Is Independently Associated with Incomplete Recovery
(GOSE <8 vs. = 8 at Six Months Post-Injury (n = 356)

Odds
ratio 95% CI

Wald
Chisq p

Age 1.01 (0.99, 1.03) 0.28 0.59
Sex (Female vs. Male) 2.05 (1.25, 3.39) 7.94 0.005
Race 2.08 0.35
Black vs. White 0.74 (0.40, 1.36)
Other vs. White 0.60 (0.27, 1.37)
Ethnicity (Hispanic vs.

Non-Hispanic)
1.21 (0.63, 2.34) 0.32 0.57

Years of education 0.94 (0.85, 1.03) 1.88 0.17
Injury mechanism (Assault/

violence vs. accidental)
1.74 (0.67, 4.50) 1.28 0.26

Psychiatric history (Yes vs. No) 1.90 (1.03, 3.50) 4.24 0.040
Prior TBI (Yes vs. No) 1.86 (1.16, 2.99) 6.55 0.010
Head CT (Positive vs. Negative) 1.54 (0.93, 2.55) 2.83 0.09
Global AD (standardized) 0.77 (0.61, 0.96) 5.20 0.023

GOSE, Glasgow Outcome Scale Extended; CI, confidence interval;
WM, white matter; Wald Chisq,, Wald chi square; TBI, traumatic brain
injury; CT, computed tomography; AD, axial diffusivity.

*C–index of the model = 0.677, compared with the model without global
axial diffusivity (C-index = 0.655); the improvement was not significant.
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AD and MD at two weeks are both independently associ-

ated with better long-term outcome, even after account-

ing for demographic, clinical, and CT factors. This

prognostic discrimination of DTI was strongest in long

association tracts such as the SLF, SFO and EC, espe-

cially those of the left cerebral hemisphere.

These results, generalized over 11 enrollment sites,

bring clarity to the DTI of mTBI literature. Although

the reduced FA of mTBI versus controls at two weeks

post-injury agrees with the preponderance of the DTI lit-

erature, the focus of previous studies on the FA metric

was limiting in that FA showed the smallest effect sizes

of the four DTI metrics for cross-sectional analysis, lon-

gitudinal analysis, and relationship to long-term out-

come.11,13–16 Given these modest effect sizes for FA, it

is not surprising that small single-center studies of

mTBI, each employing different scanner types, imaging

protocols, and post-injury latencies to scanning, might

reach inconsistent conclusions.

Here, the metric least reported in previous articles,

specifically AD, showed the greatest effect sizes for all

comparisons. Our results are consistent with a previous

single-center longitudinal DTI study of 12 patients with

moderate to severe TBI that also showed WM elevation

of AD, MD, and RD, with reduction of FA, at the sub-

acute phase of TBI that partially improves at the chronic

phase six or more months after trauma.30 The effect size

of these WM changes would be expected to be much

larger in moderate-severe TBI compared with mTBI

and therefore detectable with many fewer patients.

The biological interpretation of DTI metrics remains

challenging31; therefore, diffusion MRI is progressing

toward biophysical modeling. Because basic DTI metrics

have not yet been validated in larger cohorts from multi-

site studies with long-term outcomes, however, a founda-

tional study of DTI could have a more immediate and

realistic translational impact in clinical settings.

We do not make any definitive interpretation of AD and

RD in terms of the WM microstructure. The aim was to

show how these DTI metrics change in patients with

mTBI over time and how they relate to outcome. A possible

explanation, however, arises from biophysical compartment

modeling of multi-shell diffusion MRI, specifically neurite

orientation dispersion and density imaging (NODDI).32

The results of a recent DTI and NODDI investiga-

tion of mTBI in two independent single-center cohorts,14

each requiring a longer two-shell (i.e., two different high

b values) acquisition than the single-shell DTI obtained

in this study, may help elucidate the underlying basis

for the WM changes we observe. Palacios and associ-

ates14 found that the two-week post-injury elevation

of MD and reduction of FA in mTBI versus controls was

associated with higher free water measured by NODDI,

likely reflecting vasogenic edema, which decreased at

the six-month time point.

There was also NODDI evidence, however, of decreas-

ing WM axonal density from the two-week to six-month

time points, suggesting Wallerian degeneration. These

two dynamic pathophysiological processes, evolving

over different time scales in mTBI33 help explain our

findings. Early higher free water would increase diffusiv-

ity in all directions while also reducing FA, and these ini-

tial changes would be expected to resolve over time with

the edema.

The more delayed and protracted changes of Wallerian

degeneration should lead to more specific elevation of

RD and reduction of FA between the two-week and

six-month time points, with little change to AD. This

may explain the lack of statistically significant longitu-

dinal changes of FA and RD, because resolving edema

and progressive axonal degeneration have opposing,

and roughly canceling, effects on these two metrics,

whereas the unopposed effects of reduced free water

would lead to larger reductions of AD. The MD should

show a smaller longitudinal effect than AD, because it

is a weighted average of AD and RD.

To explain higher AD at two weeks had the strongest

association with better outcome, we offer this specula-

tion: MD, AD, and RD might be higher because of vaso-

genic edema. Because of acute axonal injury, however,

there is a counteracting effect that reduces AD from axo-

nal beading and axonal misalignment. Hence, those

patients with higher AD early after mTBI may have

less axonal injury, translating into better outcome. This

hypothesis would need to be further investigated using

more sensitive and specific methods such as NODDI

that can separately measure free water from vasogenic

edema and neurite density that is more closely related

to axonal injury.

These group-level, cross-sectional differences and lon-

gitudinal changes over time may obscure spatial hetero-

geneity among patterns of WM injury, which may

reflect biomechanical variability in the magnitude, direc-

tion, and number of impact(s) as well as differing propor-

tions of rotational versus linear translational acceleration

forces.34,35

To better characterize individual risk, patient-specific

DTI metrics in WM tracts or averaged across the global

WM of the brain were incorporated with demographic,

clinical, and CT imaging data into a long-term outcome

model. This showed that global AD, as well as AD and

MD in specific WM tracts of the SLF and SFO, more

commonly in the left hemisphere, were independent

correlates of ‘‘complete recovery’’ (GOSE = 8) versus

incomplete recovery (GOSE <8).

In multi-variable models, AD and MD were as signif-

icant as the two best demographic, clinical, or CT corre-

lates: sex and history of previous TBI. This suggests

that DTI has utility as an imaging biomarker for patient

selection and to monitor treatment response in clinical
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trials, especially those targeting pathophysiological

mechanisms—e.g., neuroinflammatory vasogenic edema

and/or secondary axonal degeneration, which can be

directly or indirectly measured using diffusion MRI

techniques.

The left-sided predominance of tracts associated with

GOSE outcome might possibly be related to language lat-

eralization and the importance of language processing to

cognition and activities of daily living, since the great

majority of people are left-dominant for language func-

tion. Most people are also right-handed, so left-sided

cerebral WM damage might be expected to impact

motor function of the dominant limb; however, clinical

motor deficits are not commonly observed in patients

with mTBI. This observation of left-sided asymmetry

of WM tracts associated with mTBI outcome remains

an area for future research.

One limitation of the study is that DTI assumes an

ellipsoidal model with a single fiber orientation per

voxel; hence, all DTI metrics have issues in WM regions

with crossing fibers. To address this, we tailored our

investigation to focus on ROI within the skeletonized

core of major WM tracts, using TBSS in combination

with the JHU WM Atlas, where the problem of crossing

fibers is minimized. This is a very common methodology

in the modern DTI literature. Further, although DTI of

crossing fibers remains a valid theoretical concern, the

empirical evidence in this study shows a significant rela-

tionship between AD and patient outcome that can still

be exploited clinically.

Another limitation of the study is that only about half

of enrolled patients with mTBI could be imaged with

research MRI scans (Fig. 1), which reflects the reality

of available research funding for expensive procedures.

This remains the largest DTI study of acute mTBI to

date, to our knowledge, however. The characteristics of

the imaged patients with mTBI are comparable to that

of the entire enrolled sample, as previously published

in Nelson and coworkers,4 (2019), with 53% of the

imaged patients and 53% of the entire cohort manifest-

ing GOSE <8 at long-term outcome. Therefore, there

does not appear to be a major selection bias for the

MRI sample.

Because of the focus on obtaining the highest quality

DTI data, approximately 20% of imaged patients had

to be excluded, largely because of motion artifacts. We

expect this attrition to improve in the future as more

rapid diffusion MRI pulse sequences such as those

based on multi-band echoplanar imaging are adopted

that enable faster scanning.

Unfortunately, only about 10% of the overall TRACK-

TBI cohort is >60 years old. Given the rapid WM micro-

structural changes of aging and the high rate of comorbid

WM diseases of the elderly, this was too small a sample

size to draw meaningful conclusions as a separate cohort

and would greatly add to the interindividual variability of

the overall adult cohort. Therefore, we chose to exclude

this important population from the current study; how-

ever, geriatric TBI remains a major focus of future inves-

tigation as more patients of advanced age are enrolled

into longitudinal studies.

To establish diffusion MRI as a routine clinical tool

for diagnosis and prognosis in mTBI will require greater

attention to protocol standardization and image quality

assurance and quality control in non-research settings,

using tools such as quantitative diffusion phantoms and

the validation and dissemination of novel machine learn-

ing techniques for intersite harmonization of diffusion

data.19,36

More advanced metrics from biophysical modeling

approaches such as NODDI show promise in surpassing

the sensitivity and specificity of DTI for mTBI diagnosis

and prognosis.14 Continuous improvements in the speed

and capability of MR scanner hardware and software

should enable such advanced diffusion MRI to be accom-

plished in a clinically feasible scan time during the pres-

ent decade.
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