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Abstract

Background: While functional connectivity is widely studied, there has been little work studying functional con-
nectivity at different spatial scales. Likewise, the relationship of functional connectivity between spatial scales is
unknown.
Methods: We proposed an independent component analysis (ICA)-based approach to capture information at
multiple-model orders (component numbers), and to evaluate functional network connectivity (FNC) both within
and between model orders. We evaluated the approach by studying group differences in the context of a study of
resting-state functional magnetic resonance imaging (rsfMRI) data collected from schizophrenia (SZ) individu-
als and healthy controls (HC). The predictive ability of FNC at multiple spatial scales was assessed using support
vector machine-based classification.
Results: In addition to consistent predictive patterns at both multiple-model orders and single-model orders,
unique predictive information was seen at multiple-model orders and in the interaction between model orders.
We observed that the FNC between model orders 25 and 50 maintained the highest predictive information be-
tween HC and SZ. Results highlighted the predictive ability of the somatomotor and visual domains both within
and between model orders compared with other functional domains. Also, subcortical-somatomotor, temporal-
somatomotor, and temporal-subcortical FNCs had relatively high weights in predicting SZ.
Conclusions: In sum, multimodel order ICA provides a more comprehensive way to study FNC, produces mean-
ingful and interesting results, which are applicable to future studies. We shared the spatial templates from this
work at different model orders to provide a reference for the community, which can be leveraged in regression-
based or fully automated (spatially constrained) ICA approaches.
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Multimodel order independent component analysis (ICA) provides a comprehensive way to study brain functional network
connectivity within and between multiple spatial scales, highlighting findings that would have been ignored in single-model
order analysis. This work expands upon and adds to the relatively new literature on resting functional magnetic resonance
imaging-based classification and prediction. Results highlighted the differentiating power of specific intrinsic connectivity
networks on classifying brain disorders of schizophrenia patients and healthy participants, at different spatial scales. The spa-
tial templates from this work provide a reference for the community, which can be leveraged in regression-based or fully
automated ICA approaches.

Introduction

Brain activity reveals exquisite coordination between
spatial scales, from local microcircuits to brain-wide

networks. Brain activity measured by noninvasive functional
brain imaging techniques is typically assumed to be gener-
ated on the cortical surface. The spatial extent of activity
on the cortex obtained experimentally from neuroimaging
modalities and models varies widely (Perdue and Diamond,
2013). Understanding the brain requires an integrated under-
standing of the different scales of the spatial organization of
the brain. Studies that utilize measurements between spatial
scales promise to increase our understanding of brain func-
tion by tracking sensory, motor, and cognitive variables as
they evolve through local microcircuits and across brain-
wide networks (Lewis et al., 2015).

Whole-brain functional connectivity can be studied by cal-
culating the functional network connectivity (FNC) (Allen
et al., 2011) between intrinsic connectivity networks
(ICNs); that is, the functional magnetic resonance imaging
(fMRI) independent components (IC) resulted from group in-
dependent component analysis (ICA). To date, most previous
research has focused on FNC within one specific model order
(i.e., number of components), ignoring the importance of
capturing functional information at different levels of spatial
granularity as well as the between-order information. A wide
number of studies have focused on FNC in brain health and
various disorders, all at a single-model order. In particular,
multiple studies have highlighted significant FNC differ-
ences in studies of schizophrenia (SZ), for example, in-
creased FNC in SZ among frontal and temporal networks
(Calhoun et al., 2009), within the default mode networks
(Salvador et al., 2010; Whitfield-Gabrieli et al., 2009), and
decreased FNC between temporal and parietal networks
( Jafri et al., 2008). While it is well known that there are func-
tional changes associated with SZ, it is unclear to what de-
gree these are linked to the choice of a specific model
order (IC numbers) when performing FNC analysis.

Considering the brain as a functional hierarchy (Iraji et al.,
2019), it is clear that functional interactions between func-
tional sources can occur between different spatial scales,
and the lack of studies that evaluate functional connectivity
between spatial scales represents a gap in the field. Here,
we propose to study FNC within and between four different
functional hierarchy levels (model order = 25, 50, 75, and
100), thus providing new insight to understand brain func-
tional connectivity. In this study, our goal is to compare
the important information obtained at different model orders
by evaluating the multiorder FNCs using healthy control
(HC)–SZ group comparison, as well as testing the classifica-
tion power of FNC in discriminating SZs based on machine

learning-based approaches (Anderson and Cohen, 2013; Par-
iyadath et al., 2014). We seek to identify the FNC-based fea-
tures that are predictive of SZ from controls through support
vector machine (SVM)-based classifications. Specifically,
we evaluated if the HC–SZ group differences primarily
occur at one specific model order or the between-model or-
ders, and which order yields the highest classification
power between HC and SZ. The ICNs template at four
model orders was also made available to the community
for their future use.

Methods

Dataset and preprocessing

Our dataset was combined across three separate studies,
one with seven sites (FBIRN: Functional Imaging Biomedi-
cal Informatics Research Network), one with three sites
(MPRC: Maryland Psychiatric Research Center), and one
single site (COBRE: Center for Biomedical Research Excel-
lence). We extracted a subset of subjects from the three data-
sets satisfying the following criteria: (1) data of individuals
with typical control or SZ diagnosis; (2) data with high-
quality registration to echo-planar imaging (EPI) template;
(3) head motion transition of <3� rotations and 3-mm trans-
lations in all directions. The mean framewise displacement
(meanFD) among selected subjects was average – standard
deviation = 0.1778 – 0.1228; min–max = 0.0355–0.9441. This
resulted in 827 individuals, including 477 subjects (age:
38.76 – 13.39, females: 213, males: 264) of HCs and 350
SZ individuals (age: 38.70 – 13.14, females: 96, males:
254). The parameters of resting-state fMRI (rsfMRI) for the
FBIRN data were the same across all sites, with a standard
gradient EPI sequence, repetition time (TR)/echo time
(TE) = 2000/30 ms, and a total of 162 volumes. For COBRE
data, rsfMRI images were acquired using a standard EPI se-
quence with TR/TE = 2000/29 ms and 149 volumes. The
MPRC datasets were acquired using a standard EPI sequence
at three sites, including Siemens 3-Tesla Siemens Allegra
scanner (TR/TE = 2000/27 ms, voxel spacing size = 3.44 ·
3.44 · 4 mm, field of view [FOV] = 220 · 220 mm, and 150
volumes), 3-Tesla Siemens Trio scanner (TR/TE = 2210/
30 ms, voxel spacing size = 3.44 · 3.44 · 4 mm, FOV = 220 ·
220 mm, and 140 volumes), and 3-Tesla Siemens Tim Trio
scanner (TR/TE = 2000/30 ms, voxel spacing size = 1.72 ·
1.72 · 4 mm, FOV = 220 · 220 mm, and 444 volumes).

We were following the same rsfMRI data preprocessing
procedures as reported in a recent study (Iraji et al., 2021).
First of all, for the purposes of magnetization equilibrium,
the first five volumes were discarded. We performed rigid
motion correction to correct the head motion for each subject
during scanning. We then applied slice-time correction to
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deal with temporal misalignment. And the next step, the
rsfMRI data of each subject were registered to a Montreal
Neurological Institute EPI template, resampled to 3 mm3

isotropic voxels, and smoothed using a Gaussian kernel
with a 6 mm full width at half-maximum (6 mm). The
voxel time courses were then z-scored (variance normal-
ized). The preprocessing procedures were mainly per-
formed by using the statistical parametric mapping
(SPM12) toolbox.

Group ICA analysis

ICA provides adaptive, overlapping, networks at different
scales; we and others have shown this has substantial advan-
tages over fixed ROIs (Du et al., 2020; Yu et al., 2018). The
main advantages of ICA analysis include its ability to adapt
to individual subjects, and the ICA is optimized to include
temporally coherent voxels. The overlapping networks cap-
tured by ICA analysis provide a natural decomposition of
the data. In ICA analysis, the selection of model order (i.e.,
number of components to be extracted) can effectively define
spatial scale of ICNs, and therefore has crucial effects on
brain functional network analysis. This makes ICA a great
tool to obtain subject-specific ICNs at different spatial scales.
In another word, we can study brain function within and be-
tween different spatial scales by using ICA with different
model orders. Low model order ICAs produce large-scale
spatially distributed ICNs, such as the default mode network
(Beckmann et al., 2005; Calhoun et al., 2008; Damoiseaux
et al., 2008), whereas high model orders produce spatially
granular ICNs, including multiple more focal ICNs instead
of one large-scale default mode network (Allen et al.,
2011). Given these advantages, we tend to study brain func-
tion at multiple scales using ICA.

The ICA analysis was performed using the GIFT software
(Calhoun and Adali, 2012; Calhoun et al., 2001). In our
study, ICA was performed at four model orders: 25, 50,
75, and 100. Before the ICA, subject-specific principal com-
ponents analysis (PCA) was first performed on the datasets to
normalize the data. The subject-level principal components
were then concatenated together across the time dimensions,
and the group-level PCA was applied to concatenate the
subject-level principal components. The group-level princi-
pal components that explained the maximum variance were
selected as the input of ICA to perform group-level ICA
(Calhoun et al., 2001). We used the infomax algorithm and
controlled for stochastic variability by using ICASSO: soft-
ware for investigating the reliability of ICA estimates by
clustering and visualization (Himberg et al., 2004) as imple-
mented in the GIFT software by running ICA several times
and selecting the most representative run (Du et al., 2014).
ICASSO was used to evaluate component stability. The Info-
max ICA algorithm was run for 100 times and clustered to-
gether within the ICASSO framework (Himberg et al.,
2004). The run with the closest ICs to the centrotypes of sta-
ble clusters (ICASSO cluster quality index >0.8) (Iraji et al.,
2020) was selected as the best run and used for future anal-
ysis (Ma et al., 2011).

We utilized ICA with different model orders (25, 50, 75,
and 100) to identify ICNs at multiple spatial scales. ICNs
were identified from each model order, and included compo-
nents with peak activations in gray matter and low-frequency

time courses (Calhoun et al., 2009). The subject-specific
ICNs time courses were calculated using the spatial multiple
regression technique (Calhoun et al., 2004). Before calculat-
ing static FNC, an additional cleaning procedure was per-
formed on the time courses of ICNs to reduce the effect of
the remaining noise and improve the detection of FNC pat-
terns. The procedures were as follows: (1) remove the linear,
quadratic, and cubic trends; (2) regress out the motion re-
alignment variables; (3) replace outliers with the best esti-
mate using a third-order spline fit; and (4) bandpass filter
using a fifth-order Butterworth filter with frequency cutoff
of 0.01–0.15 Hz (Allen et al., 2011).

FNC analysis at multiple spatial scales

FNC was computed between each pair of ICNs by calcu-
lating the Pearson correlation coefficient between ICNs
(Allen et al., 2011; Calhoun et al., 2003; Jafri et al., 2008).
We calculated a 2D symmetric ICN · ICN FNC matrix for
each subject and aggregated the FNC matrix from all sub-
jects into an augmented 2D matrix. We then calculated the
mean FNC matrix of all subjects for further analysis.

To investigate the group differences between HC and SZ
in FNC, we performed a generalized linear model (GLM).
We fit the GLM model with age, gender, data acquisition
site, and meanFD as covariates. The meanFD was added
to the GLM to account for any residual motion effect
that was not removed in the preprocessing steps. The
group differences between HC and SZ in FNC were evalu-
ated by the t-value and p-value of statistical comparisons
of the GLM.

SVM-based classification

The SVM (Verma and Salour, 1992) is so far the most
popular classification method due to its favorable charac-
teristics of high accuracy, ability to deal with high-
dimensional data, and versatility in modeling diverse
sources of data. The SVM has been widely applied in nu-
merous neuroimaging classification studies and has
achieved remarkable results due to its excellent generaliza-
tion performance. Our motivation of using SVM over other
approaches was due to its sensitivity, resilience to overfit-
ting, ability to extract and interpret features, and supe-
rior performance in fMRI data classification (De Martino
et al., 2008; Ecker et al., 2010; Liu et al., 2013; Pereira
et al., 2009; Saha et al., 2021; Vergun et al., 2013;
Wang et al., 2019). To investigate the group differences,
we applied a binary SVM nonlinear Gaussian RBF kernel
classifier (Hsuet al., 2003), due to the fact that the Gaussian
RBF kernel generally outperforms other kernels in brain
MRI imaging classification (Kumari, 2013; Madheswaran
and Anto Sahaya Dhas, 2015). The classification model
was trained and crossvalidated using the dataset of 477
HCs and 350 SZs. The figure (Fig. 1) presents the pipeline
for training and testing the SVM model.

Feature selection. Each FNC pair of the functional con-
nectivity among ICNs was considered as the input feature for
classification, and the category of group HC or SZ was con-
sidered as the response vector. Given that some of those FNC
features might be noninformative or redundant for classifica-
tion, we performed feature selection using Relief (Verma and
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Salour, 1992) to improve classification performance and to
speed up computation. Relief ranks predictors with k nearest
neighbors (we set k to 10 for calculation simplicity). The
function returns the indices of the most important predictors
and the weights of the predictors. Feature selection was car-
ried out before classifier training through the recursive fea-
ture elimination step. For each round of feature selection,
50% of the training data (as shown in Fig. 1) was selected.
We repeated it for 10 rounds and retained those features
with a high average weight (top 70%) among all the rounds.
We thus narrowed the set of features to a subset of the orig-
inal feature set, which eliminated the noninformative and re-
dundant FNC features. The SVM model was built based on
the selected FNC feature set.

Recursive validation. To obtain a stable performance of
the SVM model, we applied recursive validation. For each it-
eration, we randomly split the whole dataset into 80% of the
training set and 20% of the testing set. The test set was held
out for final evaluation. We ran the modeling process for a
total number of 100 iterations and evaluated the SVM
model based on average specificity, sensitivity, and F1
score (the harmonic mean of the precision and recall) across
all iterations.

Results

ICA analysis

Spatial maps of selected ICs at different model orders are
shown in the figure (Fig. 2a–d). A total of 127 ICNs were de-
termined between all model orders (15, 28, 36, and 48 from
25, 50, 75, and 100, respectively). ICNs were grouped into
functional domains, including cerebellum, cognitive control,
default mode, somatomotor, subcortical, temporal, and vi-
sual (Fig. 3).

The results show that at lower model orders (25–50), sig-
nal sources tend to merge into singular components, which

then split into several subcomponents at higher model orders.
These findings are consistent with previous and most recent
findings (Abou-Elseoud et al., 2010; Rachakonda et al.,
2017). Figures (Fig. 2c, d) show that higher model order
ICA (75–100) tends to parcellate the brain into focal func-
tionally homogeneous distinct regions, which are consistent
with previous studies (Calhoun and Adali, 2012; Calhoun
and de Lacy, 2017; Iraji et al., 2009). The ICN templates
(as shown in Figs. 2 and 3) are openly shared at http://
trendscenter.org/data.

FNC analysis

The figures (Fig. 4 a, b) present the mean FNC (z-fisher
score) between 127 ICNs between all model orders. The fig-
ure (Fig. 4a) was sorted by ICNs, and then model orders
within each domain (called an FNC ‘‘block plot’’), and the
figure (Fig. 4b) was sorted by model order and then the do-
main (called an FNC ‘‘finger plot’’), aiming to visualize pat-
terns existing at and between different model orders. In the
block plot, we observed that the cerebellum domain was
highly correlated with itself, anticorrelated across all but sub-
cortical domains. The somatomotor, subcortical, visual (and
to a lesser degree temporal) domains were more homoge-
neous than the default mode, cerebellum, and cognitive con-
trol domains both within and between model orders. We also
observed strong anticorrelations between default mode ver-
sus somatomotor and temporal between model orders 25
and 100 in the finger plot, which were not clearly seen in
the other model orders.

We also evaluated the group differences between SZ and
controls (Fig. 5a, b). Strong increases were observed between
the ICNs of the subcortical domain and the ICNs of the tem-
poral, visual, and somatomotor domains in the SZ group. A
similar increased FNC in SZ was observed between the
ICNs of the cerebellum domain and the ICNs of somatomo-
tor, temporal, and visual domains. The most dominant de-
creases in FNC in the SZ group were found mainly within

FIG. 1. Pipeline of the classifica-
tion model. The whole dataset was
split into a training set (80%) and a
testing set (20%). Feature selection
was performed on the training set
(50% were selected randomly every
time). To select the most predictive
features, we repeated the feature
selection process for ten rounds and
retained those features with a high
average weight (top 70%) among
all the rounds. The final SVM
model was built based on the se-
lected FNC features. We ran the
modeling process for a total number
of 100 iterations to obtain a stable
SVM model. FNC, functional net-
work connectivity; SVM, support
vector machine. Color images are
available online.
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the ICNs of the somatomotor domain, and between the ICNs
of the somatomotor domain and the ICNs of the temporal and
visual domains. Furthermore, slight decreases in SZ were
seen between the cerebellum and subcortical compared
with the HC group.

SVM model

Figure 6a and b represents the block plot and the finger
plot of average weights of FNC features of 100 iterations.
This gives us a better view of the importance of each FNC

FIG. 2. ICN maps selected from model order of 25 (a), 50 (b), 75 (c), and 100 (d). A total number of 127 ICNs were de-
termined between all model orders (15, 28, 36, and 48 from 25, 50, 75, and 100, respectively). All the ICNs were identified
from each model order and included components with peak activations in gray matter as well as low-frequency time courses.
ICN, intrinsic connectivity network. Color images are available online.
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FIG. 3. Identified ICNs across all model orders 25, 50, 75, and 100. ICNs were divided into groups (functional domains)
based on their anatomical and functional properties, and include CR, CC, DM, SM, SB, TP, and VS. Each functional domain
is displayed at the three most informative slices. CC, cognitive control; CR, cerebellum; DM, default mode; SB, subcortical;
SM, somatomotor; TP, temporal; VS, visual. Color images are available online.

FIG. 4. (a) (Left). Average FNC plots. We calculated the mean FNC (z-fisher score) based on the aggregated FNC matrix of
all individuals. (a) (Left). Block plot of mean FNC matrix between model orders. The ICNs in this FNC matrix were sorted by
domains first, and within each domain, ICNs were sorted by model orders (from 25 to 100). The dotted lines in each domain
divide different model orders (b) (Right). Finger plot of mean FNC matrix between model orders. ICNs within each model
order were sorted in the order of CR, CC, DM, SM, SB, TP, and VS. As we can see in the plot, DM from model order 25
shows strong anticorrelations with SM and TP of model order 100; similar anticorrelations were also observed between
model orders 75 and 100, which did not show up in the other sections of the matrix. Color images are available online.
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FIG. 5. (a) (Left). Block plot of GLM contrast of difference mean FNC matrix (HC–SZ). To test the group difference be-
tween HC and SZ, we fit a GLM with age, gender, data acquisition site, and meanFD as covariates. This figure shows the
difference between HC and SZ in FNC. Blue areas indicate increased FNC in SZ compared with HC, and red areas indicate
decreased FNC in SZ compared with HC. The statistical results of p-values of the GLM were corrected for multiple com-
parisons using a 5% FDR (b) (Right). Finger plot of GLM contrast of difference mean FNC matrix (HC–SZ). (a, b)
Show the intensity [�sign(T) · log10(FDR)] matrixes of both block and finger plots for the mean FNC of the GLM
model, where T is the t-statistic values of the GLM. The lower triangles show covariate pairs that were significantly different
(FDR <0.05). FD, framewise displacement; FDR, false discovery rate; GLM, generalized linear model; HC, healthy control.
Color images are available online.

FIG. 6. (a) (Left). SVM block plot of FNC feature average weights of 100 iterations. The hotspots indicate FNC features
with strong weights in predicting group differences of HC and SZ. Statistically, the relevance level of a relevant feature is
expected to be >0 and that of an irrelevant one is expected to be 0 (or negative). The cerebellum, somatomotor, subcortical,
and temporal domains almost always contribute to the classification. Generally, strong predictive abilities of FNC features in
the somatomotor and visual domains were seen at all model orders. Visual was predictive only within the region between
somatomotor and visual, but only seen at high model order (100) (b) (Right). SVM finger plot of FNC feature average weights
of 100 iterations. Color images are available online.
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feature in detecting the group differences. As shown in the
figures (Fig. 6a, b), FNC features in the cerebellum, somato-
motor, subcortical, temporal, and visual domains consis-
tently contribute to the classification results for both within
and between different model orders. These findings suggest
highly distinct functional roles for these ICNs in differentiat-
ing between HCs and SZs. It is noticeable that the FNC
within the somatomotor and visual has contributed most to
the classification. The predictive abilities of the FNC features
within those two domains were evenly distributed at all
model orders, as they are shown in the diagonal regions
within somatomotor and visual (in Fig. 6a). Generally, strong
predictive abilities of FNC features were observed in the
FNC pairs between the subcortical domain and the domains
of the cerebellum, the somatomotor, and the temporal across
all model orders. Similarly, FNC features between the soma-
tomotor and the domains in the cerebellum and temporal
were generally predictive.

To better understand the between-model order differ-
ences, we computed a two-sample t-test (Cressie and Whit-
ford, 1986), to identify significant differences within and
between model orders. For each iteration, we calculated
an average feature weight for each model order; we then ag-
gregated all the average feature weights across 100 itera-
tions. The two-sample t-tests were performed between all
pairs of model orders using their aggregated feature
weights. It (Fig. 7) shows the statistical comparison (inten-
sity) plot between model orders. A negative intensity value
in the lower triangle of the figure indicates that the average
feature weights of model orders in the row were smaller
than the ones in the column, and a positive intensity value
indicates that the model orders’ average feature weights
in the row were larger than the ones in the column. As
shown in the figure (Fig. 7), features in the between
model orders of 25–50 were consistently more predictive

than features in other within and between model orders.
Between-model order features were consistently more pre-
dictive than higher individual model orders (75–100), but
less predictive than lower model orders (25–50). And we
also see that features in the model order of 50 are more pre-
dictive than most other model orders, except the between
model orders 25–50. Features in the between model orders
75–100 are consistently less predictive than most within
and between model orders, except model order of 100.

To highlight the variations between domains of model
orders, we also calculated the average feature weights
(Fig. 8a) and maximum feature weights (Fig. 8b) in the do-
main levels. Within each domain, feature weights were
aggregated by model orders from 25 to 100. It shows that
higher average feature weights were mainly seen in the
somatomotor, subcortical, temporal, and visual domains.
Strong predictive abilities of FNC features within the
somatomotor and visual (highlighted in the figures) were
seen at all model orders.

We then performed the two-sample t-test between do-
mains of different model orders (Cressie and Whitford,
1986), to identify significant differences between domains.
We calculated the intensity values between domains of dif-
ferent model orders (as shown in Fig. 9). For each ICN in
the figure, we averaged all the feature weights within each
model order of 25, 50, 75, and 100. It indicates that features
in somatomotor were always predictive than features in other
domains at all model orders, such as cerebellum, cognitive
control, and default mode (blue regions in the somatomotor
row of the lower triangle), and subcortical, temporal, and vi-
sual (hot regions in the somatomotor column of the lower tri-
angle). Besides, features in visual were generally predictive
than other domains at all model orders, except somatomotor.
Features of lower model orders (25–50) in subcortical were
generally less predictive than features in other domains.

FIG. 7. The intensity [�sign(T) ·
log10(FDR)] of average feature
weights between model orders. We
computed a two-sample t-test be-
tween the averaged feature weights
of every two model orders, to
identify significant differences be-
tween them. The negative intensity
value in the lower triangle of the
figure indicates the average feature
weights of model orders in the row
(x) were smaller than the ones in the
column (y), and the positive inten-
sity value in the lower triangle in-
dicates the model orders’ average
feature weights in the row were
larger than the ones in the column.
The upper triangle shows signifi-
cant differences ( p < 0.05, FDR
corrected) between each pair of
model orders, whose direction is
opposite to the lower triangle. Color
images are available online.
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We also evaluated the performance of the SVM model. As
shown in Table 1, the average accuracy of the SVM model
using 100 iterations was 77.4% (outperformed the null accu-
racy 57.6%), with a specificity of 85.2%, 67.2% sensitivity,
and 71.5% F1 score.

Finally, we compared the predictive accuracies of SVM
models built by different model orders. We individually
trained the SVM model using each number of model order,
and then we computed a two-sample t-test between the accu-
racies of every two SVM models of different model orders.

FIG. 8. (a) (Left). Average feature weight between domains. Each domain contains four model orders, from 25, 50, 75 to
100, and all the features within each model order were averaged across 100 iterations (b) (Right). Maximum feature weight
within each domain. Each domain column contains four averaged features of different model orders, from 25, 50, 75 to 100.
The maximum feature weight within each domain was selected based on the averaged feature weight across 100 iterations. It
shows that higher average feature weights are mainly seen in somatomotor, subcortical, temporal, and visual. Color images
are available online.

FIG. 9. The intensity
[�sign(T) · log10(FDR)] of
average feature weights be-
tween domains. The negative
intensity values in the lower
triangle indicate smaller av-
erage feature weights of the
ICN in the row (x) compared
with the ones in the column
(y), and the positive intensity
values in the lower triangle
indicate larger average fea-
ture weights of ICN in the
row compared with the col-
umn. The upper triangle
shows the significant differ-
ences ( p < 0.05, FDR cor-
rected) between each pair of
domains, whose direction is
opposite to the lower triangle.
Color images are available
online.
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As shown in the figure (Fig. 10), higher individual model or-
ders always have higher accuracies compared with lower in-
dividual model orders. This is due to the fact that including
more model orders always resulted in the increase of predic-
tive features. It is also observed that the between model
orders of 50–75, 50–100, and 75–100 outperformed individ-
ual model orders of 25, 50, 75, and 100, while individual
model orders (50–100) outperformed lower between model
orders of 25–50 and 25–75.

Discussion

In this article, we introduce a multimodel order ICA ap-
proach to estimate FNCs at multispatial scales. We investi-
gated whether multispatial-scale FNC features were able to
discriminate between SZ individuals and HC groups, and
found both consistency and uniqueness of FNC patterns

within and between model orders. Importantly, we revealed
that additional information can be preserved in the between-
order FNC that might be ignored in single-model order
analysis. In addition, some interesting findings were only
observed at lower model orders or higher model orders. Spe-
cifically, the HC–SZ differences were observed between sub-
cortical versus temporal and subcortical versus cerebellum
mostly at lower model order FNC (25–75), but between
somatomotor versus visual networks were mainly at higher
model order (100). Results highlighted findings we learned
from multiple-model orders that would have been missed
otherwise.

In addition, we see consistency between the identified sig-
nificant group differences in FNC and the SVM feature
weights (as shown in Figs. 5 and 6). We observed that HC
generally showed high FNC in somatomotor, visual at all
model orders compared with SZ (Fig. 5a), and these cells
were also found to be the most predictive features in the
SVM model (Fig. 6a). For between model orders, we ob-
served that although somatomotor versus subcortical and vi-
sual versus subcortical were relatively high in SZ compared
with HC, they were less predictive than somatomotor and
visual. It is also interesting to note that some noticeable dif-
ferences between HC and SZ in the difference mean FNC
matrix (Fig. 5a) do not necessarily lead to their predictive

Table 1. The Average Performance of Support

Vector Machine Model for 100 Iterations

Accuracy Specificity Sensitivity F1

Support vector
machine

0.7743 0.8522 0.6717 0.7153

FIG. 10. The intensity [�sign(T) · log10(FDR)] of SVM accuracies between model orders. The negative intensity value in
the lower triangle of the figure indicates the average feature weights of model orders in the row (x) were smaller than the ones
in the column (y), and the positive intensity value in the lower triangle indicates the model orders’ average feature weights in
the row were larger than the ones in the column. The upper triangle shows the significant differences ( p < 0.05, FDR cor-
rected) between each pair of model orders, whose direction is opposite to the lower triangle. The top circle indicates that
higher individual model orders always have higher accuracies compared with lower individual model orders. The middle cir-
cle shows that model orders of 50–100 outperform lower between model orders. The bottom circle indicates that higher be-
tween model orders outperform individual model orders. Color images are available online.
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abilities (the same areas in Fig. 6a are not highlighted). For
example, SZs were generally higher than HCs in cerebellum
versus visual and cerebellum versus temporal in the differ-
ence mean FNC matrix (Fig. 5a), but they were not notice-
ably predictive in the SVM model (Fig. 6a).

Some other useful findings were also indicated by jointly
studying the functional brain imaging data within and be-
tween the different number of model orders. By comparing
the FNC feature predictive ability between different model
orders, we surprisingly found that the between model orders
always maintained useful information in detecting group
differences, particularly the features between model orders
of 25–50 were the most SZ discriminative ones compared
with features in other within and between model orders.
And in many cases, features in the between model orders
were more predictive than individual model order accord-
ing to our observations, suggesting that investigation of
between-model order FNC may provide informative details
that could be missed otherwise. Results also highlighted the
differentiating power of somatomotor and visual domains
on classifying HC versus SZ both within and between
model orders, compared with other domains.

There are several limitations to this study. First, to obtain a
stable feature set, we performed 10 rounds of feature selec-
tion within each iteration when turning the SVM model,
and within each round of feature selection, we implemented
a strategy similar to bootstrap sampling (Breiman, 1996), by
selecting a subset (50%) of the training data for feature selec-
tion. In future work, the performance of the classification
model can be improved by increasing the rounds of feature
selection and by exploring a range of selected subsets for fea-
ture selection, to get a more stable feature set. Second, we se-
lected the top 70% ranked FNC features to build the SVM
model, based on our previous experience, that in general,
selecting top 70% ranked features maintains the maximum
predictive information of the dataset by eliminating redun-
dant features. Going forward, we can improve the perfor-
mance of the classification model by exploring a range of
selected features, to get an optimal predictive model. We
tried both using feature selection and not using it to build
the SVM model; the results showed that the performance
of using feature selection was slightly better than not using
it. In addition to the SVM model, we tried another classifica-
tion model random forest (Ho, 1995); the performance of
SVM was slightly better compared with the random forest
for our case, so we keep SVM results. For future work,
more efforts will be put in to explore other machine learning
techniques, such as boosting (Schapire, 2003), to improve the
accuracy of the learning classifier.

Conclusions

In summary, based on fMRI data from 477 healthy partic-
ipants and 350 SZ patients, we compared the group differ-
ences obtained at different model orders by evaluating the
multiorder FNCs, as well as testing the classification power
of FNC at different model orders. A comprehensive visuali-
zation of the relationships through FNC block plots and FNC
finger plots was introduced. Results suggest that additional
information was observed both at different model orders
and in between-model order relationships, which goes be-
yond the known general modular relationships in ICNs.

We are also releasing four model order templates to the pub-
lic for future use. Our study highlights the benefit of studying
FNC within and between multiple spatial scales. This work
expands upon and adds to the relatively new literature on
resting fMRI-based classification and prediction.
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