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Abstract

The persistence of the global COVID-19 pandemic caused by the SARS-CoV-2 virus has 

continued to emphasize the need for point-of-care (POC) diagnostic tests for viral diagnosis. The 

most widely used tests, lateral flow assays used in rapid antigen tests, and reverse-transcriptase 

real-time polymerase chain reaction (RT-PCR), have been instrumental in mitigating the impact 

of new waves of the pandemic, but fail to provide both sensitive and rapid readout to patients. 

Here, we present a portable lens-free imaging system coupled with a particle agglutination assay 

as a novel biosensor for SARS-CoV-2. This sensor images and quantifies individual microbeads 

undergoing agglutination through a combination of computational imaging and deep learning 

as a way to detect levels of SARS-CoV-2 in a complex sample. SARS-CoV-2 pseudovirus in 

solution is incubated with acetyl cholinesterase 2 (ACE2)-functionalized microbeads then loaded 

into an inexpensive imaging chip. The sample is imaged in a portable in-line lens-free holographic 

microscope and an image is reconstructed from a pixel superresolved hologram. Images are 

analyzed by a deep-learning algorithm that distinguishes microbead agglutination from cell debris 

and viral particle aggregates, and agglutination is quantified based on the network output. We 

propose an assay procedure using two images which results in the accurate determination of viral 

concentrations greater than the limit of detection (LOD) of 1.27·103 copies·mL−1, with a tested 

dynamic range of 3 orders of magnitude, without yet reaching the upper limit. This biosensor can 

be used for fast SARS-CoV-2 diagnosis in low-resource POC settings and has the potential to 

mitigate the spread of future waves of the pandemic.
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1 Introduction

As the pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-

CoV-2) persists and the virus continues to mutate to evade the human immune response, 

there continues to be a need for powerful point-of-care (POC) tests to diagnose infection 

and limit the impact of new viral mutations.1 Currently, the main biosensors used in 

clinical settings are lateral flow assays (LFAs), used in rapid antigen tests, and the gold 

standard technique of reverse-transcriptase real-time polymerase chain reaction (RT-PCR) 

amplification, used to detect viral genetic material.2–6 LFAs for SARS-CoV-2 can be 

implemented in POC settings or as take-home tests and give a readout of results within 

minutes. However, their drawback is a relatively high limit of detection (LOD), as there 

needs to be a lot of viral antigen present to receive a positive test. Widely used LFAs for 

SARS-CoV-2 have a LOD of 3·106 copies·mL−1, which contributes to a large proportion of 

tests returning false negatives and can contribute to the spread of SARS-CoV-2 as infected 

individuals assume they are not contagious and fail to limit exposing others accordingly.5–7 

RT-PCR by contrast has a very low LOD, from 560 copies·mL−1 to 1,065 copies·mL−1 

depending on the individual test.8 This enables it to diagnose SARS-CoV-2 infection even 

before patients become symptomatic. However, this sensitivity comes at a cost of a slow 

turnaround time. RT-PCR tests typically take days to come back with results, and it requires 

specialized equipment, training, and personnel to perform.9,10 A turnaround time of days can 

result in patients spreading the virus before receiving results.11,12

To address these issues, several groups have been experimenting with alternative POC 

biosensors. One promising approach is an agglutination assay.13–18 It is performed by 

coating latex or polystyrene microspheres with a functional capture molecule, typically 

an antibody, and mixing these microbeads with the test sample. In the presence of the 

target biomolecule or pathogen, beads will bind together, aggregating and resulting in 

bead precipitation from suspension. In conventional agglutination assays, agglutination is 

seen qualitatively, not quantitatively, and typically requires the target to be cultured or 

amplified in some way to get enough agglutination to be visible. Agglutination assays are 

commonly used in food safety applications, as well as in the diagnosis of infectious diseases, 

and, barring the need for complex analyte amplification techniques, can be used in POC 

settings.19,20
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Recently, lens-free holographic microscopy (LFHM) has been combined with agglutination 

assays that make these tests more sensitive, quantitative, and easier to perform in POC 

settings than conventional qualitative agglutination assays.21–23 In these in-line LFHM 

systems, a coherent light source is used to generate an interference pattern from a sample 

placed between the source and the sensor and an image of the sample is computationally 

reconstructed based on the interference pattern.24,25 This enables LFHM to maintain a wide 

field of view (FOV), essentially the size of the image sensor itself, while achieving a high 

resolution.26,27 To achieve the sub-micron resolution necessary to resolve microbeads for 

agglutination assays, pixel superresolution LFHM designs and corresponding algorithms 

have been utilized.28–30 This resolution is necessary to detect subtle changes in agglutination 

of microbeads, and has been used to achieve nanogram per milliliter LODs from these 

devices.21

Here, we show a portable LFHM-agglutniation assay sensor based on our previous 

benchtop quantitative large-area binding (QLAB) assay.21 Furthermore, our new sensor 

has been optimized for SARS-CoV-2 pseudovirus sensing and is coupled with a deep-

learning algorithm that can distinguish beads in the sample from cell debris and viral 

particle aggregates in order to aid in computational speed and accuracy of agglutination 

quantification. This sensor can resolve and track 2 μm diameter latex microspheres 

undergoing Brownian motion in solution to detect subtle agglutination changes in a sample 

of over 10,000 beads. Compared to similar biosensors,23 the one we have developed here 

utilizes a unique quantification method for individually resolved beads in clusters, is robust 

in handling samples polluted with unpredictable debris, exhibits a large dynamic range, and 

is accurate in quantifying analyte concentration. The biosensor is able to provide a POC 

readout of SARS-CoV-2 pseudovirus concentration within 3 hrs of sample collection and 

has a LOD within an order of magnitude of RT-PCR tests.

2 Materials and Methods

2.1 SARS-CoV-2 Pseudovirus

The pseudovirus used for these experiments is a pseudotype HIV-1-derived lentiviral particle 

bearing SARS-CoV-2 spike protein. The particle has a lentiviral backbone and expresses 

luciferase as a reporter. Viral particles were produced in HEK293T cells engineered to 

express ACE2, the SARS-CoV-2 receptor, as previously described.31–33 Cells were lysed 

using the Bright-Glo Luciferase Assay System (Cat: E2610, Promega, Madison, WI, 

USA). Lysate was transfered to 96-well Costar flat-bottom luminometer plates where 

relative luciferase units (RLUs) were detected using Cytation 5 Cell Imaging Multi-Mode 

Reader (BioTek, Winooski, VT, USA). Luciferase luminescence scales linearly with 

the concentration of pseudovirus copies in a given sample, and enabled calculation of 

pseudoviral copies·mL−1.32 For these experiments, the initial pseudoviral concentration was 

determined to be 3·106 copies·mL−1.

Vesicular stomatitis virus G (VSV-G), a lentivirus similar to the SARS-CoV-2 pseudovirus, 

but which does not bear the ACE2 binding spike, was used as a control to confirm assay 

specificity. VSV-G concentrations were not separately quantified using luminescence, but 
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the virus was produced similarly to the SARS-CoV-2 pseudovirus, and a wide range of 

dilution concentrations were tested to confirm a lack of agglutination.

2.2 Portable Lens-free Holographic Microscope

The LFHM system is based on an in-line imaging method that has been previously described 

and termed the Quantitative Large-Area Binding (QLAB) sensor,21 but now fully contained 

in a light-weight portable housing weighing less than 800 g (Fig. 1). Briefly, the light source 

of the system consists of a 15 green light-emitting diode (LED) array positioned 15 cm 

above the sample. LEDs illuminate one at a time for 120 ms each, with a delay of 15 ms 

between each LED, resulting in 15 sub-pixel shifted images captured over 2.025 seconds. 

LFHM spatial coherence is provided by 180 μm diameter hole punches placed just below 

each LED, and temporal coherence is provided by a bandpass filter with central wavelength 

532 nm and bandwidth 3 nm. At the base of the biosensor is a complementary metal-oxide-

semiconductor (CMOS) monochromatic image sensor (ON Semiconductor AR1335) with a 

pixel width of 1.1 μm.

The liquid sample is loaded into a large-area (65 mm2) microfludic chamber, or imaging 

chip, constructed out of 2 layers of clear, laser-cut polycarbonate and a single No.1 

glass coverslip constructed in advance of performing the assay (Figure S1†). The center 

layer forms the boundary and thickness of the open chamber and is cut from a 125 μm 

polycarbonate sheet. Inlet and outlet ports are cut from a 250 μm thick upper polycarbonate 

sheet. The coverslip serves as the bottom of the chip and is placed closest to the image 

sensor. To ensure optical clarity of the coverslip and to remove dust and other particles, 

coverslips were treated using a piranha solution. For this procedure, 30% H2O2 was mixed 

with sulfuric acid (H2SO4) in a 1:3 ratio, then coverslips were placed into this piranha 

solution for 1 hr. Treated coverslips were washed with Milli-Q ultrapure water before being 

dried and assembled into the finished imaging chip. All layers were adhered to each other 

using UV-curable adhesive (Norland Products 7230B).

For POC use, a custom housing was designed and then printed in a FlashForge Creator 3 

3D printer with black polylactic acid (PLA) (Fig. 1a). The housing was designed to optimize 

deployment in a portable setting by blocking all ambient light from the image sensor for 

maximum optical signal-to-noise ratio. The entire top portion of the housing is hinged, 

allowing the device to be opened for easy placement of the microfluidic chip over the image 

sensor, and then closed again for imaging. The footprint of the device is only 15 × 15 cm, 

and images were captured using this setup paired with a laptop computer outside of the 

environment in which the LFHM was initially tested and constructed. Figure S2† shows 

images of the fully assembled LFHM components inside the housing. The total cost of this 

prototype device is $1,382, with the majority of the cost allocated to a development board 

attached to the image sensor. Future iterations of this device would not include this board, 

reducing the cost to $517. The cost could further be reduced to $267 by using a different 

image sensor, such as a Sony IMX519. The imaging chips can be fabricated for as little as 

$0.11 each.

†Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. 
See DOI: 00.0000/00000000.
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2.3 Particle preparation and agglutination assay

The protocol for performing the agglutination assay is depicted in Figure 2. Polystyrene 

microspheres 2 μm in diameter and conjugated with streptavidin (Nanocs PS2u-SV-1) 

were diluted to a concentration of 0.005% or 0.01% weight/volume (w/v) in 1× phosphate-

buffered saline (PBS). Solid biotinylated acetylcholinesterase 2 (ACE2) (Sino Biological 

Inc. 10108-H08H-B) was added to the microbead suspension to a final concentration of 

5.0 or 10.0 μg·mL−1 of ACE2. This concentration corresponds to approximately 50,000 

molecules of ACE2 per microsphere. Microspheres and biotinylated ACE2 were incubated 

for 2 hrs at 25°C on a shaker at 1200 rpm. Functionalized beads were stored at 4°C before 

use.

Extracted pseudovirus or VSV-G was filtered using a syringe filter with a 0.22 μm pore size 

to remove larger cell debris from the sample. The filtered virus was diluted in Dulbecco’s 

Modified Eagle Medium (DMEM) in half-log dilutions ranging from 3·106 copies·mL−1 

to 3·102 copies·mL−1, with an extra negative control of pure DMEM. Functionalized 

microbeads were mixed 1:1 with each pseudovirus dilution for triplicate samples per 

dilution, creating 30 samples with a microbead concentration of 0.0025% or 0.005% 

and pseudovirus concentration ranging from 1.5·106 copies·mL−1 to 1.5·102 copies·mL−1, 

including the 3 negative controls. In this procedure, only 40 μL of viral sample is required 

per test. A single microbead sample was reserved in pure PBS for comparison. Samples 

were incubated for 2 hrs at 25°C on a shaker at 1200 rpm and then 25 μL were micropipetted 

into the imaging chip. The chamber was sealed using UV-curable adhesive, allowed to 

sediment for 15 minutes to ensure particles were at the bottom plane of the chip, and placed 

inside our portable LFHM for on-chip imaging of the completed agglutination reaction. 

Sealing the chip is only necessary for preventing evaporation when storing the chip to make 

repeated measurements at later times.

2.4 Image Processing and Analysis

To process the low-resolution (LR), sub-pixel shifted holograms captured of the SARS-

CoV-2 agglutination assay, the following workflow was employed. LR holograms are first 

divided into 5 × 7 partially overlapping patches. A PSR technique that has been optimized 

for small targets was used to synthesize a high resolution (HR) hologram from the LR 

holograms for each patch in parallel.28 HR hologram patches are then back-propagated to 

the sample plane. Cardinal-neighbor regularization (weight = 200) and twin-image noise 

suppression were used to improve the signal-to-noise ratio of the back-propagated HR 

reconstructions. Then, the reconstructed HR patches are stitched back together to create 

a single image of the full FOV that is used for assay analysis. This image processing is 

performed using the University of Arizona’s high-performance computing clusters, which 

are accessed remotely on a portable takes on average 20 minutes per image. Performing 

the data processing on the laptop alone without access to a cluster takes approximately 

42 minutes. Similar holographic reconstruction tasks using parallel processing on a 

graphical processing unit (GPU) have demonstrated approximately and order of magnitude 

improvement in processing time, and so processing time could potentially be reduced to 

just a few minutes.34–36 Figure 3 depicts LR holograms and their fully processed HR 

reconstructions.
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Two methods of feature analysis were used to quantify the agglutination assay from 

these HR reconstructions. In one method, image features (monomers and clusters) were 

isolated by applying a binary threshold to the reconstructed HR image, and then finding 

connected features. Feature area and eccentricity were calculated and a boundary in this 

parameter space was automatically determined to separate monomer features from clusters 

as previously described.21 Cluster size was then extrapolated based on the given feature’s 

area. Intensity (brightness) and size (area) thresholds were selected to include as many true 

beads as possible, while excluding non-bead features. To further optimize thresholding, a 

range of intensity and size thresholds were scanned through and the combination of values 

that resulted in calculated monomer and dimer areas most similar to expected areas were 

selected. Bound ratio (BR) was calculated with the following equation based on the results 

of the thresholding analysis.

BR = Number of Beads in Clusters
Number of Beads in FOV (1)

The LOD for the overall assay was determined by calculating the mean and standard 

deviation of the BR for the negative control sample and using Equation 2, which combines 

the mean and standard of deviation of the negative control data points, to determine 

the BRLOD cutoff. The range of SARS-CoV-2 concentrations with a BR above this 

cutoff determine the dynamic range of this assay, while the LOD is given by the lowest 

concentration where BR ≥ BRLOD. Similarly, any BR that falls below the lower limit of 

detection cutoff, BRLLOD (Eq. 3), is also within the dynamic range of this assay.

BRLOD = μControl + 3σControl (2)

BRLLOD = μControl − 3σControl (3)

2.5 Residual Convolutional Neural Network

The second method of image analysis was implementation of a deep convolutional neural 

network (CNN) with residual connections to classify image features (Fig. 4). This network 

was designed to account for the complex imaging conditions present in the SARS-CoV-2 

agglutination assay that contains cell debris, viral particles, and other contaminants. To 

accomplish this, a 4-block deep CNN with residual connections was designed with the 

MATLAB Deep Learning Toolbox. This network updates convolutional filters, weights, and 

biases according to the built-in stochastic gradient descent with momentum optimizer, and 

employs L2 regularization to prevent overfitting. Classification loss is calculated using the 

following equation and used to update values in the network:

Loss = − 1
N ∑

n = 1

N
∑
i = 1

K
witniln yni , (4)
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where N is the number of samples, K is the number of classes, wi is the weight for class i, 
tni is the indicator that the nth sample belongs to the ith class, and yni is probability that the 

network associates the nth input with class i.

Training of this network was accomplished by using a single intensity threshold to identify 

features of interest in several agglutination assay images and cropping a subset (< 1% of 

the total features in any given image) of these features into small images 60 × 60 pixels in 

size. These 1,410 unique images were hand-classified into 5 categories: features consisting 

of 1, 2, 3, or 4 microspheres, as well as a fifth category for cell debris or unknown features 

that should not contribute to the calculation of BR. We disregard cluster sizes greater than 

4 because their size cannot be measured as accurately and we are optimizing our sensor 

for very low concentrations of SARS-CoV-2, where very large cluster sizes are rare. To 

augment the training dataset, the cropped and hand-classified feature images were rotated 

and mirrored, to yield a total of 11,280 images. Of these images, 75% were used for training 

and 25% were reserved for validation. Training data was fed into the network in a random 

order each epoch to ensure generalizability of the training. Validation was performed every 

2 epochs. A 2-core Intel® Xeon® Gold 5218 2.29 GHz processor was used to train the 

network. To prevent overtraining, training was halted after the classification accuracy of the 

validation image set stopped improving.

3 Results and Discussion

3.1 Network training outcomes

CNN training took 1,980 iterations or 30 epochs (Fig. 5a–b). Each iteration consisted of 

a batch of 128 training images. After 30 epochs, validation accuracy ceased improving 

so the training was halted to prevent overtraining (training accuracy and loss diverging 

from validation accuracy and loss). The final validation accuracy of the trained CNN was 

82.06%. Due to the complexity of appearance of the debris in the training images, varied 

bead configurations for any given cluster size (e.g. linearly arranged, beads touching all 

other beads in the cluster, etc.), and slight variations in focus of the individual features, 

the image data was highly heterogeneous. Because of this heterogeneity, CNN validation 

accuracy could not be further improved without sacrificing generalizability to the broader 

intended dataset. To account for this, the CNN was designed to place features with low 

maximum softmax probabilities or activations, or ones that could be classified incorrectly, 

into smaller feature size categories, rather than larger ones (Fig. 5c). The net effect of this 

“rounding down” network behavior is the undervaluation of BR, as cluster size tends to be 

undercounted rather than overcounted. Thus, even though validation accuracy never reached 

100%, we are confident that the network is not artificially inflating the BR for any samples 

and that our calculation of LOD for our assay is therefore conservative. Furthermore, since 

this behavior is consistent among all samples tested, we do not suspect that the validation 

error had a significant impact on our assay. Precision and recall measurements for each 

classification category are shown in Figure 5, with averages across all categories of 83.21% 

and 82.04% respectively.

To ensure the network was not overfit to augmented data, a test data set of 1,200 images 

without augmentation was analyzed using the CNN (Table 1). Unlike the training and 
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validations sets, the test data set did not have an equal number of images in each category, 

and instead the category distribution was representative of the distribution seen in real 

images. The accuracy for this real-world application of the network was 88.58%. Since the 

images of this test set consist predominately of single beads (874 out of the 1,200), this 

high accuracy is consistent with the accuracy values shown in Fig. 5c. To better compare 

this result to the training and validation accuracy, images in test data set were removed and 

features of size 3 and 4 taken from other sample images were added such that the categories 

were balanced and large enough to provide an adequate comparison (150 images total). The 

resulting accuracy of 81.33% is within a percent of the validation accuracy and definitively 

confirms that this network is not overfit and performs well for real images.

The network also exhibited higher maximum softmax probability values for correctly 

identified features than for incorrectly identified features (Table 2). In this case, maximum 

softmax probability values represent the relative activation of the network output layer 

neurons and give an indication of the “certainty” the network has for a given prediction, 

with high values indicative of a high degree of certainty that the classification is indeed 

accurate.37 This network behavior was unexpected, but unsurprising as the network training 

is designed to minimize training loss (a more complex measure of network error that 

includes all softmax probabilities), rather than maximizing accuracy. Low maximum 

softmax probability for incorrectly classified images represents lower loss than high 

maximum softmax probability for incorrect classifications. While softmax probabilities 

provide some indication of certainty, and can be used to derive useful statistics, they should 

not be used as direct measures of statistical confidence.37

The training time for this network was 175 s. Feature classification using the trained CNN 

takes 14.11 s for an average full field of view sample, which is 2.74× faster than the previous 

thresholding-based classification, which takes 38.65 s for an average full image.

3.2 Pseudovirus sensing

The SARS-CoV-2 agglutination assay dilutions were imaged and analyzed following the 

procedures described in Section 2. The optimized thresholding analysis and CNN-based 

results are shown in Figure 6a and b, respectively. The BRLOD cutoff for thresholding 

analysis was calculated to be 34.13%. According to this calculation, the lowest sample 

concentration in Figure 6a whose mean minus one standard error of the mean (SEM) 

falls above the LOD cutoff corresponds to 1.5·102 copies·mL−1. However, for an imaging 

chamber with 25 μL of sample, one would expect < 4 viral particles in the chamber. 

Therefore, this point is very unlikely to be a true LOD and only falls above the LOD 

cutoff due to the high variability in the thresholding analysis process. Additionally, the 

VSV-G specificity control shows this same high variability as its concentration changes, 

even though the BR for this control should remain constant at or near the BR of the 

negative SARS-CoV-2 pseudovirus control at 31.70%. Overall, thresholding analysis had a 

very high average standard of deviation for all non-control points of 10.66%. This makes 

determination of a true LOD from these data impossible, as there appears to be no clear 

trend as either virus concentration increases. For this dataset, thresholding analysis fails as it 
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is not robust enough to account for the heterogeneous nature of a sample with cell debris and 

higher levels of non-specific binding.

For CNN-based analysis (Fig. 6b), the BRLOD cutoff was calculated to be 30.33%. The 

mean BR corresponding to 1.5·103 copies·mL−1 is the first to fall above the LOD cutoff. An 

empirical curve of best fit, plotted in Figure 6b, was determined according to the following 

equation:

BR(x) = Ae−x/10b − Ce−x/10d
(5)

The functional form of this empirical curve is useful for inferring the analyte concentration 

of an unknown sample from its BR, as described below, but is not intended as a physical 

model of the binding process, which is a more complex relationship.21 The coefficients 

and 95% confidence intervals are: A = 46.86±4.11, b = 5.982±0.125, C = 20.60±4.86, d 
= 3.753±0.328 (R2 = 0.974). Since measurements of BR are compared to this curve, the 

LOD can be determined by where the curve first exceeds the BRLOD, which occurs at a 

concentration of 1.27·103 copies·mL−1.

Unlike the thresholding analysis (Fig. 6a), the CNN-based analysis (Fig. 6b) exhibits a 

clear peak in BR, where higher viral concentration ultimately leads to bead saturation and 

therefore reduced binding, which was observed previously in agglutination assays for other 

proteins.21 As a result, it is not possible to determine the exact concentration of virus in a 

sample from a single BR measurement when the BR > 19.40%. Nonetheless, a BR > BRLOD 

= 30.33% would be an unambiguous positive result, which is most relevant for rapid COVID 

diagnosis. The CNN resolves the variability seen in the VSV-G specificity control and those 

points are seen to lie within the LOD cutoffs, correctly interpreted as a negative result.

Interestingly, the BR for the highest concentrations of SARS-CoV-2 fell well below the 

BR for the negative control samples that still contained DMEM (black points at zero 

concentration in Fig. 6b). This can be explained by DMEM causing non-specific binding.13 

For comparison, negative control samples of PBS without DMEM (green point at zero 

concentration in Fig. 6b), exhibit a significantly lower BR than the negative control samples 

with DMEM. At very high viral concentrations, the beads in the sample become saturated 

with viral particles before the beads can collide with one another. In this way, the viral 

particles effectively act as blockers for both specific and non-specific bead-to-bead binding. 

Hence, for high viral concentrations, the BR trends toward the BR found in PBS in the 

absence of DMEM. This behavior indicates that the use of fully saturated beads as a 

control for non-specific binding23 would be inappropriate for this type of agglutination assay 

because it fails to account for non-specific binding that occurs as a result of bead-to-bead 

interactions in different media. Additionally, this result means that our assay can distinguish 

between low levels and very high levels of virus by defining a lower LOD cutoff as 

specified in Eq. 3. For the CNN-based assay with 0.0025% bead concentration, BRLLOD = 

19.40%, which corresponds to viral concentrations of 8.45·105 copies·mL−1 and greater on 

the best-fit curve.
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Overall, compared to traditional image processing based on thresholding, CNN-based 

analysis enables successful and robust quantification of BR from complex pseudovirus 

samples, and extends the assay’s dynamic range by enabling sensing of higher pseudovirus 

concentrations whose BR falls below BRLLOD. Figure 6c shows a selection of features 

that were incorrectly classified by thresholding, but correctly classified by the CNN. 

Unfortunately, there is still a blind spot between 1.5·105 copies·mL−1 and 1.5·106 

copies·mL−1, where a false negative result would occur since BRLLOD < BR < BRLOD 

for these concentrations.

One method to reduce this blind spot and infer specific viral concentrations from BR 
measurements throughout the dynamic range is to perform a second BR measurement on 

the same original sample, but with a higher bead concentration. Our previous work with 

agglutination assay-based sensing has shown that increasing bead concentration shifts the 

binding curve from left to right.21 Here, we performed this second measurement on an 

unfiltered pseudovirus sample with a 0.005% bead concentration instead of 0.0025% (Fig. 

7a). The higher negative control BR can be explained by a higher number of bead-bead 

interactions in the higher bead concentration, resulting in more non-specific binding. Since 

the CNN analyzes small images of individual features, the network performance was not 

impacted by a higher bead concentration or a lack of pseudovirus filtration because those 

only increased the number of features classified without changing their appearance. The 

only effect an unfiltered sample had was a slight increase in average standard deviation of 

non-control BR measurements: 4.45% compared to 3.89% for filtered sample at a lower 

bead concentration (representative images shown in Fig.S3†). A curve was fitted using Eq. 5 

with the following best-fit coefficients: A = 59.79±4.00, b = 6.429±0.132, C = 20.88±4.60, 

d = 4.077±0.301 (R2 = 0.962). This leads to a LOD of 4.81·103 copies·mL−1, were this 

measurement to be used in isolation.

By combining the binding results from the two bead concentrations, the exact viral 

concentration of almost any given sample (above the LOD) can be inferred due to the 

relative shift in binding curves for the two concentrations (Fig. 7b). To incorporate this 

into the assay workflow, the procedure depicted in Fig. 7c was performed. For example, a 

BR of 35% using a single 0.0025% bead concentration assay would yield 2 possible viral 

concentrations of 3.20·103 copies·mL−1 or 2.80·105 copies·mL−1. However, when combined 

with a BR of 54% from the 0.005% bead concentration assay, the true viral concentration of 

2.80·105 copies·mL−1 would be selected. The outcome of this process for all mean points is 

illustrated in Fig. 7d (R2 = 0.993 for values within the assay’s dynamic range). The effect 

of this extra step on assay time would only be an additional 20 min for image processing, 

as the incubation and imaging could be done for both samples concurrently while the 

additional final calculation step occurs in a matter of 1–2 seconds, resulting in a total assay 

time of less than 3 hrs. Although this procedure is successful in inferring concentration for 

most of the experiments, a small blind spot remains, corresponding to where both best-fit 

curves fall between the BRLOD and BRLLOD cutoffs at concentrations greater than the 

LOD: 7.26·105 copies·mL−1 to 8.45·105 copies·mL−1. We expect that this approach could 

completely remove the blind spot if an even higher bead concentration were used for the 

second measurement.
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A second alternate method of performing this assay, which completely resolves any blind 

spot using only one binding curve, is described in Figure 7e–f. By diluting the original 

sample by 1:10 and performing the agglutination assay on this dilution as well as the initial 

sample, both using the same bead concentration, we receive 2 points along the binding 

curve that can be used to determine which side of the peak the points correspond to. While 

this gives a slightly less accurate measurement of the true concentration (R2 = 0.989 for 

values within the assay’s dynamic range) and adds an extra dilution step over the two-bead 

concentration method, it nevertheless shows that the blind spot observed in this assay can be 

fully resolved through at most one additional measurement.

4 Conclusions

Here, we have shown a portable, LFHM biosensor capable of detecting SARS-CoV-2 

pseudovirus concentrations at least as low as 1,270 copies·mL−1 within 3 hours, using only 

80 μL of viral sample per test. This LOD is within an order of magnitude of widely used RT-

PCR tests for SARS-CoV-2 and greatly improves upon the LOD of 3·106 copies·mL−1 for 

SARS-CoV-2 LFAs. Additionally, we have developed a deep-learning based categorization 

method that can accommodate heterogeneous solutions by distinguishing cell debris and 

other non-bead particles from microbead clusters, improving on traditional algorithms in 

speed, accuracy, and versatility. We also show that the choice of negative control beads (fully 

saturated vs. unsaturated) for high-sensitivity agglutination assays is important by showing 

that fully saturated beads fail to take into account non-specific binding that occurs as a 

result of exposure to a different liquid medium, potentially leading to a miscalculation of 

LOD. Finally, we showed two methods by which two measurements of BR can be used 

to compensate for the blind spots of a single individual assay and accurately determine 

the exact viral load of the sample across a dynamic range of 3 orders of magnitude in 

concentration. Future work will include reducing sample incubation time to enable more 

effective POC deployment, developing additional machine learning algorithms to assist with 

computational analysis, and further testing of the proposed assay to ensure these results are 

consistent when this assay is applied with patient samples.
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Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

This work utilized High Performance Computing (HPC) resources supported by the University of Arizona TRIF, 
UITS, and Research, Innovation, and Impact (RII) and maintained by the UArizona Research Technologies 
department. Research reported in this publication was supported by the National Institute of Aging of the National 
Institutes of Health under award number T32AG061897. Partial support was also provided by National Science 
Foundation grant number ECCS-2114275.

Notes and references

1. Desai S, Rashmi S, Rane A, Dharavath B, Sawant A and Dutt A, Briefings in Bioinformatics, 2021, 
22, 1065–1075. [PubMed: 33479725] 

2. Vandenberg O, Martiny D, Rochas O, van Belkum A and Kozlakidis Z, Nat Rev Microbiol, 2021, 
19, 171–183. [PubMed: 33057203] 

Potter et al. Page 11

Lab Chip. Author manuscript; available in PMC 2023 September 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Böger B, Fachi MM, Vilhena RO, Cobre AF, Tonin FS and Pontarolo R, American Journal of 
Infection Control, 2021, 49, 21–29. [PubMed: 32659413] 

4. Sethuraman N, Jeremiah SS and Ryo A, JAMA, 2020, 323, 2249. [PubMed: 32374370] 

5. Peto T and O. behalf of the UK COVID-19 Lateral Flow Oversight Team, EClinicalMedicine, 2021, 
36, 100924. [PubMed: 34101770] 

6. Grant BD, Anderson CE, Williford JR, Alonzo LF, Glukhova VA, Boyle DS, Weigl BH and Nichols 
KP, Anal. Chem, 2020, 92, 11305–11309. [PubMed: 32605363] 

7. Pickering S, Batra R, Merrick B, Snell LB, Nebbia G, Douthwaite S, Reid F, Patel A, Kia Ik MT, 
Patel B, Charalampous T, Alcolea-Medina A, Lista MJ, Cliff PR, Cunningham E, Mullen J, Doores 
KJ, Edgeworth JD, Malim MH, Neil SJD and Galão RP, The Lancet Microbe, 2021, 2, e461–e471. 
[PubMed: 34226893] 

8. Chan JF-W, Yip CC-Y, To KK-W, Tang TH-C, Wong SC-Y, Leung K-H, Fung AY-F, Ng AC-K, Zou 
Z, Tsoi H-W, Choi GK-Y, Tam AR, Cheng VC-C, Chan K-H, Tsang OT-Y and Yuen K-Y, J Clin 
Microbiol, 2020, 58, e00310–20. [PubMed: 32132196] 

9. Heid CA, Stevens J, Livak KJ and Williams PM, Genome Res, 1996, 6, 986–994. [PubMed: 
8908518] 

10. Eftekhari A, Alipour M, Chodari L, Maleki Dizaj S, Ardalan M, Samiei M, Sharifi S, Zununi 
Vahed S, Huseynova I, Khalilov R, Ahmadian E and Cucchiarini M, Microorganisms, 2021, 9, 
232. [PubMed: 33499379] 

11. Kochańczyk M, Grabowski F and Lipniacki T, Dynamics of COVID-19 pandemic at constant and 
time-dependent contact rates, Epidemiology preprint, 2020.

12. Chen L, Wang G, Long X, Hou H, Wei J, Cao Y, Tan J, Liu W, Huang L, Meng F, Huang L, Wang 
N, Zhao J, Huang G, Sun Z, Wang W and Zhou J, The Journal of Molecular Diagnostics, 2021, 23, 
10–18. [PubMed: 33122141] 

13. Molina-Bolívar JA and Galisteo-González F, Journal of Macromolecular Science, Part C: Polymer 
Reviews, 2005, 45, 59–98.

14. Marra CM, Maxwell CL, Dunaway SB, Sahi SK and Tantalo LC, J Clin Microbiol, 2017, 55, 
1865–1870. [PubMed: 28381602] 

15. Dominic RS, Prashanth HV, Shenoy S and Baliga S, J Lab Physicians, 2009, 1, 067–068.

16. De la fuente L, Anda P, Rodriguez I, Hechemy KE, Raoult D and Casal J, Journal of Medical 
Microbiology, 1989, 28, 69–72. [PubMed: 2643707] 

17. Friedman CA, Wender DF and Rawson JE, Pediatrics, 1984, 73, 27–30. [PubMed: 6361678] 

18. Xu X, Jin M, Yu Z, Li H, Qiu D, Tan Y and Chen H, J Clin Microbiol, 2005, 43, 1953–1955. 
[PubMed: 15815030] 

19. You DJ, Geshell KJ and Yoon J-Y, Biosensors and Bioelectronics, 2011, 28, 399–406. [PubMed: 
21840701] 

20. Fronczek CF, You DJ and Yoon J-Y, Biosensors and Bioelectronics, 2013, 40, 342–349. [PubMed: 
22939509] 

21. Xiong Z, Potter CJ and McLeod E, ACS Sens, 2021, 6, 1208–1217. [PubMed: 33587611] 

22. Wu Y, Ray A, Wei Q, Feizi A, Tong X, Chen E, Luo Y and Ozcan A, ACS Photonics, 2019, 6, 
294–301.

23. Luo Y, Joung H-A, Esparza S, Rao J, Garner O and Ozcan A, Lab Chip, 2021, 21, 3550–3558. 
[PubMed: 34292287] 

24. McLeod E and Ozcan A, Rep. Prog. Phys, 2016, 79, 076001. [PubMed: 27214407] 

25. McLeod E, Dincer TU, Veli M, Ertas YN, Nguyen C, Luo W, Greenbaum A, Feizi A and Ozcan A, 
ACS Nano, 2015, 9, 3265–3273. [PubMed: 25688665] 

26. Ozcan A and McLeod E, Annu. Rev. Biomed. Eng, 2016, 18, 77–102. [PubMed: 27420569] 

27. Baker M, Liu W and McLeod E, Opt. Express, 2021, 29, 22761. [PubMed: 34266032] 

28. Xiong Z, Melzer JE, Garan J and McLeod E, Opt. Express, 2018, 26, 25676. [PubMed: 30469666] 

29. Bishara W, Su T-W, Coskun AF and Ozcan A, Opt. Express, 2010, 18, 11181. [PubMed: 
20588977] 

Potter et al. Page 12

Lab Chip. Author manuscript; available in PMC 2023 September 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



30. Bishara W, Sikora U, Mudanyali O, Su T-W, Yaglidere O, Luckhart S and Ozcan A, Lab Chip, 
2011, 11, 1276. [PubMed: 21365087] 

31. Samavati L and Uhal BD, Front. Cell. Infect. Microbiol, 2020, 10, 317. [PubMed: 32582574] 

32. Crawford KHD, Eguia R, Dingens AS, Loes AN, Malone KD, Wolf CR, Chu HY, Tortorici MA, 
Veesler D, Murphy M, Pettie D, King NP, Balazs AB and Bloom JD, Viruses, 2020, 12, 513.

33. Hu Y, Meng X, Zhang F, Xiang Y and Wang J, Emerging Microbes & Infections, 2021, 10, 
317–330. [PubMed: 33560940] 

34. Isikman SO, Bishara W, Sikora U, Yaglidere O, Yeah J and Ozcan A, Lab Chip, 2011, 11, 2222–
2230. [PubMed: 21573311] 

35. Isikman SO, Bishara W, Mavandadi S, Yu FW, Feng S, Lau R and Ozcan A, Proc. Natl. Acad. Sci. 
U.S.A, 2011, 108, 7296–7301. [PubMed: 21504943] 

36. Greenbaum A, Luo W, Su T-W, Göröcs Z, Xue L, Isikman SO, Coskun AF, Mudanyali O and 
Ozcan A, Nat Methods, 2012, 9, 889–895. [PubMed: 22936170] 

37. Hendrycks D and Gimpel K, International Conference on Learning Representations (ICLR), 2017.

Potter et al. Page 13

Lab Chip. Author manuscript; available in PMC 2023 September 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Portable QLAB Sensor. a) CAD design of all components of the portable sensor housing. 

The housing was 3D printed from black PLA. b) Functional components of the LFHM 

inside the sensor.
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Fig. 2. 
Agglutination assay procedure. a) 2 μm polystyrene beads conjugated with streptavidin 

are incubated with biotinylated ACE2, yielding ACE2-functionalized microbeads. b) 

Functionalized beads are incubated with SARS-CoV-2 pseudovirus within a 1.5 mL test 

tube on a shaker at 1200 rpm, resulting in microbead agglutination. c) The completed assay 

is loaded into the imaging chip via micropipette direct injection.
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Fig. 3. 
Image reconstruction process. The top image is a single LR hologram captured with 

the portable LFHM. Green boxes represent the FOV of a conventional microscope using 

different objective lenses. Scale bar = 1 mm. The second row is a small region of interest 

showing a comparison of a LR hologram (left) to the reconstructed HR image after PSR and 

back propagation (right). Scale bar = 100 μm. The bottom row is a further zoomed-in region 

of this image, depicting the LR hologram (left) and HR reconstruction of fully resolved 

beads (right). Scale bar = 10 μm.
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Fig. 4. 
Residual CNN architecture. Input images of size 60 × 60 pixels are fed individually into 

the network. Each image passes through the input block, consisting of a convolutional layer 

with 16 3 × 3 filters, a batch normalization (BN) layer, and ReLU activation layer. Then 

the data, now 16 channels wide, is passed to the first of 3 residual blocks. Each residual 

block consists of 2 residual units, and connections between the blocks contain pooling layers 

that reduce the data size by a factor of 42. Each residual block increases the width of the 

network by a factor of 2. Finally, data is passed into a fully connected layer which outputs a 

classification for the input image. Examples of the classification result for 5 input images are 

shown in the last column of the diagram.
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Fig. 5. 
Results of CNN training. a) Accuracy of the training and validation data over the course of 

training. Validation accuracy does not diverge from the training accuracy over the course of 

training, indicating the network is not overtraining. b) Loss calculation for the training and 

validation data over the same training timespan. Again, validation loss does not diverge from 

training loss, indicating the network has not been overtrained. The training duration of 1,980 

iterations corresponds to 30 epochs. White and grey chart backgrounds denote 2 epochs in 

width each. c) Confusion matrix for validation data classification. The blocks at the right and 

bottom show the total correct and incorrect classifications in each row and column of the 

confusion matrix. 63.83% of all incorrectly classified features are classified as smaller than 

they actually are, resulting in a slight undervaluation of bound ratio. Precision and recall for 

each classification category are shown on the bottom and right respectively, matched with 

false discovery rate (FDR) and false negative rate (FNR) respectively. Average precision was 

83.21% and average recall was 82.04%.

Potter et al. Page 18

Lab Chip. Author manuscript; available in PMC 2023 September 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Quantification of microbead agglutination in the presence of SARS-CoV-2 pseudovirus. a) 

Optimized threshold-based quantification of the agglutination assay, which fails to find a 

clear trend in BR as a function of concentration. Over all non-control virus concentrations, 

the BR shows an average standard deviation of 10.66%, indicating inconsistency in the 

threshold-based quantification. Orange points indicate measurement results for VSV-G, 

which is used as a negative control. As the viral concentration of the VSV-G was not 

independently measured, the dilutions of the sample relative to the stock solution (top 

axis) were matched to the same dilutions of the SARS-CoV-2 pseudovirus, whose stock 

concentration was independently measured, yielding the bottom axis values. b) CNN-based 

agglutination quantification. Average standard of deviation for the BR of all non-control 

virus concentrations is 3.89%. The blue curve is a best fit to Eq. 5 (R2 = 0.974). The 

LOD based on this curve is 1,270 viral copies·mL−1. Orange points are negative control 

measurements using VSV-G samples diluted as specified in panel (a). The lack of a 

significant response shows that this assay is specific to SARS-CoV-2. For both graphs, the 

red dashed lines are the upper and lower LOD cutoffs, while the green point and dashed line 

indicate the BR in pure PBS. Black points indicate triplicate samples for each concentration 

and error bars are standard error of the mean. c) Example images classified by thresholding 

vs CNN. The CNN correctly identified each one of these features, while thresholding did 

not. Scale bar = 5 μm.
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Fig. 7. 
Inferring a unique analyte concentration using two independent measurements. a) CNN-

based agglutination quantification on unfiltered pseudovirus lysates with 0.005% bead 

concentration. The LOD cutoffs (red dashed lines) are calculated as 45.72% and 34.86%. 

The light blue curve is fitted using Eq. 5 (R2 = 0.962). The green point and dashed line 

indicate the BR in pure PBS. b) Comparison of binding curves for 0.0025% (blue) and 

0.005% (light blue) bead assays normalized by their z-score: how many standard deviations 

a measurement is away from the negative control value. A z-score of ±3 corresponds 
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to the BRLOD and BRLLOD for each assay. c) Flowchart of combined assay to achieve 

accurate quantification of viral concentration using the bead dilution method. d) Results of 

quantification based on the method in (c) performed on the two mean BR values for each 

viral concentration. The R2 is 0.993, calculated based on the log of the y-values above the 

LOD compared to ideal result. e) Flowchart of assay using the sample dilution method. f) 

Results of quantification based on the method in (e) performed on the mean BR values from 

the 0.0025% bead curve for each viral concentration. The R2 is 0.989, calculated based on 

the log of the y-values above the LOD compared to ideal result.
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Table 1

Network output results for test data sets. Training and validation images are drawn from an augmented data 

set. Test data are unaugmented. Balanced test data include equal numbers of images with 0, 1, 2, 3, and 4 

beads, while representative test data include a distribution of bead cluster sizes that is representative of real 

samples.

Image Data Set Network Output Accuracy

Training 89.28%

Validation 82.06%

Test (Balanced) 81.33%

Test (Representative) 88.58%
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Table 2

Network maximum softmax probability values for image classification of training and validation data

Mean maximum softmax probability (correctly classified) Mean maximum softmax probability (incorrectly classified)

Training 90.31% 63.11%

Validation 90.27% 68.02%
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