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Abstract

Background: Cell-free DNA (cfDNA) is a non-invasive marker of cellular injury. However, its 

significance in pulmonary arterial hypertension (PAH) is unknown.

Methods: Plasma cfDNA was measured in two PAH cohorts (A, n=48; B, n=161) and controls 

(n=48). Data were collected for Registry to Evaluate Early And Long-term PAH Disease 

Management (REVEAL 2.0) scores and outcome determinations. Patients were divided into 

REVEAL risk groups: low (≤6), medium (7–8), and high (≥9). Total cfDNA concentrations 

were compared amongst controls and PAH risk groups by one-way ANOVA. Log-rank tests 

compared survival between cfDNA tertiles and REVEAL risk groups. Area under the receiver 

operating characteristics curves (AUC) were estimated from logistic regression models. A sample 

subset from Cohort B (n=96) and controls (n=16) underwent bisulfite sequencing followed by 

a deconvolution algorithm to map cell-specific cfDNA methylation patterns with concentrations 

compared using t-tests.

Results: In Cohort A, median (interquartile range (IQR)) age was 62 years (47–71), with 75% 

female and median (IQR) REVEAL 2.0 was 6 (4–9). In Cohort B, median (IQR) age was 59 

years (49–71), with 69% female and median (IQR) REVEAL 2.0 was 7 (6–9). In both cohorts, 

cfDNA concentrations differed amongst PAH patients of varying REVEAL risk and controls 

(ANOVA P≤0.002) and were greater in the high compared with the low risk category (P≤0.002). 

In Cohort B, death or lung transplant occurred in 14 of 54, 23 of 53, and 35 of 54 patients in 

the lowest, middle, and highest cfDNA tertiles, respectively. cfDNA levels stratified as tertiles 

(log-rank: P=0.0001) and REVEAL risk groups (log-rank: P<0.0001) each predicted transplant-

free survival. The addition of cfDNA to REVEAL improved discrimination (AUC 0.72 to 0.78; 

P=0.02). Compared with controls, methylation analysis in PAH patients revealed increased cfDNA 

originating from erythrocyte progenitors, neutrophils, monocytes, adipocytes, natural killer cells, 

vascular endothelium and cardiac myocytes (Bonferroni adjusted P<0.05). Erythrocyte progenitor 

cell-, cardiac myocyte-, and vascular endothelium-derived cfDNA concentrations were greater in 

PAH patients with high versus low risk REVEAL scores (P≤0.02).

Conclusions: Circulating cfDNA is elevated in PAH patients, correlates with disease severity 

and predicts worse survival. Results from cfDNA methylation analyses in PAH patients are 

consistent with prevailing paradigms of disease pathogenesis.
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Introduction:

Risk prediction in pulmonary arterial hypertension (PAH) remains a major challenge.1, 2 

Disease-specific surrogate biomarkers are lacking, leading to continued reliance on 

subjective functional assessments and invasive hemodynamic measurements. Therefore, 

novel, non-invasive biomarkers of PAH disease progression remain an unmet need, 

particularly if such a biomarker is plausibly related to and can inform on the extent of 

PAH pathogenesis.
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Several serum biomarkers have been studied in PAH.3–12 However, wide-spread clinical 

acceptance has been limited, perhaps because of their lack of specificity and unclear link 

to PAH pathogenesis. Indeed, only B-type natriuretic peptide (BNP) and its precursor 

N-terminal Pro-BNP (NT-proBNP) are used in current PAH risk scores.1, 11, 12 Though 

BNP and NT-proBNP are related to right-ventricular decompensation and volume overload, 

they are not representative of the contemporary paradigms of PAH pathobiology, including 

genetic and epigenetic contributions, endothelial damage and disruption, metabolic 

derangements with a hyperproliferative, anti-apoptotic cellular phenotype, and both 

systemically and locally dysregulated inflammation.13–16

Cell-free DNA (cfDNA) are circulating short DNA fragments (≈165 base pairs), 

predominantly from mononucleosomes, that represent cell injury and/or cell-turnover. 

Elevated total cfDNA concentration has been associated with worse prognoses in 

heterogeneous conditions such as sepsis, trauma, and malignancy.17–19 In addition, cfDNA 

has become clinically relevant as a non-invasive marker of solid-organ transplant rejection 

as well as a tool for genotyping and surveillance in oncology.20–23 Advances in high-

throughput methylation sequencing have also enabled the differentiation of cfDNA subsets 

on the basis of cell origin, facilitating the detection of cell or tissue-specific injury.24–27

Given parallels in the pathogenesis of PAH to diseases characterized by increased cell 

proliferation and turnover such as cancer and inflammatory-mediated tissue injury such as 

allograft rejection, this study sought to determine if plasma cfDNA concentrations were 

elevated in PAH patients, would correlate with PAH disease severity, and predict outcomes. 

Further, cfDNA methylation analysis was leveraged to identify the cellular origins of cfDNA 

in PAH, seeking to detect a unique, pathobiologically relevant injury pattern.

Materials and Methods:

Data availability:

The data for the analyses that support the findings of this study are held at the National 

Institutes of Health (NIH) intramural program. The corresponding author may be contacted 

for requests with regard to the sharing of data, methods, and materials specific to these 

analyses.

Patient selection and study design:

World Health Organization (WHO) pulmonary hypertension (PH) Group 1 patients with 

available plasma were identified at Allegheny General Hospital (Cohort A, n=48) and Tufts 

Medical Center (Cohort B, n=161) for inclusion in the study. Both centers provided samples 

from patients in ongoing, institutional review board-approved, prospective studies, with 

collection of plasma at the time of enrollment right heart catheterization. The Office of 

Human Subjects Research Protections at the NIH waived institutional review board approval 

for the use of de-identified plasma samples provided by Allegheny General Hospital and 

Tufts Medical Center, as all participants provided written informed consent at the time 

of study enrollment. Allegheny General Hospital and Tufts Medical Center patients were 

enrolled consecutively from April, 2018 to August, 2019 and July, 2001 to August, 2019 
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respectively. For patients with multiple hemodynamic studies and plasma samples, only the 

first sample and associated clinical data were analyzed.

Healthy controls were identified and plasma samples collected at the time of volunteer 

blood donation at the NIH Clinical Center as part of a Department of Transfusion Medicine 

NIH institutional review board-approved protocol (99-CC-0168; Collection and Distribution 

of Blood Components from Healthy Donors for In Vitro Research Use; ClinicalTrials.gov 

NCT00001846). All healthy controls provided written informed consent. The NIH Blood 

Bank provided plasma samples from consecutively enrolled healthy adult donors (n=48; 

mean age 57 years; 32% female). The majority of healthy controls (n=41) were enrolled 

from September 19, 2019 to November 13, 2019. To have an equal number of healthy 

controls to compare to PAH patients in Cohort A, 7 additional blood bank healthy control 

samples were included. Of the total 48 healthy control samples, 16 were randomly selected 

to undergo additional methylation sequencing analysis, as this was the number of samples 

that could be run in the flow cell without compromising the depth of sequencing. Healthy 

controls were not matched to PAH patients for demographics.

Total cell-free DNA analysis:

cfDNA was isolated from plasma (QIAamp Circulating Nucleic Acid Kit, Qiagen) using 

a validated automated platform (QIASymphony, Quiagen).21 Samples were spiked with a 

known concentration of lambda DNA to assure adequate cfDNA recovery from plasma. 

cfDNA was measured using quantitative real-time PCR (Swift Biosciences, Ann Arbor, MI) 

with final concentrations expressed in ng/mL of plasma. cfDNA quality was confirmed 

by integrity score (QIAamp Circulating Nucleic Acid Kit, Qiagen) and high-sensitivity gel 

electrophoresis (Agilent). cfDNA samples with a high integrity score (≥ 0.70), suggesting 

the presence of longer DNA fragments characteristic of genomic origin, were excluded from 

analysis.

Cell-free DNA methylation analysis:

The protocol for digital droplet PCR (ddPCR) cfDNA quantification, bisulfite conversion, 

and methylation sequencing has been previously described.27 This approach relies on the 

principle that epigenetic fingerprints, such as DNA methylation and chromosomal foot 

printing have tissue-specificity that is maintained on cfDNA. In brief, cfDNA was extracted 

from plasma as above and quantified using a ddPCR platform (QX200, Bio-Rad), with 

primers targeting a nuclear transcription factor gene (EIF2C1). Bisulfite conversion was then 

performed with the EZ DNA methylation-gold kit (Zymo Research) prior to Methyl-Seq 

DNA library preparation (Accel-NGS Methyl-Seq DNA Library Kit with Unique Dual 

Indexing, Swift Biosciences). DNA libraries were pooled in equimolar concentrations and 

subjected to 2 × 100 bp paired-end DNA sequencing on the Illumina NovaSeq 6000 

platform. Sequence reads were mapped to the human reference sequence and underwent 

quality control and trimming. The Bismark methylation extractor routine was performed, 

extracting all CpGs for individual samples and bsseq tools were used for methylome 

visualization and analysis.28, 29 The meth_atlas algorithm was used to identify the cell type 

of origin for cfDNA and deconvolution of the cfDNA methylome by sample. The algorithm 

used non-negative least squares methodology26 and a reference of DNA methylation 
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signatures that includes 25 of the major human cell types involved in common diseases. 

The deconvolution algorithm approximates the plasma cfDNA methylation profile as a linear 

combination of the methylation profiles of cell types in the reference atlas and has been 

shown to effectively identify cfDNA cell-of-origin using a small number of loci (~4,000 

CpGs). Only CpGs with at least 5× coverage per sample were included in the deconvolution 

analysis, which was performed with R software version 3.6.3. To obtain the concentrations 

of cfDNA according to tissue or cell type of origin, the relative estimated proportions of 

cfDNA were multiplied by the total concentration (or copies per mL) of cfDNA in the 

same plasma samples. The final analysis was limited to those 11 tissue and cell types with 

quantifiable cfDNA concentrations in the majority of patients. A heat map was created 

using the ComplexHeatmap package in R in order to visualize cfDNA concentrations from 

specific cell types.30 An individual patient on the heatmap is represented as a column. The 

columns were clustered based on the absolute cfDNA concentration using an unsupervised 

hierarchical clustering approach that is based on Euclidean distance. A typical cfDNA 

cell of origin pattern was selected from each of the 4 groups (healthy control, low-risk, 

medium-risk, and high-risk REVEAL 2.0 [Registry to Evaluate Early and Long-Term PAH 

Disease Management] score) for visual representation. First the mean cfDNA concentration 

(log10 ng/mL) for the healthy control, low, medium, and high-risk groups was calculated 

for each of the 7 cell types that distinguished between healthy controls and PAH patients 

(erythrocyte progenitors, neutrophils, monocytes, adipocytes, natural killer (NK) cells, 

vascular endothelium, and cardiac myocytes). Then the sum of the squared differences 

between the cell-specific cfDNA concentration of each subject and the group mean across 

the 7 cell types was calculated. Three PAH patients and one healthy control were selected 

for illustration based on a sum of the squared differences from the mean of < 0.10.

Clinical data analysis and REVEAL score calculation:

The REVEAL score, which has been updated as REVEAL 2.0, is a robustly validated, 

contemporary risk prediction tool.31 Sufficient clinical variables (at least 7) necessary to 

calculate REVEAL 2.0 scores were provided for each patient in Cohort A. In Cohort B, 11 

of the 14 clinical variables necessary for calculating REVEAL 2.0 scores, including age, 

sex, etiology of PAH, right atrial pressure, pulmonary vascular resistance, baseline heart 

rate, baseline systolic blood pressure, six-minute walk distance, New York Heart Association 

(NYHA) functional class, estimated glomerular filtration rate, and BNP/NT-proBNP were 

available for the majority of patients. REVEAL Lite 2 scores were also calculated for each 

patient in cohorts A and B.32 Patients were divided into three risk groups based on REVEAL 

2.0 score: low (≤ 6), medium (7–8), and high (≥ 9); and REVEAL Lite 2 score: low (≤ 5), 

medium (6–7), and high (≥ 8), as previously validated.31–33 Transplant-free survival status 

was available for all patients in Cohort B as of March 9th, 2020. Outcomes in Cohort A were 

recorded as of May 25th, 2020.

Clinical biomarker analysis:

Concentrations of high-sensitivity cardiac troponin T (hs-cTnT; Roche TnT Gen 5 STAT; 

Roche, Indianapolis, IN) and high-sensitivity C-reactive protein (hs-CRP; MULTIGENT 

CRP Vario; Abbott Laboratories Inc., Abbott Park, IL) were determined in a subset of 

patient samples with sufficient remaining plasma to evaluate the association of cfDNA with 
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additional clinical markers of myocardial injury and inflammation, respectively. The hs-CRP 

assay reference limit for low risk is < 1.0 mg/L, while the 99th percentile upper reference 

limit for the hs-cTnT assay is 19 ng/L.

Statistical Analysis:

Cohort A and B demographics, PAH severity, treatment strategies, and medical 

comorbidities were assessed using Wilcoxon rank sum tests for continuous variables 

and Pearson’s chi-square or Fisher exact test for categorical variables. Total cfDNA 

concentrations were log10-transformed and compared amongst healthy control and PAH 

patient groups of varying risk using one-way ANOVA followed by pairwise comparisons 

with p-values adjusted using the Tukey-Kramer method. Correlations between cfDNA 

and clinical variables in Cohorts A and B were assessed using nonparametric Spearman 

correlation. In Cohort B, cfDNA data were a priori divided into categorical tertiles and 

treated as a nominal variable for all analyses, an approach that mirrors other risk assessment 

tools commonly applied to PAH management,1 and is similar to a previously published 

analysis in lung transplant recipients.34 Differences in demographics and comorbid 

conditions across cfDNA tertiles were assessed using Pearson’s chi-square or Fisher exact 

test, and differences in PAH-related clinical variables across tertiles were compared by 

Kruskal-Wallis test. Additionally, Kaplan-Meier curves were plotted to show transplant-

free survival in Cohort B based on cfDNA tertiles, REVEAL 2.0, and REVEAL Lite 

2 risk categories. Log-rank tests were used to compare transplant free survival among 

cfDNA tertiles and REVEAL risk categories, accounting for multiple comparisons by 

reporting Tukey-Kramer adjusted p-values. After confirming that the proportional hazards 

assumption was valid,35 Cox proportional hazard models were used to perform adjusted 

survival analyses accounting for patient age and sex. To compare the predictive ability of 

REVEAL score and cfDNA for the composite outcome of death or lung transplant, we used 

logistic regression models to estimate the area under the receiver operating characteristics 

(ROC) curves for cfDNA tertiles and REVEAL 2.0 risk categorization independently and 

combined, again adjusting for age and sex. ROC curves were also estimated for BNP and hs-

CRP utilizing established risk cut-offs for PAH and cardiovascular disease respectively.2, 36 

Areas under the ROC curve (AUC) were compared using generalized U-statistics.37 Finally, 

log10-transformed cell-specific cfDNA concentrations were compared between PAH patients 

and healthy controls using t-tests. Specific cell types were selected for further analysis based 

on a Bonferroni-corrected p-value <0.05. Pairwise comparisons of selected cell-specific 

cfDNA concentrations were analyzed between PAH risk groups and healthy controls and 

p-values were adjusted using the Tukey-Kramer method. All analyses were done using SAS 

version 9.4.

Results:

Cohort demographics

Plasma cfDNA concentrations were quantified in two PAH cohorts (Figure 1). Demographic 

and clinical data for Cohort A [median (interquartile range (IQR)) age, 62 years (47–71); 

75% female; median (IQR) REVEAL 2.0 6 (4–9)] and Cohort B [median (IQR) age, 59 

years (49–71); 69% female; median (IQR) REVEAL 2.0 7 (6–9)] are displayed in Table 1.
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cfDNA correlates with PAH disease severity

In both Cohorts, cfDNA concentrations differed amongst PAH patients of varying REVEAL 

2.0 risk and healthy controls (ANOVA P≤0.002; Figure 2) and were greater in the 

high compared with the low risk REVEAL 2.0 category (P≤0.002; additional pairwise 

comparisons in Figure 2). In a sensitivity analysis of Cohort B by PAH subtype, cfDNA was 

also increased in patients with idiopathic, connective tissue disease-associated, and portal 

hypertension-associated PAH compared with healthy controls (Figure S1). Despite similar 

age, sex, and comorbidity distributions (Table S1), patients with higher cfDNA levels had 

more severe PAH based on REVEAL 2.0 scores, invasive hemodynamic measures, 6-minute 

walk distance, BNP and hs-troponin T concentrations (Table 2). These patients also had 

higher hs-CRP levels and body mass index. Furthermore, correlation analyses identified 

similar associations between cfDNA and clinically significant measures of risk and disease 

severity in both cohorts (Table S2 and Table S3).

cfDNA predicts transplant-free survival

Available patient follow-up (median 2.7 years) in Cohort B enabled assessment of the 

relationship between total cfDNA and transplant-free survival. The overall incidence of 

death or transplant in Cohort B was 45%, with the majority of events being deaths due 

to progressive PH (64%). Other causes of death included liver/kidney failure (9%), cancer 

(6%), sepsis (6%), trauma (1%), and unknown (14%). Death or lung transplant occurred in 

14 of 54 patients in the lowest cfDNA tertile, 23 of 53 in the middle tertile and 35 of 54 

in the highest tertile. A Kaplan-Meier curve, dividing the cohort into three groups based 

on cfDNA tertiles, demonstrated significantly worse outcomes in patients within higher 

cfDNA tertiles (log-rank test: P=0.0001; Figure 3). REVEAL 2.0 and REVEAL Lite 2 risk 

categories also predicted patient outcomes in Cohort B (log-rank test: P<0.0001 for both; 

Figure S2A and S2B).

The hazard ratio (HR) of death or transplant, accounting for age and sex, was 3.8 (95% CI 

2.0–7.0; P<0.001) times higher in the highest cfDNA tertile compared with the lowest and 

2.8 (95% CI 1.4–5.6; P=0.003) times higher in the middle tertile compared with the lowest. 

After accounting for age, sex, and REVEAL 2.0 risk in a Cox proportional hazard model, 

cfDNA tertiles remained a significant predictor of death or transplant, driven by increased 

risk in the highest cfDNA tertile compared to the lowest (HR 2.5, 95% CI 1.3–4.9).

Accounting for age and sex, ROC analyses using logistic regression models demonstrated 

that the AUC did not differ for cfDNA tertiles and REVEAL 2.0 risk (0.75 vs 0.72; 

P=0.29). Adding cfDNA to REVEAL 2.0 led to a statistically significant AUC improvement 

(0.72 to 0.78; P=0.02; Figure 4). cfDNA also performed similarly to European Society 

of Cardiology/European Respiratory Society recommended BNP risk categorization2 (AUC 

0.75 vs 0.74; P=0.79). The AUC for BNP improved with the addition of cfDNA (AUC 0.74 

to 0.78; P=0.08), and both BNP and cfDNA remained significant independent predictors 

when included together in a logistic regression model. Finally, neither creatinine nor hs-CRP 

were statistically significant predictors when added to models including age and sex.
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cfDNA methylation sequencing analysis reveals a distinct PAH cellular injury pattern

Samples with sufficient plasma from patients with idiopathic (n=42), connective tissue 

disease-associated (n=35) and portal hypertension-associated PAH (n=19) in Cohort B 

(n=96) as well as healthy controls (n=16) underwent cfDNA bisulfite conversion and 

whole genome sequencing. PAH patients demonstrated a distinct cellular injury pattern 

compared with healthy controls (Figure 5A), with significantly increased cfDNA arising 

from hematopoietic cells, including erythrocyte progenitors, neutrophils, monocytes, NK 

cells, and non-hematopoietic cell types such as cardiac myocytes, vascular endothelium, 

and adipocytes (Bonferroni adjusted P<0.05 for all). cfDNA concentrations from kidney, 

bladder, squamous epithelium, and hepatocytes were not significantly different between 

PAH patients and healthy controls. Pairwise assessments corrected for multiple comparisons 

revealed that three cell types discriminated between high and low-risk PAH patients (Figure 

5B). These included erythrocyte progenitors (P=0.02), vascular endothelium (P=0.004), and 

cardiac myocytes (P=0.006). Only cfDNA concentrations derived from cardiac myocytes 

were significantly higher in medium compared with low-risk patients (P=0.04). Levels of 

cfDNA derived from vascular endothelium also tended to be higher in medium compared 

with low-risk patients, but this did not reach statistical significance (P=0.08). Representative 

tissue distributions of cfDNA for a healthy control and three PAH patients of varying 

REVEAL 2.0 risk (Figure 6) demonstrate that the majority of cfDNA originated from 

myeloid lineage cells; however, only in PAH patients was there a substantial signal for 

cfDNA originating from vascular endothelium and cardiac myocytes. The levels of cfDNA 

from these two cell types implicated in PAH pathobiology increased in accordance with 

PAH disease severity.

Discussion:

This study demonstrates that cfDNA is elevated in PAH patients compared with healthy 

controls. The results indicate that cfDNA represents a biomarker of disease severity and poor 

prognosis, with a 3.8 times greater risk of death or transplant identified in the highest tertile 

of cfDNA compared with the lowest tertile. In the initial analysis (Cohort A), there was a 

clear relationship between cfDNA concentration and PAH disease severity as determined 

by increasing REVEAL 2.0 risk score. The second, independent analysis (Cohort B), 

not only replicated the relationship between cfDNA and PAH disease severity, but also 

found an association between elevated cfDNA concentration and worse transplant-free 

survival. Further, cfDNA demonstrated an ability to discriminate that did not differ from the 

multivariable REVEAL 2.0 model and the addition of cfDNA to REVEAL 2.0 risk improved 

discrimination. Lastly, the origin of increased cfDNA in PAH was determined, identifying 

injury from cell types implicated in PAH pathobiology, with increased cfDNA originating 

from inflammatory cells as well as from vascular endothelial and cardiac myocyte damage. 

Importantly, a subset of these cell-specific components of cfDNA also differentiated PAH 

patients by disease severity, implicating their potential role as markers of underlying disease 

activity.

The distinct PAH cellular injury pattern demonstrated in this study is biologically plausible 

and in line with the current understanding of PAH pathogenesis, which encompasses 
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dysregulated inflammation, endothelial damage, and myocardial dysfunction. Higher 

concentrations of cfDNA originating from myeloid-derived inflammatory cells such as 

monocytes and neutrophils in PAH patients supports an active role for the bone marrow in 

the pathobiology of pulmonary vascular disease.38–40 Recruitment of circulating monocytes 

to the lung and the contribution of monocyte-derived interstitial macrophages, in particular, 

have been demonstrated in hypoxia-induced animal models of PH and PAH patients.41–43 

Similarly, neutrophils,44, 45 and neutrophil elastase,46–48 contribute to PAH-associated 

inflammation.

A predominance of cfDNA derived from erythrocyte progenitors in patients with PAH 

is in line with an earlier genome-wide expression profiling study that identified an 

erythroid precursor cell gene signature in PAH patients49 and previous work highlighting 

the association of hypoxia-inducible factors such as erythropoietin with PAH-associated 

myeloid abnormalities.50 Notably, factors that prominently influence erythropoiesis intersect 

with a number of PAH paradigms such as bone morphogenetic protein/transforming 

growth factor-β (TGF-β) signaling, inflammation, hypoxia-inducible factors and iron 

homeostasis.51, 52 The link between PAH and abnormal erythropoiesis is further 

substantiated by recent clinical studies investigating a shared therapeutic approach of 

targeting pathological SMAD2/3 activation with TGF-β ligand traps.53, 54

Although histopathological studies of explanted lung tissue from PAH patients demonstrate 

inflammatory infiltrates55–57 consisting of both innate and adaptive immune cells,56, 57 

and despite the sizeable proportion of lymphocytes in circulation (normally 20–40% of 

leukocytes), detectable levels cfDNA derived from B and T lymphocytes were present in 

fewer than one-third of PAH patients. Thus, while cfDNA concentrations may correlate with 

the proportion of some circulating leukocyte subsets,27 cfDNA cell of origin analysis is not 

simply a recapitulation of a peripheral blood cell count and differential. For example, despite 

the paucity of cfDNA derived from B and T lymphocytes, cfDNA originating from NK 

cells was increased in PAH patients compared with healthy controls. Interestingly, a reduced 

number of circulating NK cells as well as alterations in NK cell function have been reported 

in rodent models of PH and PAH patients.58 Furthermore, in genetic mouse models of NK 

cell deficiency, animals spontaneously develop pulmonary vascular disease.59 Although not 

specifically determined in this study, the higher cfDNA concentrations from NK cells may 

imply an increase in cell turnover and thus offer a potential explanation for lower circulating 

numbers of functional CD56dimCD16+ NK cells detected in PAH patients.58

This study also identified increased cfDNA from non-hematopoietic cell types associated 

with PAH pathobiology. For example, increased cfDNA derived from adipocytes observed in 

PAH patients is consistent with obesity being among the top comorbid conditions in patients 

with PAH.60 Metabolic syndrome, specifically obesity and insulin resistance, have been 

implicated as modifiers of pulmonary vascular disease.61, 62 Furthermore, adipose tissue 

dysfunction is linked to dysregulated inflammation and adipokine imbalance.63

cfDNA derived from vascular endothelium and cardiac myocytes were also among the 

non-myeloid cells that distinguished between PAH patients in different risk strata. This 

is consistent with the importance of adverse pulmonary vascular remodeling and right 

Brusca et al. Page 9

Circulation. Author manuscript; available in PMC 2023 October 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ventricular dysfunction to outcomes in PAH and lends credence to the methylation analysis 

presented in this study. In aggregate, these findings support the growing body of evidence 

that PAH is truly a systemic disease.64

If replicated in future studies, the ability to quantify cell injury and/or turnover specific to 

both the endothelium and myocardium represents a major step forward in PAH biomarker 

development. Although pulmonary vascular remodeling is the sine qua non of PAH, and 

endothelial injury is believed to be a critical element that initiates vessel remodeling, there 

are currently no blood or imaging markers available to specifically detect the extent of 

lung vascular damage in PAH patients. However, as next generation cfDNA applications 

continue to mature and the precision of cell- and tissue-specific epigenetic classification 

improves, the ability to identify cfDNA specific to pulmonary vascular endothelium 

may soon be possible. Further, chromatin immunoprecipitation-sequencing of cfDNA 

(cfChIP-seq) targeting specific histone modifications may offer a complementary method 

for defining injury patterns while concurrently inferring disease-specific transcriptional 

programs without the need for invasive procedures.65

Despite the ability to elucidate the cellular origins of elevated cfDNA in PAH, significant 

knowledge gaps in extracellular DNA biology persist, including an unclear primary 

mechanism of release into circulation and a potential role in innate immune system 

activation and the development of apoptotic resistance.66–69 Nevertheless, the ability to 

quantify and visualize patient-specific tissue injury patterns in PAH has the potential to 

greatly improve the understanding of PAH endovascular phenotypes and potentially develop 

and choose targeted therapies. Though the present study was not powered to evaluate the 

prognostic performance of specific cfDNA sub-populations, it remains likely that certain 

cfDNA concentrations will have more clinical utility than others.

The relationship between total cfDNA concentration and survival as well as the identified 

biologically plausible unique PAH cellular injury pattern described in this study are 

clinically relevant and require validation. Total cfDNA is easy to isolate and measure 

and could improve risk models in the near future. More importantly, the ability to 

isolate and quantify organ-specific cfDNA provides a unique, non-invasive window into 

PAH pathogenesis, in a disease where tissue sampling is possible only at the time of 

transplantation or death. A map of cellular or tissue injury patterns in PAH could allow for 

the monitoring of specific disease pathogenesis pathways, the institution of personalized 

“precision medicine,” and the non-invasive monitoring of disease progression. Further, 

cfDNA monitoring may allow for earlier recognition of pulmonary vascular remodeling 

and earlier initiation of therapy, prior to the development of right ventricular dysfunction. 

With this in mind, serial sampling of cfDNA in a prospective fashion is warranted.

Study Limitations:

Limitations of this study include the relatively small PAH cohort sizes, lack of serial samples 

as well as the retrospective design. Additionally, the ability of cfDNA to predict transplant-

free survival in a separate validation cohort was not evaluated. However, confirming the 

relationship between cfDNA and disease severity in two separate cohorts is encouraging. 
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Further, the identification of such a robust relationship between cfDNA and mortality despite 

the limited sample size highlights the potential predictive power of cfDNA. Finally, multiple 

tests were performed to identify the cell-specific cfDNA fractions that were elevated in PAH 

patients and differentiated between PAH risk groups. A 2-stage adjustment was utilized in an 

attempt to balance type I and II error rates but likely did not fully control type I error rates. 

Future larger validation cohorts and prospective studies are needed to confirm these findings.

cfDNA concentrations in Cohort B were substantially higher than in Cohort A. This 

may be attributable in part to differences in PAH disease severity among the cohorts, 

including higher REVEAL 2.0 scores, higher New York Heart Association functional class, 

and greater hemodynamic disturbances in cohort B. However, it is also possible that a 

component of cfDNA variability between cohorts stemmed from differences in plasma 

collection, processing, and storage techniques. Even though the quality of cfDNA was 

confirmed in both cohorts using quantitative PCR and gel electrophoresis, and internal 

comparisons and risk prediction remain valid, comparisons between archived biorepository 

samples from independent cohorts must be interpreted with caution. Future prospective 

trials investigating cfDNA should include standardized collection procedures to mitigate 

any variability that may be introduced during sample collection, allowing the combination 

of cohorts for improved statistical power and direct comparisons between patients from 

different centers.

Conclusion:

Cell-free DNA is elevated in patients with PAH compared with healthy controls and 

increases with disease severity. Elevated cfDNA predicts worse transplant-free survival 

and may add prognostic value to currently used risk scores. cfDNA from PAH patients 

demonstrates a cellular injury pattern primarily originating from myeloid inflammatory 

cells, but there is also evidence of vascular endothelium as well as cardiac myocyte damage 

that correlates with disease severity. Validation of these findings in a larger, prospective 

patient cohort with serial samples will help to better define the role of cfDNA in clinical 

PAH risk prediction.
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Non-standard Abbreviations and Acronyms

6MWD six minute walk distance

AUC area under the curve

Bpm beats per minute

BNP brain-type natriuretic peptide

cfChIP-seq chromatin immunoprecipitation-sequencing

cfDNA cell-free DNA

COPD chronic obstructive pulmonary disease

CRP C-reactive protein

CTD-PAH connective tissue disease-associated pulmonary arterial 

hypertension

ddPCR digital droplet PCR

DLCO diffusing capacity of the lungs for carbon monoxide

HR hazard ratio

HIV human immunodeficiency virus

IPAH idiopathic pulmonary arterial hypertension

IQR interquartile range

mPAP mean pulmonary artery pressure

NIH National Institutes of Health

NK natural killer

NT-proBNP N-terminal pro brain-type natriuretic peptide

NR not recorded

NYHA New York Heart Association

PAH pulmonary arterial hypertension

PAWP pulmonary artery wedge pressure

PDE5 phosphodiesterase-5

PGI2 prostacyclin

PH pulmonary hypertension

Brusca et al. Page 12

Circulation. Author manuscript; available in PMC 2023 October 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PoHTN-PAH portal hypertension-associated pulmonary arterial 

hypertension

PVOD/PCH pulmonary veno-occlusive disease/pulmonary capillary 

hemangiomatosis

PVR pulmonary vascular resistance

RAP right atrial pressure

REVEAL Registry to Evaluate Early and Long-Term PAH Disease 

Management

ROC receiver operating characteristics

SBP systolic blood pressure

TGF-β transforming growth factor-β

WHO World Health Organization

WU Wood units
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Clinical Perspective

What is New?

• Circulating cell-free DNA (cfDNA) is elevated in patients with pulmonary 

arterial hypertension (PAH) compared with healthy controls.

• In two independent PAH patient cohorts, cfDNA concentrations increased 

with severity of disease and predicted transplant-free survival in the larger of 

the two cohorts.

• Methylation patterns revealed increased cfDNA originating from biologically 

plausible sites including erythrocyte progenitor and myeloid lineage 

inflammatory cells, vascular endothelium, and cardiac myocytes.

What are the Clinical Implications?

• Cell-free DNA concentration could serve as a non-invasive biomarker of 

underlying disease activity in patients with pulmonary arterial hypertension.

• Cell-free DNA measurements may add prognostic value to currently used 

PAH risk scores.

• Cell-free DNA categorized by tissue origin may provide a unique, non-

invasive window into PAH pathogenesis.
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Figure 1. Pulmonary arterial hypertension (PAH) patient sample flow diagram.
Plasma samples selected for cfDNA methylation analysis (n=96) were obtained from 

patients with idiopathic (n=42), connective tissue disease-associated (n=35) and portal 

hypertension-associated PAH (n=19). In addition to PAH patients, plasma samples were 

obtained in consecutively enrolled healthy controls (n=48; mean age 57 years; 32% 

female) at the NIH Clinical Center Department of Transfuison Medicine. Of these healthy 

control samples, 16 were randomly selected to undergo additional methylation sequencing 

analysis. Abbreviations: WHO, World Health Organization; PH, pulmonary hypertension; 

cfDNA, cell-free DNA; REVEAL, Registry to Evaluate Early And Long-term PAH Disease 

Management; IPAH, idiopathic PAH; CTD-PAH, connective tissue disease-associated PAH; 

PoHTN-PAH, portal hypertension-associated PAH.
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Figure 2. Concentrations of cell-free DNA (cfDNA) are elevated in pulmonary arterial 
hypertension (PAH) patients and correlate with REVEAL 2.0 risk scores in two separate patient 
cohorts.
Healthy control and PAH patient cfDNA concentrations are displayed as mean +/− SD of 

log10-transformed values. Patients were divided into three risk groups based on REVEAL 

2.0 score: low (≤ 6), medium (7–8), and high (≥ 9). In Cohort A (n=48), analysis of 

variance between the healthy control group and the three risk groups of PAH patients was 

significant (P=0.002) as were pairwise comparisons of high-risk PAH patients with healthy 

controls and low-risk patients (P=0.002 for both). Four patients in Cohort A died during 

follow-up (black data points). In Cohort B (n=161), analysis of variance across all 4 groups 

was also significant (P<0.0001). Pairwise comparisons identified significantly higher cfDNA 

concentrations in all three PAH risk groups compared with healthy controls (P<0.0001 

for all). cfDNA concentration was also significantly greater in medium (P=0.02) and 

high-risk PAH patients (P=0.0008) compared with low-risk patients. P-values for pairwise 

comparisons were adjusted for multiple comparisons. ** P<0.01; **** P<0.0001 for PAH 

risk group versus healthy controls. # P<0.05; ## P<0.01; ### P<0.001 for comparisons 

between PAH risk groups.
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Figure 3. Elevated cell-free DNA (cfDNA) concentrations are associated with lower transplant-
free survival in Cohort B pulmonary arterial hypertension (PAH) patients.
Kaplan-Meier analysis over a median (IQR) follow up time of 2.7 (1.0–5.2) years 

demonstrated significantly different transplant-free survival amongst cfDNA tertiles (log-

rank test: P=0.0001). Corresponding concentrations for each cfDNA tertile are as follows: ≤ 

28.99 ng/ml (blue line), 28.99 < cfDNA ≤ 61.12 ng/ml (red line), and > 61.12 ng/ml (green 

line). Patients were censored at the time of death or transplantation.

Brusca et al. Page 21

Circulation. Author manuscript; available in PMC 2023 October 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Receiver operating characteristic analyses of REVEAL 2.0 risk and REVEAL 2.0 risk 
with the addition of cell-free DNA (cfDNA) for predicting death or lung transplant in Cohort B.
After adjusting for both age and sex, the area under the curve (AUC) of receiver operating 

characteristics for REVEAL 2.0 risk categories (blue line) was similar to the performance 

of cfDNA tertiles (line not shown) in Cohort B (AUC of 0.72 versus 0.75; P=0.29). The 

predictive performance of REVEAL 2.0 risk classification significantly improved with the 

addition of cfDNA tertiles (red line), with the AUC increasing from 0.72 to 0.78 (P=0.02).
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Figure 5. Patients with pulmonary arterial hypertension (PAH) demonstrate a distinct and 
pathobiologically meaningful cell-free DNA (cfDNA) injury pattern.
A, Unsupervised clustering of absolute cfDNA concentrations from 11 different cell types 

in a subset of Cohort B PAH patients (n=96) and healthy controls (n=16; Purple ribbon). 

After bisulfite sequencing, cfDNA sequence reads were analyzed against a library of 

25 cell-specific DNA methylation signatures to deconvolve the cfDNA tissue of origin. 

The analysis was limited to the 11 cells or tissues that had quantifiable cfDNA present 

in the majority of patients. Those that were not substantially represented in either PAH 

patients or healthy controls included B cells, CD4 T cells, CD8 T cells, cortical neurons, 

thyroid, breast, alveolar epithelium, upper gastrointestinal tract, colon, pancreatic beta cells, 
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pancreatic acinar cells, pancreatic duct cells, prostate, and uterus/cervix. PAH patients were 

grouped into low (≤ 6, n=27; Green ribbon), medium (7–8, n=25; Yellow ribbon), and 

high-risk (≥ 9, n=44; Red ribbon) categories based on REVEAL 2.0 risk score. Each column 

represents an individual patient or healthy control and each row represents a specific cell or 

tissue type. Therefore, the intersection of each column and row represents an individual’s 

absolute cfDNA concentration from a specific cell or tissue type. cfDNA is represented in 

copies/mL of plasma and reported in log scale from lowest (blue) to highest (red) values. 

B, Cell-specific cfDNA concentrations are displayed as mean +/− SD of log10-transformed 

values. Patients were divided into three risk groups based on REVEAL 2.0 score: low (≤ 

6), medium (7–8), and high (≥ 9). Only the seven cell types that were significantly elevated 

in PAH patients compared with healthy controls are depicted (Bonferroni adjusted P<0.05 

for all). Pairwise comparisons between PAH patients and healthy controls are illustrated 

with asterisks (* P<0.05; ** P<0.01; *** P<0.001; **** P<0.0001). Pairwise comparisons 

between PAH patients of varying risk are illustrated with pound signs (# P<0.05; ## P<0.01). 

Erythrocyte progenitor cells, cardiac myocytes, and vascular endothelium differentiated 

between PAH patients of varying REVEAL 2.0 risk. All comparisons were corrected for 

multiple testing.
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Figure 6. Representative cell-free DNA (cfDNA) distributions by origin from a healthy control 
and pulmonary arterial hypertension (PAH) patients of low, medium, and high risk.
A stacked bar graph displays the proportion of cfDNA (in log10-transformed copies/mL) 

originating from specific cell or tissue types for a representative healthy control and 3 PAH 

patients of varying risk. Patients were grouped into low (≤ 6), medium (7–8), and high 

risk (≥ 9) categories based on REVEAL 2.0 risk score. Each cell or tissue is identified 

by a specific color, with the length of the stacked segment corresponding to the relative 

contribution of that source to the total concentration of cfDNA. For healthy control, low, 

medium, and high risk individuals, the other category consisted of 2, 1, 3, and 4 sources, 

respectively, that did not have quantifiable cfDNA present in the majority of patients.
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Table 1.

Demographic and Clinical Data

Variable Cohort A
(N=48)

Cohort B
(N=161)

Age, years 62 (47–71) 59 (49–71)

Female, n (%) 36 (75) 111 (69)

Body Mass Index, kg/m2 26 (23–31) 27 (22–31)
†

Etiology, n (%)

Idiopathic 16 (33) 64 (40)

Heritable 4 (8) 2 (1)

Drug/toxin-induced 3 (6) 4 (2)

Connective tissue disease 20 (42) 50 (31)

HIV infection ----- 3 (2)

Portal hypertension ----- 26 (16)

Congenital heart disease 5 (11) 9 (6)

PVOD/PCH ----- 3 (2)

Medications, n (%)

PDE5 inhibitors 31 (65) 64 (40)

Endothelin receptor antagonists 28 (58) 47 (29)

IV/SQ PGI2 7 (15) 26 (16)

Inhaled/PO PGI2 or PGI2 receptor agonist 17 (35) 6 (4)

Soluble guanylate cyclase stimulator 3 (6) 2 (1)

Calcium channel blockers 3 (6) 12 (7)

Treatment naïve 9 (19) 47 (29)

Comorbidities, n (%)

Hypertension 21 (44) 58 (36)

Obstructive sleep apnea 17 (35) 26 (16)

COPD 6 (13) 27 (17)

Interstitial lung disease 3 (6) 9 (6)

Cancer 8 (17) 15 (9)

Diabetes mellitus 7 (15) 21 (13)

REVEAL 2.0 6 (4–9) 7 (6–9)

REVEAL Lite 2 5 (4–6) 7 (5–8)

mPAP, mmHg 36 (25–44) 44 (34–52)

RAP, mmHg 5 (3–7)* 10 (7–13)

PAWP, mmHg 9 (6–12)* 8 (6–13)

PVR, WU 5 (3–8) 8 (5–10)

HR, bpm 71 (62–84)* 78 (67–90)

SBP, mmHg 130 (113–141)* 122 (112–136)

DLCO, % predicted 55 (42–72)* NR

6MWD, meters 333 (256–405)* 358 (158–466)
†

Circulation. Author manuscript; available in PMC 2023 October 04.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Brusca et al. Page 27

Variable Cohort A
(N=48)

Cohort B
(N=161)

NYHA class 2 (2–3)* 3 (2–3)
†

NT-proBNP, pg/ml 288 (78–763)* NR

BNP, pg/ml NR
145 (56–418)

†

Hospitalization within the past 6 months, n (%) 19 (40) NR

Continuous variables are displayed as median (interquartile range).

*
Indicates less than 48 values available: RAP=47; PAWP=47; HR=37; SBP=46; DLCO=46; 6MWD=45; NYHA=39; NT-proBNP=46

†
Indicates less than 161 values available: Body mass index=159; NYHA=160; 6MWD=136; BNP=158,

Abbreviations: PAH, pulmonary arterial hypertension; HIV, human immunodeficiency virus; PVOD/PCH, pulmonary veno-occlusive disease/
pulmonary capillary hemangiomatosis; PDE5, phosphodiesterase 5; PGI2, prostacyclin; COPD, chronic obstructive pulmonary disease; REVEAL, 

Registry to Evaluate Early and Long-Term PAH Disease Management; mPAP, mean pulmonary artery pressure; RAP, right atrial pressure; PAWP, 
pulmonary artery wedge pressure; PVR, pulmonary vascular resistance; WU, Wood units; bpm, beats per minute; DLCO, diffusing capacity of the 
lungs for carbon monoxide; NR, not recorded; 6MWD, six minute walk distance; NYHA, New York Heart Association; NT-proBNP, N-terminal 
pro brain-type natriuretic peptide; BNP, brain-type natriuretic peptide.
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Table 2.

PAH clinical variables according to cfDNA tertile in Cohort B

cfDNA Tertile

Low Tertile Middle Tertile High Tertile

Variable N Median (IQR) N Median (IQR) N Median (IQR) P-value**

Age 54 61 (52–71) 53 59 (48–73) 54 59 (48–71) 0.99

Body mass index 52 25.5 (21.6–30.2) 53 25.6 (22.0–31.1) 54 29.6 (24.5–32.6) 0.02

REVEAL 2.0 54 6 (4–7) 53 8 (7–9) 54 8 (6–9) <0.0001

REVEAL Lite 2 54 6 (4–7) 53 7 (6–8) 54 7 (6–8) 0.0004

mPAP (mmHg) 54 35 (26–50) 53 45 (36–52) 54 48 (42–58) 0.0001

RAP (mmHg) 54 9 (6–12) 53 9 (6–11) 54 11 (8–15) 0.007

PAWP (mmHg) 54 7 (5–11) 53 7 (5–12) 54 10 (7–16) 0.01

PVR (Wood units) 54 5.7 (3.2–8.9) 53 7.0 (4.9–11.1) 54 8.3 (6.0–10.2) 0.005

Cardiac output (L/min) 54 4.7 (4.0–5.7) 53 4.9 (3.3–6.2) 54 4.5 (3.7–5.5) 0.58

Heart rate (bpm) 54 76 (67–90) 53 83 (72–95) 54 80 (65–89) 0.12

SBP (mmHg) 54 119 (111–131) 53 122 (110–139) 54 125 (117–136) 0.31

6MWD (meters) 51 450 (269–488) 46 312 (152–413) 39 290 (152–439) 0.003

NYHA 54 2 (2–3) 53 3 (2–3) 53 3 (2–3) 0.09

BNP (pg/mL) 53 64 (23–191) 51 143 (62–465) 54 264 (112–734) <0.0001

hs-Troponin T (ng/L) 27 11.29 (6.65–17.90) 32 13.99 (10.41–20.78) 22 24.89 (13.35–38.18) 0.002

hs-CRP (mg/L) 29 2.5 (0.8–4.2) 33 6.5 (4.2–15.4) 23 7.3 (4.1–36.0) <0.0001

Creatinine (mg/dL) 48 0.91 (0.73–1.06) 51 0.93 (0.80–1.21) 47 0.94 (0.79–1.16) 0.36

*
Subjects were divided into cfDNA tertiles as Low (cfDNA ≤ 28.99 ng/mL), Middle (28.99 < cfDNA ≤ 61.12 ng/mL) or High Tertile (cfDNA > 

61.12 ng/mL)

**
For each variable, differences across cfDNA tertiles were assessed by Kruskal-Wallis test.

Abbreviations: PAH, pulmonary arterial hypertension; cfDNA, cell-free DNA; REVEAL, Registry to Evaluate Early and Long-Term PAH Disease 
Management; mPAP, mean pulmonary artery pressure; RAP, right atrial pressure; PAWP, pulmonary artery wedge pressure; PVR, pulmonary 
vascular resistance; SBP, systolic blood pressure; 6MWD, six-minute walk distance; NYHA, New York Heart Association; BNP, brain-type 
natriuretic peptide; hs, high-sensitivity; CRP, C-reactive protein.
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