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Modelling brain dynamics 
by Boolean networks
Francesca Bertacchini1,2, Carmelo Scuro2,3, Pietro Pantano2,3 & Eleonora Bilotta2,3*

Understanding the relationship between brain architecture and brain function is a central issue in 
neuroscience. We modeled realistic spatio-temporal patterns of brain activity on a human connectome 
with a Boolean networks model with the aim of computationally replicating certain cognitive 
functions as they emerge from the standardization of many fMRI studies, identified as patterns of 
human brain activity. Results from the analysis of simulation data, carried out for different parameters 
and initial conditions identified many possible paths in the space of parameters of these network 
models, with normal (ordered asymptotically constant patterns), chaotic (oscillating or disordered) 
but also highly organized configurations, with countless spatial–temporal patterns. We interpreted 
these results as routes to chaos, permanence of the systems in regimes of complexity, and ordered 
stationary behavior, associating these dynamics to cognitive processes. The most important result of 
this work is the study of emergent neural circuits, i.e., configurations of areas that synchronize over 
time, both locally and globally, determining the emergence of computational analogues of cognitive 
processes, which may or may not be similar to the functioning of biological brain. Furthermore, 
results put in evidence the creation of how the brain creates structures of remote communication. 
These structures have hierarchical organization, where each level allows for the emergence of brain 
organizations which behave at the next superior level. Taken together these results allow the interplay 
of dynamical and topological roots of the multifaceted brain dynamics to be understood.

Distributed networks of neuronal populations provide the foundation of behavior and cognition in animals and 
humans, with complex patterns of neural communication and signaling1. The improvements of new technologies 
and methods in neuroimaging have revealed a detailed structural and functional description of the human brain’s 
connectivity patterns2,3 and of its complex large-scale network. To identify the human brain as a complex dynamic 
system, the notion of ‘connectome’ has been proposed by Sporns et al.4. Since then, several investigations5 have 
employed neuro-imaging methods as well as cutting-edge graphical approaches to explore the human brain in 
both healthy and diseased subjects, discovering characteristic properties in different regions of the brain3,6–9, 
presenting evidence of the functional nature of clustering in both human10,11 and animal brains12, thus realizing 
a “comprehensive network maps of neuronal circuits and systems”13. The practical availability of these methods 
to researchers in network neuroscience14, starting from data on how brain regions are connected and adopting 
the theoretical framework of network science, allows the mathematical description of the brain architecture and 
functions. In particular, two of these mathematical organizations, small world15 (SWN) and scale-free16,17 (SF) 
mathematical models have been found18.

The approach of the small-world networks15 revealed spatial and topological brain architectures which allow 
for information travelling across the nodes of the network in all possible directions in few steps, giving rise to long 
distance communication and cognitive economy in healthy19–22 and ill subjects23,24, while the Barabasi and Albert 
model16,17, identified by a large variety of networks called ‘scale-free’, describes the way the brain network grows, 
defining the clustering organization of neuronal areas. In this kind of network, ‘preferential attachment’—gives 
information on the brain regions’ specialization, by a process revealing that the more a node has links, the more 
it will get new ones22. A broad range of local and global network metrics have been developed, from degree dis-
tributions, clustering, and path length to the identification of the main brain areas with their subcomponents and 
their spatial location, using standard anatomical atlases or random partitioning schemes to define network nodes, 
in order to obtain better neurobiological node delineations and thus more precise network descriptions25,26. In 
this context, structural and functional networks are of fundamental importance, where structural networks are 
related to patterns of anatomical links (generally synaptic links between neurons, or projections among brain 
areas)4,27, while functional networks are collected from evaluations of statistical relations between neuronal or 
regional time series data28. Most human neuroimaging studies currently employ different measures of functional 
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connectivity29, but the Pearson cross-correlations of hemodynamic or electrophysiological time courses is the 
most used one. Instead, functional networks are highly variable, exhibiting spontaneous dynamic changes during 
rest30 as well as characteristic modulations in different task conditions31.

From what has been said, it follows that Connectomics not only offers a wide range of tools for brain data 
analysis, but it also provides an important framework to represent and interpret this “surprising machine” that 
is the human brain and its organization. Yet some other concepts of complexity science have not been fully 
exploited by networks neuroscience. Until now, well-defined networks architectures such as SWN and SF have 
been strongly supported by physiological evidence by real brain imaging data, the “connectome is both the source 
and the target of brain dynamic”27. But the possibility of modeling the behavior of the brain connectome by using 
other mathematical models is inspiring new research, considering some different points between the structural 
and functional connectome32,33. In fact, while the descriptive processes are dynamic, networks are thought to be 
static, and the structural connectivity is an accurate pattern of anatomical links. Instead, functional connectivity, 
emerging as a great set of adaptable relationships among neural elements, and historically based on the cor-
relations of neural events recorded over time, mainly based on statistical constructs (from Granger causality to 
the Bayesian model), is designed to obtain information on neural interactions in neurophysiology and human 
imaging studies34–37. For this reason, it displays noteworthy variability on short and large time scales. Besides, 
the connectivity matrix, standing for a functional brain network, can vary according to the changing number of 
possible configurations of functional connections, significantly widening the number of the brain connectome 
underlying structural networks. Another important issue is the lack of integration of functional connectivity 
at different levels of neuronal organization, among different scales of the neurophysiological activity. If at the 
highest level of the brain scale, functional magnetic resonance imaging (fMRI) displays the activity of networks 
of brain regions, with their emerging population dynamics, optical imaging methods give information on the 
lowest level of the brain scale, with networks of individual neurons that are connected in hub regions. However, 
the integrated dynamics that connect the highest and the lowest scales are still unknown.

Modelling rationale.  The need to have a detailed experimental characterization of the interactional kinet-
ics of the nodes at the brain connectome level, carefully studying the integration of both the structural and the 
functional connectome, at different scales of the neural organization, considering all the above-mentioned issues 
is gaining momentum38–42.

But the question of how connectivity between brain areas emerges remains underexplored. To fill this gap, a 
new modelling of brain networks, by using established connectomes and Boolean Networks (BN) is presented. 
By using the connectome as a structural network, and applying the BN approach to model the interactional 
dynamics of the nodes, we analyze the resulting behavior as functional neuronal dynamics. Brain dynamics can 
be described by many mathematical models, both discrete (such as Cellular Automata43–47, Boolean networks48, 
Probabilistic Boolean networks49) that continuous [such as Cellular Neural Networks (CNNs)50, Ordinary Dif-
ferential Equations (ODEs) or Partial Differential Equations (PDEs)51,52]. We opted against using PDEs in mul-
tiple dimensions because they involve local dynamics, which are ill-suited for modeling the above-described 
connectome networks. By using sets of one-dimensional PDEs also introduces difficulties. While such systems 
efficiently describe the transmission of signals on a line, they do not provide specific information on how to 
explain what happens at the intersection of multiple lines, which occur as singular points. The introduction of 
Cellular Neural Networks (CNN) systems, by making time continuous but discretizing space, overcomes this 
problem, reducing network links to transmission lines53–56. Such modeling enables not only modeling the func-
tioning of the brain areas of interest, which support various cognitive functions, but also to provide information 
about the ability to convey information across transmission lines. But, as we are interested in this work in how 
the process of generating cognitive circuits emerges to study the brain areas involved that give rise to specific 
cognitive functions, the best choice seemed that of adopting an extremely simple conceptualization such as the 
Boolean Networks models, which could form the baseline for further and more complex studies. Furthermore, 
by using BNs versus Cellular automata, one can indeed consider influences on the cognitive dynamics that are 
not determined by the immediate neighbors. It is obvious that thinking of the state of individual regions with 
only 2 values instead of a continuous state as in CNNs, or considering the system deterministic in its interactions 
instead of probabilistic, severely limits the possible dynamics. Despite this, the behaviors exhibited by the system, 
as we shall see later, maintain their complexity, typical of computational systems that, beyond the simplicity of 
the model, exhibit complex or chaotic behaviors and universal computational capabilities57. Thus, the Boolean 
networks model seemed to us to be the most suitable for analyzing the dynamic behavior of networks of this type 
without losing complexity and without introducing additional arbitrary elements into the modeling.

There are almost 6 different models of Boolean networks, which can be suitably exploited to achieve different 
dynamics, within the context of brain networks.

a.	 CRBNs (Classic Random Boolean Networks), characterized by a synchronous pattern and a deterministic 
updating: in the passage from time t  to time t + 1 all nodes are updated simultaneously, according to the 
Boolean functions associated with them. These rules are not totalistic as each node evolves according to the 
Boolean function that characterizes it.

b.	 ARBNs (Asynchronous Random Boolean Networks) is an asynchronous not deterministic method. At each 
step, a node, and only one, randomly selected, is chosen and updated with probability 1/N.

c.	 DARBNs (Deterministic Asynchronous Random Boolean Networks) is an asynchronous and deterministic 
method where two parameters are assigned to each node p and q (after choosing a maximum value for p and 
q ), with q < p . Each node will be updated in the rth  step if q = r(modp). If more nodes follow the updating 



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:16543  | https://doi.org/10.1038/s41598-022-20979-x

www.nature.com/scientificreports/

condition in one step of evolution, they are updated one by one, taking into account the changes already 
made during this step.

d.	 GARBNs (Generalized Asynchronous Random Boolean Networks) is a semi-synchronous and non-deter-
ministic method. After choosing a g number of nodes, at each step only those are updated. In this case, each 
node will be updated with probability equal to g.

e.	 DGARBNs (Generalized Deterministic Asynchronous Random Boolean Networks) is a semi-synchronous 
and deterministic method. It follows the same rule DARBN, but if more nodes comply with the updating 
condition, they are updated simultaneously.

f.	 PBN (Probabilistic Boolean Networks)49.

Consequently, in this paper we propose to model neural dynamics, maintained across a variety of different 
brain configuration states, at different levels of temporal and spatial scales, considering different sets of structural 
connectomes, from normal to many neurological disorders functioning58.

By using the Boolean networks approach, varying the initial conditions of the connectome pattern, we can 
explore how the functional interplay among brain regions operate at the macroscopic scale, with the aim to 
discover how the information flows in the underlying structural network, and how the dynamics arises from 
networks of neurons at the microscopic scale. From the simulation runs, plentiful rich dynamics emerged, giving 
much information on the above-mentioned issues and prospecting interesting results.

The paper is organized as follows: in Section “Methods”, we provide a review of the methods used in this work, 
from the approach to map on the human connectome cognitive functions related to relevant fMRI studies, to 
that of the implemented Boolean Network model, to the analysis of emergent circuits as large-scale structures; 
Section “Results” deals with the results obtained for the adopted methods; Section “Circuit analysis” considers 
the neuronal circuits emerging from the simulations and their correspondence to the chosen cognitive reference 
model; Section “Influence of the connection threshold on the stability of the emerging circuits” explores the 
influence of threshold parameters on the stability of emerging circuits; finally, a discussion on practical implica-
tions drawn from this approach for the network neuroscience closes the work.

Methods
To model cognition with Boolean Networks, the methodological pipeline represented in Fig. 1 was adopted.

Step 1: mapping cognition into the human connectome.  In this paper, we simulated the brain acti-
vation points for the Action–Execution behavioral domain as identified by Smith et al.59 and stored in the Brain-
Map.org site. They were mapped on the 82 ROI connectome network (shaped on the Brodmann Atlas) and on 
the network developed by Mingrui et al.60.

Basically, we started by downloading the activation maps for the cognitive function of Action–Execution, 
by the behavioral taxonomy of Brainmap.org59,61,62, now the principal database of fMRI and PET brain activa-
tion studies. Smith et al.41, identified the major functional networks of the brain, representative of a significant 
portion of all functional activation studies performed on more than 7000 functional maps, derived from dif-
ferent experimental fMRI conditions, summarized in terms of coordinated positions of activation peaks, using 
independent component analysis (ICA), a powerful data-driven approach for finding independent patterns in 
multivariate data stored in the BrainMap.org data repository. We chose to simulate Action–Execution behav-
ior, a very complex activity involving a very large neural network. After extracting the brain activation points 
for the Action–Execution activation map, we mapped these points with corresponding networks nodes in the 
brain connectome. To obtain the brain connectome18, we used the classic methods related to the acquisition of 
DTI and high-resolution T1-weighted MRI, the Segmentation of the brain’s white matter, the creation of white-
matter tractography and the consequent segmentation into regions of interest (ROI), followed as standard in 
many software applications63, while the degree of an ROI allowed the definition of the role that each module 
plays as a source of connections with other ROI, thus improving the modelling process and the attainment of 
computational dynamics by using the Boolean networks58. In Network Neuroscience research64, a connectome 
is a mathematical representation of the brain by using nodes and edge, where each node is a region of the brain 
and the edges the functional links connecting the brain. The node degree corresponds to the number of edges 
that are attached to each node, that is the brain connectivity. Networks can be decomposed into communities or 
modules. Connections (edges) are either linking nodes within modules or between modules. Highly connected 
nodes are hubs, and they either connect primarily with other nodes in the same community (provincial hub) or 
with nodes that belong to different communities (connector hub). The mapping of physical and functional con-
nections between subdivided anatomical areas of the brain with the ICAs categories of behavioral domain is a 
challenging problem since there are different brain parcellization methods which are related to cyto-architecture 
such as Brodmann65 and others drawn from the Talairach Atlas66, based on different numbers of ROIs which 
have been embodied in software tools60. Though Brodmann’s reference system of cortical maps does not match 
contemporary anatomical and functional data in many brain regions67 and new approaches are required, it is 
still used to register functional activations of anatomical structures68. For this reason, we used an 82-connectome 
model as the parcellization method, based on Brodmann areas, mapping the ICAs of the behavioral domain 
directly on the ROIs of the Brodmann organization. This allowed us to identify the network node corresponding 
to the functional activation areas for each category of the chosen behavioral domain, obtaining the reference 
areas in the 82-connectome model, involved in the process under analysis. In Table 1, Brodmann areas with the 
corresponding nodes of the connectome has been represented within the Tailarach space for the mapping of 
each node into the ICAs behavioral domain area.
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Areas have been connected by an adjacency matrix of 82 rows and 82 columns, whose values are comprised 
between 0 and 1, with an average connection value of 0.51 and a standard deviation of 0.288 for each node. 
This means that, on average, each network node is strongly connected with the other nodes. From a modeling 
point of view, since it is known that if the nodes in a network are highly connected, the system does not exhibit 
emergent and/or complex behaviors, going directly onto fixed-point behavior or dying immediately, we chose 
to set the nodes’ weight values at 0.87.

Step 2: Boolean network modelling.  The concerns previously expressed about the necessity to make 
use of models that are explicitly defined in a computational framework is strictly tied to the requirements of 
accurately choosing the variables to be the most congruent possible with brain data and to explicitly and quan-
titatively parametrize them explicitly and quantitatively61. For satisfying this requirement, we have chosen a 
Boolean Network (BN). In the form of random Boolean Networks (RBN), the system was introduced long ago69, 
with the aim to study the regulation of gene networks. In this pioneering method, each gene had two states “0” 
and “1”, where the value “1” stands for the gene activation state, on the contrary the value “0” stands for an inhi-
bition state. Since then, many studies have used this model70, in the sector of systems biology71, especially for its 
ability to intercept the gene networks dynamics. The status of the nodes in a Boolean network changes each time 
step in relation to the status of the nodes connected to it and to the Boolean function that is assigned. The num-
ber of possible states of a Boolean network, with N nodes, is equal to 2N . This number represents the cardinality 
of the state space. Boolean networks can be considered synchronous or asynchronous, deterministic or non-
deterministic, based on their updating rule table. In synchronous dynamics, all nodes update their status at the 
same time creating a "massively parallel process". In cases where the state of the system can be predictable with 
certainty, the dynamics of the system is deterministic. The development rules can also be totalistic in the sense 
that they might be the same for all nodes of the network; otherwise, they can vary according to the node. These 
features are very useful for sophisticated modeling of the brain cognitive functions. Formally, a Boolean network 
is a triplet {G, S, f } , composed of a graph G , a set S = {0, 1} and an evolution rule f : C → C , where C is the 
space of all the possible configurations. As is well known, G = {V ,E} is made by the set V = {v1, v2, · · · .vn} of n 
elements called vertices and by the set E = {ε1, ε2, . . . , εs } of any edges between two vertices εi ≡ ejk ≡ vj → vk . 

Figure 1.   The three-step pipeline that has been used foresees the mapping of cognition onto the human 
connectome, the Boolean Network modeling, the circuits identification and the cognitive networks dynamical 
analysis at the local and the global level.
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Each vertex vi can take a Boolean value of state si = 0 or si = 1 . The critical setting of the initial state will produce 
different emerging configurations of the system. This is particularly suitable for simulating brain dynamics. A 
configuration C = {s1, s2, . . . sn} is given by the values of the states of all the nodes. The cardinality of the set C 
is equal to 2n . Given a node vi , the set of all nodes vk for which there is an εm ∈ E such that eki = vk → vi or 
eik = vi → vk , it is said neighbor of vi , and it is indicated with Ii . If there is an em = vk → vi , then there is also 
an en = vi → vk . In this condition, we have an undirected graph or just a graph. The set of all nodes vk is called 
the input neighborhood and is indicated with Iii  , while the set of all nodes vk is named output neighbor and is 
indicated with Ioi  , where Ii = Iii ∪ Ioi  . If Iii = Ioi  , the graph is undirected. The cardinality of Iii  is called in-degree 
node vi , and it is indicated with idi while the cardinality of Ioi  is called out-degree node vi . The Boolean network 
is dynamic because the configuration c ∈ C is a function of the time. If the status of each node si(t + 1) is deter-
mined only by the value of the states of the nodes of the input neighbor Iii  , namely:

where each sr represents the state of the node vr ∈ Iii , and this function does not change over time, the Boolean 
network is called synchronized and the dynamic system is deterministic, in the sense that the successor of a 
configuration is unique. Equation (1) is given usually as a table of rules Ti.

The evolution rule of the Boolean network f : C → C is expressed as the set T of the tables of the local rules 
Ti : namely:

Since idi is the cardinality of the surrounding of Iii  ,, then the number of rules in the table of rules Ti will be 
just idi  and, therefore, the number of rules contained in the rules table of T is:

In this way, all the possible combinations of inputs are equal to 2nt . In the modeling of cognitive processes 
related to Action–Execution, the connectome with 82 nodes becomes the Boolean network. The nodes of interest 
are those identified for the chosen behavioral domain, whereby they will have a state of activation as the initial 
condition. An initial state must be set by assigning to each node a Boolean value. Later, the simulation provides 
for the transition of the state of each node based on the Boolean rule that is assigned to Boolean variables and 
the nodes to which it is connected. The state of a node at time t  is given by xi(t), and the next state after each 
iteration is given by

(1)si(t + 1) = fi(sj(t), sk(t), . . . , sl(t))

(2)T = {T1,T2, . . . ,Tn}

nt =

n
∑

i=1

idi

Table 1.   Table of conversion of Brodmann areas, the corresponding node number in the connectome model 
and the Talairach space. The table shows correspondences only up to node 21. All data on the conversion can 
be found at the following Internet address: https://​github.​com/​ZhenY​angCMI/​BIRD_​code/​tree/​master/​dynam​
icAna​lysis/​Brain​NetVi​ewer/​Data/​Examp​leFil​es/​Brodm​ann82. See also the SI (Table1.xls).

Node number Corresponding Brodmann area Node coordinates

1 1L {− 43.347; − 33,267; 61.135}

2 1R {36.017; 34.877; 63.832}

3 2L {− 46.592; − 34.283; 48.439}

4 2R {43.042; − 34.882; 49.442}

5 3L {− 41.124; − 26.628; 51.922}

6 3R {38.726; − 26.779; 51.931}

7 4L {− 27.911; − 22.877; 60.537}

8 4R {26.884; − 22.774; 60.284}

9 5L {− 11.711; − 50.335; 66.925}

10 5R {10.565; − 50.376; 65.651}

11 6L {− 28.722; − 3.387; 55.569}

12 6R {26.821; -3.144; 55.585}

13 7L {− 21.962; − 64.890; 53.277}

14 7R {20.152; − 64.938; 52.170}

15 8L {− 18.278; 22.911; 55.919}

16 8R {16.811; 23.184; 56.088}

17 9L {− 24.594; 37.320; 42.974}

18 9R {22.509; 37.266; 43.076}

19 10L {− 16.038; 59.012; 9.959}

20 10R {13.505; 59.285; 10.292}

21 11L {− 15.868; 41.999; − 12.318}

https://github.com/ZhenYangCMI/BIRD_code/tree/master/dynamicAnalysis/BrainNetViewer/Data/ExampleFiles/Brodmann82
https://github.com/ZhenYangCMI/BIRD_code/tree/master/dynamicAnalysis/BrainNetViewer/Data/ExampleFiles/Brodmann82
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where xij are the states of the nodes related to node i . The states of the nodes of the network are updated simul-
taneously according to this rule. Usually, this process is iterated until the reaching of a stable fixed point or 
limit cycle. This model allows a systematic exploration of the relationship between brain network structure and 
dynamics that might otherwise be impossible. In its most simple realization, each node of a Boolean network 
is connected at random to a set of K input nodes, whereas in our case the connections are provided by the con-
nectome. In addition to the classic methods, further schemes can be introduced based on the idea of a threshold 
activation. According to this scheme, after choosing an initial state, the Boolean functions associated with the 
node will not normally be used, we instead calculate the sums of the values of the Input regions. By using this 
scheme, updating will take place in such a way that if at step t  , the ith node is connected to a number of a switched 
node that is within a given range, then it will be switched on at time t + 1 , otherwise it will be turned off. There are 
many activation threshold methods, which are suitable for brain and cognitive processes networks modeling. In 
our case, we will use a consistent organization of the connections, linked to well-known cognitive circuits, as in59.

Step 3: local and global cognitive dynamic analysis
The managing of all these variables allowed us to get data on the local interactions among brain areas.

The connections between the various Broadmann areas are given by a connection matrix 82 × 82 (see Table 1) 
whose values are between 0 and 1. To transform this matrix into an adjacency matrix capable of modeling the 
system as a not fully connected graph, it is necessary to introduce a threshold x for the values of the matrix, 
which, below the threshold will be set equal to 0 while above the threshold will be set equal to 1.

Starting from a threshold value of 0.8, it is possible to increase this value by 0.01 every row of the matrix, thus 
having fluctuating values (which correspond to different values between the nodes).

If we consider the sum of states in a neighborhood σi = (si1(t)+ si2(t)+ · · · + sik(t)) of the node vi , then 
we can define the updating function (3) as follows:

By varying the threshold of the x matrix and the values of a and b , we can obtain a deep investigation of brain 
dynamics at the global level of the systems. Once the pattern has been obtained, applying one of the above-men-
tioned threshold levels, we obtain a connection matrix which highlighted the emerging synchronized circuits. As 
we will see later, single nodes will exhibit dynamics that can be correlated with the dynamics of other nodes. By 
calculating these correlations and using a threshold value z , we could identify which dynamics have correlations 
above that threshold and consequently identify which nodes are correlated with each other. The method allows 
for the circuits extraction and identification in the network (the nodes which are connected) and in the Brod-
mann specifications (the involved connected Brodmann areas which have emerged from the dynamics). Many 
visualizations techniques, at this level, allow us to get the visualization circuit by circuit, and the overall circuit. 
Analysis of each circuit and of its dynamic behavior were also made. We mentioned that a Boolean network is 
a graph with N nodes where, at each node, a Boolean variable representing the state of the node (1 or 0; ON or 
OFF), and a Boolean function that determines the evolution rule associated with it are assigned. To start the 
simulation, an initial state, assigning to each node a Boolean variable, is chosen. The dynamics provide for the 
transition of the state of each node based on the Boolean function that is assigned to it, and the Boolean variables 
of the nodes to which it is connected. So, the system behavior is emergent and unpredictable. As we have said, 
we will analyze both the local and the global dynamics. In local dynamics, we will investigate the interactions of 
each node and of its neighbors. In the global dynamics, we will study the dynamics of all the nodes that belong 
to the behavior under examination. This will allow us to:

a.	 Consider the interactions of each brain region with other regions, discover the rhythms of interaction among 
the regions, where these exist, or if the interactions are purely random or chaotic.

b.	 Explore the dynamics that lead to the creation of emerging networks that are structured precisely according 
to the process that is taking place.

c.	 Establish an interaction time, taking care to detect whether emergencies are the result of a latent synchroniza-
tion process, or whether there are submodules of the brain that synchronize and whether these submodules 
are in some way coordinated with each other.

Another problem we analyzed in the global dynamics behavior is the stability of the emerged circuits. Obtain-
ing the local dynamic circuits, we try to analyze the global dynamic with an example. In an earlier evolution 
of BN, we got 10 circuits, considering a = 1 , b = 4 , ( x > 0.9 and a correlation threshold z > 0.87)) as network 
parameters and threshold values respectively. These ten circuits are considered as a reference configuration to 
which all the other configurations compare, obtained by changing the parameters a , b and x . In this way, we 
identified an application in a four-dimensional space R × N × N × R which is the space C of all the circuits. 
The two thresholds vary in the space R of real numbers, even if the values of the connection weights matrix and 
the threshold values are conventionally rounded to the second decimal (varying between 0 and 1). Let us denote 
these discrete spaces regarding the thresholds with H and K . Thus, we have achieved an application f  that, takes 
4 numbers (integers—a an b , and two numbers between 0 and 1 at the second decimal digit) as input and returns 
the circuits organization in the four-dimensional space:

(3)xi(t + 1) = bi(xi1(t), xi2(t) . . . xik(t)),

(4)(t + 1) =

{

1 if a < σi < b
else
0
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where P = H × N× N× K  and C is the set of all possible circuits sets. The problem of global stability is to 
understand how these circuits vary, at the variation of the 4 parameters. Setting one of the parameters ( a , b , or 
x equal to a certain value), one of the Ŵ takes an equilibrium configuration Ŵ0  which we call the cognitive state, 
assuming that this state is stable. As a , b , or x can be varied, the structure deforms and assumes equilibrium 
configurations Ŵ0  ( a , b , x, z ). These are assumed to be discretely dependent on a , b , or x and stable for sufficiently 
small a , b , x or z . Such a problem can be extensively studied only with a great deal of computational power. In 
our case, we limited our attention to the understanding of what is going on in the cognitive circuits’ stability, 
taking as example this first set of circuits and comparing all the circuits obtained by varying the parameters to 
this reference frame, changing one parameter at a time. Our hypothesis is that such circuits can vary slightly 
within certain limits. So, not all those that vary greatly, can be considered realistic from the point of view of their 
cognitive reliability. Other features that can be investigated, related to the stability of the circuits, are the concepts 
of “sensitivity to initial conditions”, “damage spreading”, and “robustness to perturbations”. By changing, mutat-
ing or perturbing one node or group of nodes state in the Boolean Network or by mutating their connections, 
or the rules of the lookup table we can quantify how a casual modification can influence the network, exploring 
change propagation. After discovering the circuits, we can come back to the real brain and establish whether the 
emerged circuits correspond to the simulated cognitive functions and whether the shortest path of the network 
connectome could be considered reliable for detecting how distant brain areas connect together.

Results
Results have been organized along the pipeline of the used methods.

Results of step 1: the structural–functional features of the network.  Before starting the simula-
tion for obtaining Boolean Network simulations of the cognitive behavioral model Action–Execution (Fig. 2), 
the main activation map for this category was accessed at the Brain Map.org database. From the analysis of the 
metadata for this behavioral category, the Brodmann areas, involved in this process, were extracted and reported 
in Table 2. These areas, organized in the Sleuth workspace, were visualized with the software Mango, both Brain-
Map applications, plotting their results as coordinates on a standard brain in the Talairach space.

The structural features of the network.  Standard methods were used to segment a DICOM file and get the con-
nectome. In particular, the following procedure was conducted:

g : P → C

Figure 2.   Main brain activation points for Action–Execution, archived in the BrainMap.org database. The 
activation points confirmed by many experimental fMRI studies are 16.
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The somatosensory cortex The primary motor cortex

Brodmann areas 3, 1, and 2 refers to the primary somatosensory cor-
tex. In the connectome, these areas correspond to nodes 1R and 2R
Primary somatosensory cortex (represented by the Brodmann areas 
3, 1, and 2 and corresponding to the network nodes 1R and 2R) is 
involved with the localization of the input stimulus, the evaluation of 
its intensity, the proprioception and the shape recognition processes. 
Area 3 receives the information that are then sent to areas 1, 2 and 
motor areas by the cortico-cortical neurons pathway

Brodmann area 4 denotes the primary motor cortex of the human 
brain. In the connectome, it corresponds to node 8. Located in the 
rear part of the frontal lobe, the motor cortex is involved in planning, 
control and execution of voluntary movements of the body, with the 
function of transmitting to the cells of the nuclei of the cranial nerves 
and cells of the spinal cord impulses for movements

The parietal cortex The frontal cortex

Brodmann area 5 is part of the parietal cortex of the human brain. In 
the connectome, it corresponds to nodes 9 and 10. It is involved in 
somatosensory processing and association

Brodmann area 8 is part of the frontal cortex of the human brain. In 
the connectome, it corresponds to node 15. The area is involved in the 
management of uncertainty

The anterior portion of the prefrontal cortex The frontal cortex

Brodmann area 10 is the most anterior portion of the prefrontal 
cortex of the human brain. In the connectome, it corresponds to node 
19. Brodmann area 10, the largest area of the human brain and the 
most unknown, is involved in strategic processes in memory recall 
and various executive functions

Brodmann area 11 is part of the frontal cortex in the human brain. In 
the connectome, it corresponds to node 21. It is involved in decision 
making and processing rewards, planning, encoding new information 
into long-term memory, and reasoning

Continued
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The extra striate cortex The posterior cingulate cortex

Brodmann area 19 is part of the occipital lobe cortex in the human 
brain. In the connectome, it corresponds to node 28. In humans with 
normal sight, extrastriate cortex is a visual association area, with 
feature-extracting, shape recognition, attentional, and multimodal 
integrating functions

Brodmann area 23 corresponds to some portion of the posterior 
cingulate cortex. In the connectome, it corresponds to node 35. It 
communicates with various brain networks simultaneously and is 
involved in various functions such as human awareness, pain, and 
episodic memory retrieval

The subgenual area of the cerebral cortex The retrosplenial region of the cerebral cortex

Brodmann area 25 corresponds to the subgenual area of the human 
cerebral cortex. In the connectome, it corresponds to node 39. 
Extremely rich in serotonin transporters, this area is involved in vast 
networks comprising areas like hypothalamus and brain stem, which 
affect appetite and sleep; the amygdala and insula, which affect the 
mood and anxiety; the hippocampus, which plays an important role 
in memory formation; and some parts of the frontal cortex responsi-
ble for self-esteem

Ectosplenial area 26. It is a cytoarchitecturally defined portion of the 
retrosplenial region of the cerebral cortex. In the connectome, it cor-
responds to node 41. This area is bounded externally by the granular 
retrolimbic area 29

The parietal area of the cerebral cortex The Broca’s area of the frontal cerebral cortex

Continued
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(1)	 Acquisition of DTI and high-resolution T1-weighted MRI. Diffusion MRI allows the orientation of fibers 
in white and gray matter to be determined, exploiting the Brownian motion of water molecules within 
tissues. This motion can be isotropic—with molecules spreading in similar patterns in all directions—
or anisotropic—with molecules following more irregular directional patterns. Isotropic diffusion takes a 
sphere-like shape, while anisotropic diffusion is ellipsoid-like.

(2)	 Segmentation of the brain’s white matter. White Matter Tractography (WMT) includes a set of techniques 
that allow the connectivity and orientation of brain fibers to be estimated, through the use of images 
obtained by diffusion MRI. There are numerous algorithms employed, divided into deterministic, proba-
bilistic and global optimization ones. Deterministic algorithms identify a unique trajectory from a selected 
starting point, and result in a path that connects discrete regions of the brain.

(3)	 Creation of white-matter tractography. Probabilistic algorithms generate considerably more possible tra-
jectories from a single starting point, by connecting them to several voxels and assigning to each trajectory 
a different probability rate. In the end, global optimization algorithms generate the optimal path between 
two regions of the brain minimizing a cost function, which generally describes the flow path and its good-
ness of fit.

(4)	 Segmentation into regions of interest (ROI). The choice of the network nodes is made according to differ-
ent atlases that allow a segmentation of the brain by different areas to be carried out (Region Of Interest). 
These atlases encode different areas of the brain related to specific morphological features or functionali-
ties. Different brain segmentations in more or less defined ROIs, will yield networks with 83 or 1000 nodes 
using the Desikan-Killany Atlas, extended to include the subcortical regions. This is a very subtle choice, 
according to the aim of the analysis, as indicated in4. Xia et al.72. The lack of a universally accepted pattern 
for the segmentation is a well-known problem. For the purposes of this study, we chose to use 82-node 
networks, reported in Xia et al.72.

(5)	 Construction adjacency matrix to determine the connection between the various structures. Anisotropic 
diffusion analysis is carried out using various methods. The most used are DTI (Diffusion Tensor Imaging) 
and DSI (Diffusion Spectrum Imaging). Measuring diffusivity involves the introduction of a gradient, or 
a variation of the magnetic field in different directions. The motion of molecules then causes changes in 
the intensity of the emitted signal. The gradients are applied both before and after the pulse at 180°. DTI 
spreading at a given point (voxel) within the brain is quantitatively described by a diffusion tensor. At least 
six measurements, calculated from a 3× 3 symmetric matrix with six degrees of freedom, are required to 
construct this tensor. A connectome mapper allows the 5 steps of the procedure. It uses FREESURFER for 
the segmentation, FSL to display dicom files, DTK TRACKVIS to determine the tensor, and to draw the 
fibers and CONNECTOME to create the matrix. In the fragmentation phase, it would be possible to use 
the following algorithms to calculate the adjacency matrix:

Brodmann area 39 is part of the parietal cortex in the human brain. 
In the connectome, it corresponds to nodes 63 and 64. Damage to 
Brodmann area 39 plays a role in semantic aphasia

Brodmann area 45 is part of the frontal cortex in the human brain. In 
the connectome, it corresponds to node 75. Together with Brodmann 
area 44, it comprises Broca’s area, a region that is active in semantic 
tasks, such as semantic decision tasks (determining whether a word 
represents an abstract or a concrete entity) and generation tasks 
(generating a verb associated with a noun)

The orbital region of the frontal cortex

Brodmann area 47 is part of the frontal cortex in the human brain. 
In the connectome, it corresponds to node 79. Brodmann area 47 is 
involved in the processing of syntax in oral and sign languages, musi-
cal syntax, and semantic aspects of language

Table 2.   Brodmann areas involved in the Action–Execution behavioral category. As we have already 
mentioned, such functional behavior can be accessed at the Brain Map web site (https://​portal.​brain-​map.​org/) 
and visualized by the Mango software application (https://​ric.​uthsc​sa.​edu/​mango/​mango.​html).

https://portal.brain-map.org/
https://ric.uthscsa.edu/mango/mango.html
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a.	 NATIVE FREESURFER (http://​surfer.​nmr.​mgh.​harva​rd.​edu/)73, (82 customized ROIs), according to 
Xia et al.72, which gives a network with 82 points, dividing the DTI and high-resolution T1-weighted 
MRI into 82 regions.

From a study previously carried out74, one sample DICOM file, from a healthy control patient, was used. The 
segmentations were conducted on T1 sequences, acquired by a 3 T GE, with a voxel resolution of 1 × 1 × 0.5 mm. 
Each slice had a 256 × 256 resolution, while total slices were 368. For the tractography process and the fibers 
extraction, DTI sequences were used, with a gradient number of 27 (the higher the number, the better is the 
resolution). The resolution of the voxel was 1 × 1 × 1. The resolution of the slice was again 256 × 256. There were 
80 slices. The brain connectome was visualized by a multiplatform MATLAB (The MathWorks Inc., Natick, MA, 
US) toolbox, called BrainNet Viewer72, with an easy-to-use Graphical User Interface (GUI), which allows for the 
use of a visualization platform and the generation of a brain connectome with a segmentation Atlas, organized 
according to the Brodmann areas. Deriving many functions from the Statistical Parametric Mapping 8 application 
(SPM, http://​www.​fil.​ion.​ucl.​ac.​uk/​spm/), this toolbox allows for the downloading of brain surface, node, edge 
and volume files. By directly downloading the ‘.pial’ file of hemisphere mesh, generated using FreeSurfer and 
the ‘.mesh’ files, generated using BrainVISA (http://​brain​visa.​info/)75, a connectome can be built. This tool has 
been chosen for the reason that it has been modeled on the automate Talairach registration procedure, developed 
by the Montreal Neurological Institute76,77, which allows the correlation between the individual volume and an 
average volume composed of a huge number of aligned brains to be maximized.

The functional features of the network.  The transformation matrix into the Talairach space was used to define 
exactly the ROI related to the Action–Execution points of activation in the functional maps. After these processes, 
the brain connectome and its connection matrix were processed in the Mathematica environment (Fig. 3)78.

Table 2 shows the Brodmann areas corresponding the ICAs behavioral domain area of the connectome 
visualized within the Talairach atlas79 by the Mango application software. Figure 4 shows the Action–Execution 
behavior from the Brodmann atlas and the corresponding node networks in the connectome.

Results of step 2: simulation runs.  In starting the simulation, we decided to activate only the 16 Brod-
mann areas belonging to the chosen cognitive process. Therefore, the initial condition of the Boolean network 
was as follows:

Parameters of the network are as follows: 1 ≤ a ≤ 13 , 1 ≤ b ≤ 13 , steps of the simulation = 500. 
Color Rules− > {1 → Blue, 0 → Red}].

The parameters values of the simulation offered a challenging problem as different simulations can be obtained 
by different network parameters. In Fig. 5, the simulation of the BN between 400 and 500 steps of simulation. 
At each step of the simulation, by the color rules, both activated or non-activated brain areas can be discovered. 

={0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0};

Figure 3.   The connectome modelled on the 82 Brodmann areas (a) and the network connection matrix (b). 
The parcelization method adopted is as in72.

http://surfer.nmr.mgh.harvard.edu/
http://www.fil.ion.ucl.ac.uk/spm/
http://brainvisa.info/
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Only simulations for 1 ≤ a ≤ 7 are present in the figure, because in the other cases the system converges to a con-
figuration for which all states go to zero.

In this simulation, there are only 91 possible rules of interest (i.e., that do not converge to a fixed point com-
posed of only 0), concentrated for low values of a: 1 ≤ a ≤ 3.

After a transient period of 500 evolution steps, the system begins to exhibit periodic behavior. Results are 
reported in Table 3.

Figure 4.   The image shows the 16 nodes of the network that produces the Action–Execution behavior.

Figure 5.   The simulation of the BN between 400 and 500 steps of simulation for values of a ranging from 1 to 7 
and values of b ranging from 1 to 13.
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We observe that for low values of b the system presents chaotic (no period) or complex (high or medium 
periodicity) behaviors, while for high values of b the system tends to have more regular periodic behaviors, with 
a small period. Figure 6 shows details of the spatio-temporal patterns for a = 1 and 1 ≤ b ≤ 6.

Results of step 3: the emergence of brain circuits.  To highlight the complex emerging dynamics and 
the presence of structures in the simulations carried out, a model simulation ( b = 4 , network threshold x > 0.9 
and, correlation threshold z > 0.87, same initial conditions), in order to consider a sufficiently complex but not 
chaotic behavior, is analyzed in depth. In this simulation, nodes always turned on and off have been removed, 
as they do not take part in the dynamics that is going on if not in a subtle way, which we will analyze in the next 
paragraphs. After the irrelevant nodes have been deleted, we sought correlations among those that changed over 
time, by means of a correlation matrix (for b = 4), as shown in Fig. 7.

The correlation matrix provides us with a measure of how the performance of a brain area is related to the 
performance of another area. This value is between 0 and 1. When the correlation between the two areas is 
equal to 1, the two areas are perfectly synchronized. If we insert a z threshold, selecting the pairs of areas that 
have a correlation higher than z , then we can identify groups of areas that have fairly similar behavior and we 
call these areas brain circuits. The model simulation gave 10 emerging circuits. The number of areas for each of 
these circuits is as follows: {2, 2, 2, 2, 2, 2, 2, 2, 3, 3}. Each circuit connects with up to three nodes of the brain 
connectome. In Table 4, the emerged circuits are reported, while in Fig. 8, the representation of the emerged 
circuits on the brain connectome is shown.

Table 3.   Temporal emergence of periodic behavior in the brain connectome.

b = 1 b = 2 b = 3 b = 4 b = 5 b = 6 b = 7 b = 8 b = 9 b = 10 b = 11 b = 12 b = 13

a = 1 No period 199 248 48 35 6 4 2 2 2 2 2 1

a = 2 1 No period No period No period No period 6 4 2 2 2 2 2 1

a = 3 1 1 1 1 No period 158 2 2 2 2 2 2 1

Figure 6.   Multiple evolutions of the BN for 200 steps of simulation. This run was attained for parameter b, 
going from 1 to 8, and a fixed value of a = 1 . As can be seen, the patterns of the BN goes from chaos to order 
(from left to right), according to the increase of parameter b. The magnified pattern on the left is for b = 4.
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In Table 5, results about the reliability of the emerged circuits agreeing to the cognitive behavior Action–Exe-
cution is evaluated, considering the ROIs normally used in the previously-mentioned real process.

Circuit analysis
Let us investigate whether there is any relationship among the emerged circuits for this simulation. The easiest 
and quickest way is to adopt the intersections between the areas of the emerged circuits. In Table 6 we show the 
intersection between these 10 circuits.

A different way to represent this information is in the form of an intersecting array as follows (Fig. 9). Given 
two circuits r and s , we can calculate the ratio between the number of elements irs contained in the intersection 
between r and s , divided by the number nr  of elements of r . For example,  i2,7 = 1

2
 , while i2,9 = 2

2
= 1.

If we carefully analyze these circuits, we notice some interesting processes:

(a)	 The circuit 2, made by the Brodmann areas {5L, 43L} is a subset of the circuit 9, made by the Brodmann 
areas {5L, 32L, 43L};

(b)	 The circuit 5, made by the Brodmann areas {24L, 26R} is a subset of the circuit 10, made by the Brodmann 
areas {24L, 26R, 35L};

(c)	 The circuit 6, made by the Brodmann areas {24L, 35L} is again a subset of the circuit 10, made by the Brod-
mann areas {24L, 26R, 35L};

(d)	 The circuit 7, made by the Brodmann areas {32L, 43L} is again a subset of the circuit 9, made by the Brod-
mann areas {5L, 32L, 43L};

(e)	 Both Brodmann Areas 43L and 24L are in common with 3 circuits;
(f)	 Brodmann areas 5L, 5L, 32L and 26R are in common with 2 circuits.

Figure 7.   Correlation matrix among all the nodes that change over time (a) and with a threshold (b). In this 
case, the threshold level has been set to 0.87.

Table 4.   Number of involved nodes and circuits for a simulation in which the threshold value was set at 0.87.

Connectome nodes Brodmann areas

Circuit 1 {4, 46} {2R, 28R}

Circuit 2 {9, 71} {5L, 43L}

Circuit 3 {23, 30} {17L, 20R}

Circuit 4 {33, 45} {22L, 28L}

Circuit 5 {37, 42} {24L, 26R}

Circuit 6 {37, 55} {24L, 35L}

Circuit 7 {51, 71} {32L, 43L}

Circuit 8 {70, 76} {42R, 45R}

Circuit 9 {9, 51, 71} {5L, 32L, 43L}

Circuit 10 {37, 42, 55} {24L, 26R, 35L}
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Figure 8.   Representation of the emerged circuits in the brain connectome, setting the threshold parameter of 
connection among nodes at 0.87.
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Connectome nodes Brodmann areas Cognitive functions Evaluation with the real process

Circuit 1

{4, 46}

{2R, 28R}

The Primary Somatosensory Cortex 
bound with the Entorhinal cortex

Area 2 analyzes size and shape of stimuli
Area 28R identifies the space configura-
tion

Believable

Circuit 2

{9, 71}

{5L, 43L}

The Somatosensory Association Cortex 
bound with the Primary gustatory 
cortex

Area 5 integrates sensorial stimuli
Area 43 is the primary gustatory cortex, 
but it is active also in semantic tasks

Unbelievable, it could be positive if 
Area 5 is connected to areas 41 and 42 
(Auditory cortex)

Circuit 3

{23, 30}

{17L, 20R}

The Primary visual cortex (V1) bound 
with the Inferior temporal gyrus

Area 17 processes the visual information
Area 20 is involved in the recognition of 
complex object features, face perception, 
numbers

Believable

Circuit 4

{33, 45}

{22L, 28L}

The Superior temporal gyrus bound 
with the Ventral entorhinal cortex

Area 22 is involved in speech processing
Area 28, near the hippocampus, is 
related to spatial memories

Believable

Continued
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Connectome nodes Brodmann areas Cognitive functions Evaluation with the real process

Circuit 5

{37, 42}

{24L, 26R}

The Ventral anterior cingulate cortex 
bound with the Retrosplenial region of 
the cerebral cortex

Area 24 is related to emotion formation 
and processing, learning, and memory
Area 26 plays a probable role in mediat-
ing between perceptual and memory 
functions

Believable

Circuit 6

{37, 55}

{24L, 35L}
The Ventral anterior cingulate cortex 
bound with the Perirhinal cortex

Area 24 is related to emotion formation 
and processing, learning, and memory
Area 35 is heavily related to memory 
processes

Believable

Circuit 7

{51, 71}

{32L, 43L}
The Dorsal anterior cingulate cortex 
bound with the Primary gustatory 
cortex (probably 41 and 42)

Area 32 is involved in rational thought 
processes
Area 43 is the primary gustatory cortex, 
but it is active also in semantic tasks

Unbelievable

Circuit 8

{70, 76}

{42R, 45R}
The Auditory cortex bound with the 
Pars triangularis with part of the 
inferior frontal gyrus and part of the 
Broca’s area

Area 42 receives input from the ears, 
transmits signals back, connects with 
other parts of the cerebral cortex
Area 45 is related to semantic decision 
tasks (abstract or concrete nouns 
discrimination) generation task (genera-
tion of a verb associated with a noun)

Believable

Continued
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Regarding points (a)–(d), it means that the pairs of areas are strongly related to each other, while the third 
area of each circuit is weakly correlated.

The emergence of circuits.  Using the simulation chosen as an example, and starting from the 16 active 
brain areas identified for the Action–Execution cognitive process, taken as initial data, let us analyze how the 
circuits emerge along the evolution of the spatio-temporal structure. After 250 time steps, the system evolves 
with a periodic configuration (Fig. 10).

At step 89, there are 63 active areas: {1L, 2L, 2R, 3L, 3R, 4L, 4R, 5L, 5R, 6L, 6R, 8L, 8R, 9L, 9R, 11L, 11R, 
17L, 17R, 18L, 18R, 19L, 20L, 20R, 21L, 22L, 22R, 23L, 23R, 24L, 25L, 25R, 26R, 28L, 28R, 29L, 30R, 32L, 32R, 
34L, 34R, 35L, 35R, 36R, 37L, 37R, 38L, 39R, 40L, 41L, 41R, 42L, 42R, 43L, 43R, 44L, 44R, 45L, 45R, 46L, 46R, 
48L, 48R}. From this moment, the system went on an oscillating attractor of period 48 and repeats an endlessly 
periodic pattern: the ten previously-mentioned circuits emerge in their final organization.

After 50 time steps, we observe the emergence of the following 9 circuits: {5R, 45L}, {18L, 22R}, {20R, 23R}, 
{24L, 34L}, {24L, 35L}, {27R, 36L}, {34R, 46R}, {42R, 45R}, {24L, 34L, 35L}.

Of these, only 2 {24L, 35L} and {R 42, R 45} are in common with the final circuits. We may think that these 
circuits, once they are formed remain even later. In reality it is not so. In fact, if we analyze the spatial and tem-
poral pattern between 50 and 100, we observe the formation of more than 16 circuits that are: {2R, 38L}, {17L, 
20R}, {20R, 23R}, {22L, 48L}, {24R, 36R}, {26R, 45R}, {2R, 4L, 20L}, {2R, 24R, 36R}, {2R, 28L, 28R}, {9R, 26R, 
45R}, {28L, 28R, 48L}, {2R, 4L, 9R, 45R}, {4L, 17L, 20R, 23R}, {4L, 22L, 28R, 48L}, {4L, 9R, 20L, 20R, 48L}, {2R, 
9R, 20L, 28L, 36R, 38L}. Of these, only {17L, 20R} is equal to the final circuit. There is poor correspondence 
between the circuits of the transient regime with respect to the composition of the final circuits, when the simu-
lation turns to the end, after going on a steady-state attractor. Occasionally the circuits of the transient regime 
contain an area of the steady-state circuits. In this sense, the transient behavior does not seem to prevent in any 
way what final circuit configuration will appear like at the steady state.

The emergence of circuits at the local level.  To analyze better the emerging rhythmic and oscillatory 
behaviors, let us now examine a different and more regular dynamic, compared to the more complex one in the 

Connectome nodes Brodmann areas Cognitive functions Evaluation with the real process

Circuit 9

{9, 51, 71}

{5L, 32L, 43L}

The Somatosensory Association Cortex 
bound with the Dorsal anterior cin-
gulate cortex, bound with the Primary 
gustatory cortex

Area 5 integrates sensorial stimuli
Area 32 is involved in rational thought 
processes
Area 43 is the primary gustatory cortex, 
but it is active also in semantic tasks

Unbelievable

Circuit 10

{37, 42, 55}

{24L, 26R, 35L}
The Ventral anterior cingulate cortex 
bound with the Ectosplenial portion of 
the retrosplenial region of the cerebral 
cortex bound with the Perirhinal cortex

Area 24 is related to emotion formation 
and processing, learning, and memory
Area 26 plays a probable role in mediat-
ing between perceptual and memory 
functions
Area 35 is heavily related to memory 
processes

Believable

Table 5.   Evaluation results about the emerging circuits for the simulation chosen as example. It is reasonable 
to think that most of the circuits are congruent with the simulated cognitive behavior.
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previous example. Also with the parameters a = 1 and b = 4, we only consider the 16 active areas initially. After 
just 16 steps the system reaches the periodic attractor. The oscillation period is 6 time steps.

Let us now analyze the circuit of Action–Execution as a distinctive one, as represented in Fig. 11, allowing its 
evolution at the local level of the BN, the realization of the connection matrix, the detection of its main circuits 
and lastly, their representation on the brain connectome.

To obtain the emerging circuits of this simulation, it was necessary to slow down the threshold of the con-
nectivity ( z = 0.6 ), as a very high level of connections may hide the process (see Table 7).

The dynamics of the emerging circuits: stationary, oscillatory and rhythmical behavior.  To 
better understand the nature of these emergent circuits, let us examine another case in which a = 1 e b = 6 
maintaining the same threshold x = 0.9 . Results about the evolution of the Action–Execution circuit and the 
relationships that each area engages with the other ones by means of the phenomenon of binding together 
by symmetry80 are presented in what follows. We have identified oscillatory, stationary and rhythmical rep-
etition of dynamical behavior for the emerging networks. Nodes always switched on or off are as follows 
: {1, 3, 5, 9, 12, 15, 16, 21, 24, 35, 54, 56, 65, 73, 74, 78, 82}.

The connection matrix for those nodes that vary in time is represented in Fig. 12, together with the connec-
tion matrix for circuits.

The patterns of dynamic behavior are reported in Table 8.

Table 6.   Diagram of representation of the intersection among the emerged circuits for the simulation takes as 
example.

0 1 2 3 4 5 6 7 8 9 10
1 {4,46} {} {} {} {} {} {} {} {} {}
2 {} {9,71} {} {} {} {} {71} {} {9,71} {}
3 {} {} {23,30} {} {} {} {} {} {} {}
4 {} {} {} {33,45} {} {} {} {} {} {}
5 {} {} {} {} {37,42} {37} {} {} {} {37,42}
6 {} {} {} {} {37} {37,55} {} {} {} {37,55}
7 {} {71} {} {} {} {} {51,71} {} {51,71} {}
8 {} {} {} {} {} {} {} {70,76} {} {}
9 {} {9,71} {} {} {} {} {51,71} {} {9,51,71} {}
10 {} {} {} {} {37,42} {37,55} {} {} {} {37,42,55}

Figure 9.   Intersection array and correlation matrix for representing relationships among the emerged circuits.
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Table 8, related to the previous parameters, shows circuits exhibiting periodic behaviors with low periods, 
even in the presence of a larger number of involved areas. This means that widening the activation range ( b− a ) 
leads the behavior of the circuits to greater regularity.

The emergence of circuits at the global level.  By modeling the brain dynamics with Boolean net-
works, we detected the emergence of cognitive circuits, which are very large-scale-networks. From the simula-
tions carried out extensively for all system parameters, we found many circuits. Usually, the circuits emerge 
quickly, in large numbers. For the chosen reference, we found that 9 circuits emerged from 0 to 50 simulation 
steps. Of these, two are in common with the circuits detected at the end of the simulation. 16 circuits emerged 
between 50 and 100 simulation steps, but only 1 is in common with the circuits detected at the end of the simula-
tion. Subsets of circuits that emerged at the end of the simulation are related to the huge circuits emerged at the 
beginning of the simulation.

Let us try to analyze the results on the BN global dynamics behavior using the same simulation as an example. 
Considering a = 1 , b = 4 , ( x > 0.9) as network parameters and threshold values respectively, we got 10 circuits 
(Fig. 13), considered as a reference configuration to which to compare all the other configurations, obtained by 
changing the parameters a , b and x . This circuit configuration was chosen because it is very close to the physical 
organization of the behavioral map, drawn from the ICAs standard. It could be represented also in the brain and 
it is realistic from a cognitive point of view as a computational model.

In our case, we limited our attention to the understanding of what is going on in the cognitive circuits stabil-
ity, taking this first circuit configuration as an example and comparing all the circuits obtained by varying the 
parameters to this reference frame, changing one parameter at a time.

Our hypothesis is that such circuits can vary slightly within certain limits. So, not all those that vary greatly, 
can be considered believable from the point of view of their cognitive reliability.

Influence of the connection threshold on the stability of the emerging circuits
Let us change the Boolean Network threshold for the following values of the x parameter:

Unlike the case considered as reference with x = 0.90 , for which we obtained 10 circuits, for x = 0.89, 15 
circuits emerged from the simulation run. To evaluate the possible overlapping among the two different simula-
tion runs, and consequently among the two sets of emerging circuits, an intersection between all the possible 
circuits of the two simulations has been done. We can represent these intersections using the same method of 
Fig. 9, obtaining a matrix shown in Fig. 14.

As can be seen, there is no relationship between the two groups of circuits. However, it is interesting to observe 
that, as occurred at the local level, a new circuit, composed of two areas {24L, 43L}, appears. These two areas already 
had an important role in the simulation, taken as a reference model. In fact, the new emerging circuit has at least 
one element in common with six circuits of the reference case. Instead, considering a threshold level of x = 0.91 , 
we observe the emergence of 22 circuits, of length: {2, 2, 2, 2, 2, 3, 4, 5, 6, 6, 7, 9, 11, 12, 12, 13, 13, 15, 15, 16, 17, 19}.

Therefore, in addition to the presence of small circuits made up of at least of three elements, we discovered 
the presence of larger circuits, composed of many elements. The relationships between these new set of circuits 
and the circuits emerged for the reference model simulation, are graphically expressed as follows (Fig. 15).

Circuit 1 (repeated 3 times) and circuit 3 (contained in 5 of the new circuits), continue to exist as sub-circuits 
of larger circuits. So, the threshold according to which the Boolean network is built changes the topology of the 

x = 0.89, 0.90, 0.91

Figure 10.   Spatio-temporal pattern of evolution of the BN system chosen as example after 250 simulation steps 
(a), together with the time-series of the evolution showing the periodic behavior of the system (b).
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systems and it is critical for the definition of the emerging circuits, which, in turn, change significantly, even for 
small changes of this threshold.

In this sense, the circuits are not stable in relation to the network topology, where even small variations can 
trigger dramatic changes in the definition of these circuits.

Variation of parameters b and a.  Let us analyze what happens varying b compared to the reference value 
of b = 4 . In the case where b = 3 , only one circuit emerges, composed of the 9R and 23R Brodmann areas This 
circuit has no area in common with the reference example circuits. In the case where b = 5 , the process became 
more interesting, with 18 circuits, of length {2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6}. The overlap of these 
circuits with the reference ones is fairly low. In this case, circuit 3 of the reference model, consisting of areas {17L, 
20R} is contained in three new circuits, of larger size. The reference circuit 8, composed of the Brodmann areas 
{42R, 45R}, remained as a sub-circuit of a larger circuit.

Figure 11.   Representation of the Action–Execution circuit in the brain connectome made of 82 nodes, its 
connection matrix, the connection matrix of the emerging circuit and their connectome representation. (a) 
Circuits local evolution; (b) Connection matrix; (c) Connection matrix of the emerging circuits (d) Connectome 
representation of the emerging circuits.

Table 7.   Circuits emerging from the Action–Execution evolution with a BN. We hypothesize that these 
circuits represent the firing over time of all areas involved in the simulated process, with oscillations between 
areas.

Connectome nodes Brodmann areas

Circuit 1 {4, 15} {2L, 8L}

Circuit 2 {11, 14} {6L, 8R}

Circuit 3 {5, 11, 15} {3L, 6L, 8L}

Circuit 4 {3, 5, 11, 15} {2L, 3L, 6L, 8L}

Circuit 5 {5, 11, 14, 15} {3L, 6L, 7R, 8L}
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In the case in which a = 2, no circuits appear and so no comparison is possible.

Correlation threshold.  The correlation matrices are used to identify circuits, analyzing the related areas. 
In particular, an area is related to another area if the correlation of the signals associated with the two areas is 
greater than a certain threshold z . Given an area r , and a threshold z , the set of all areas Ar whose correlation 
with the r area is greater than z represents a circuit, adding r . Each circuit is counted only once. It is important to 
note that two areas a1 and a2 can belong to the same circuit, even if the correlation between them is less than z . 
This is the case of the reference circuits 2, 7 and 9. Circuits 2 and 7 have two areas correlated with z > 0.87 . Their 
union represents a new circuit (circuit 9) that contains three elements. Two pairs, corresponding to circuit 2 and 
7 have a higher correlation of z , while the third pair has a correlation < z . As z decreases, the starting circuits are 
maintained, and maybe are incorporated in larger circuits, while for growing values z , these circuits instead tend 
to clear. The new circuits will be subsets of the starting circuits.

Let us analyze in detail different correlation thresholds.
For z = 0.86 , there are still 10 circuits and obviously identical to those of the reference case. The case where 

z = 0.85 is more interesting where there are now 15 circuits of length {2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 6}. 
It was possible to observe that the first circuit continued to subsist; circuit 2 continued to exist individually and 
was also part of a larger circuit. Even circuit 3 became part of a larger circuit. Circuit 4 continued to maintain its 
independence, while 5 appeared as a single entity and also part of a larger circuit. Let us observe, however, how 
the circuits are developed in the direction of increasing thresholds. If z = 0.88 , there are now 8 circuits. All the 
reference circuits continue to survive, with the exception of circuit 5, which disappears, and circuit 10 that has 
lost one of the three areas coinciding with circuit 6. If we further increase the threshold to 0.89, we observe that 
now there are now 5 circuits as seen from the Figure xxu1. The only circuits that tend to survive are circuits 3, 
4, 6, 7 and 8. While circuits 9 and 10 lost each area of the three they had previously. The result did not change 
until value z = 0.92; while for z = 0.93 the only circuit that continued to survive was 8, corresponding to the two 
Brodmann areas {42R, 45R}.

Discussion and conclusions

To model structural and functional aspects of brain dynamics better and to be able to grasp cognitive 
behavior, we used Boolean Networks for the following reasons:

(a)	 The attractiveness and ease-of-use of the BN model81 which, by simplifying the complexity of brain dynam-
ics, allows the emergence of circuits and chain of circuits (the network’s attractors ) which in turn represent 
stable (or metastable) sets of states of the brain toward which the system converges. Therefore, evolving 
toward attractors means to reach a specific behavioral goal (probably by a completely mechanical internal 
dynamics). This approach helps to predict the brain’s organization at different scales (the single circuit 
dynamics at the level of each brain area, the emergence of circuits that carry out the specific functional 
task, the completely new emergence of circuits, which could shed light on the long-range informational 
process in the brain). In this way, we have a running idea of what is a cognitive-functional attractor and 
what is the structural side of the system that allows its dynamics.

Figure 12.   Correlation matrices for all nodes (a) and for the emerging circuits (b).
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Connectome nodes Dynamics of each circuit Explanation

Circuit 1

{2, 49}

In this pattern of behavior, this neural circuit 
realizes the following performances: first 
nodes turn on, then they go off. Later, one 
turns on, then both turn off. Hereafter, the 
circuits travel by synchrony (all on or all off), 
until the cycle is stopped

Circuit 2

{17, 41, 80}

In this circuit, made of 3 nodes,  the oscil-
latory behavior is very simple going from 
all nodes turned off for 2 steps and then all 
nodes turned on. Then there is an alternation 
between three steps with all nodes turned off 
and two steps with all nodes turned off

Continued
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Connectome nodes Dynamics of each circuit Explanation

Circuit 3

{6, 26, 55, 68}

In this circuit, at each 5 steps, all 4 nodes 
rythmically turn off, then they turn on for 
one step

Circuit 4

{38, 47, 64, 67}

 

In this circuit, at each 3 steps all 4 nodes 
rythmically turn off, then they turn on and off 
for two steps

Continued
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Connectome nodes Dynamics of each circuit Explanation

Circuit 5

{19, 22, 27, 37, 42, 59}

This circuit has the same dynamics as circuit 
4, with a different number of nodes

Circuit 6

{11, 14, 32, 43, 57, 62, 63, 66}

In this circuit, after one steps of all nodes 
turned on and one turned off, it follows two 
steps of all nodes turned on and off

Circuit 7

{4, 23, 25, 29, 31, 38, 46, 58, 69}

In this circuit, after two steps of all nodes 
turned on and off, it follows three steps of all 
nodes turned on

Continued
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(b)	 Current understanding of large-scale-cognitive-networks is incomplete3,82,83. Therefore, comparing simu-
lated dynamics with observed brain networks of a certain cognitive behavior may help in evaluating their 
reliability in predicting and showing missed information which could not be seen, by using real life meth-
ods. BN helps in predicting the process, picking up the qualitative and quantitative changes in the dynamic 
expression of the cognitive behavior.

(c)	 This model allows observation of the structure and lengths of the behavior, especially when expressed in 
recurrent patterns of activation. This in turn allows the determination of the basins of attraction of the 
brain circuitry, and to analyze the flow of information through the brain, thus determining the phase 
transition between chaotic, transient, ordered patterns, also discovering the edge of chaos84–86, which is 
where complex computation occurs. In addition, topology is of primary importance, owing to the fact that 
different dynamic behavior and flow of information can occur according to different parameter values, 
initial conditions, thus giving account of the brain as a dynamic non-linear87 entity.

(d)	 BN well fits with the anatomy of the brain, represented as a connectome, for understanding basic brain 
functioning, and, therefore, both the structural and functional sides of the brain can be properly repli-
cated in a biological-like structure. The finite set of the activation rules and updating scheme of the BN, 
together with the possibility of varying the synchronous or asynchronous method, and the initial conditions 
allow a reduction of the potentially infinite number of processes a brain can carry out. For each node, the 
activation rules are determined by the activation states of the other nodes in the previous transition step, 
synchronously or asynchronously. These critical features of the BN dramatically influence the number and 
characteristics of the attractors. As brain areas activation rules and neighboring interaction among areas are 
not known, by using BN different activation rules and schemes can be tested, which best fit with conditions 
under which the simulated network would be able to capture the observed cognitive processes.

Another point of discussion is the choice of different parameter values of the NB, especially for threshold 
values. The threshold became the filter to see how nodes of the brain are individually correlated with the other 
nodes. It was crucial to establish the parameters according to careful neurocognitive modeling. This process 
would allow understanding the relationships between brain areas that are activated for the cognitive process we 
are describing. This, however, would require that it can be known, a priori, what these connections are from the 
neurophysiological point of view. As in most cases there is no data in this context, we tried to do some evalua-
tions of the best possible parameters. We can state that the rule of evolution of the Boolean network is crucial 
to the stability of the brain circuits, which, therefore, significantly change their characteristics. For increasing 
values of b and decreasing values of b , we observed the declining of many circuits, while for growing values of b 
many circuits disappeared, although a few of them remained as subcircuits of larger circuits. For the simulations 
we realized, putting the threshold at 0.9, the system produced no important interactions, it did not reveal any 

Connectome nodes Dynamics of each circuit Explanation

Circuit 8

{7, 8, 10, 13, 18, 20, 30, 33, 34, 36, 40, 44, 45,
50, 51, 52, 53, 60, 61, 70, 71, 72, 75, 76, 77, 79, 81}

This is a very simple circuit with a large num-
ber of nodes which rythmically turn on and 
off at each step of the simulation

Table 8.   Emerging circuits and their dynamical behavior with a = 1 e b = 6 maintaining the same threshold 
x = 0.9.
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meaningful structure. This meant that, the nodes of the brain circuitry having very strong connections, did not 
imply having effective interactions or correlations that can emerge. Placing the correlation threshold at 0.80, 
interaction among areas and many brain circuits emerged. We chose to put the correlation threshold at 0.87 in 
order to get a rich variety of connections. This question is strictly related to the brain local and global dynamics, 
and the observation of phenomena at different scales. According to this issue, we noticed mixed phenomena. The 
effects of the threshold levels changed the results of the simulations. In fact, if a very low threshold level allowed 
the emergence of the circuits at the local level, at the global level, this has not happened. This differs from the 

Figure 13.   The 10 circuits, obtained from the NB simulation taken as model, are compared to other circuits 
which could emerge from different simulation parameters.

Figure 14.   Intersection array (a) and correlation matrix for different simulation parameters (b).
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previously-argued hypothesis at the global level, for which we have shown that the average low threshold reveals 
an acceptable number of circuits. On the contrary, the high threshold increases the number of circuits. The phe-
nomenon is certainly linked to the scale of observation of the dynamics that are emerging. Therefore, it can be 
stated that, according to the level of scale, the functions of the thresholds can vary, providing results of completely 
different brain circuital connections (although they can be related). So, at the global level, a low threshold can 
make the circuits disappear, while at the local one, they continue to function. From the mathematical point of 
view, we are dealing with two different measures, in respect of which, there is no correlation. If we were to use 
the global threshold for the local level, there would be no local circuits. Lowering the local threshold is as if we 
accept the existence of local weak signals and strong global signals. It is a modeling outcome. We do not know 
if it also has a corresponding phenomenon in neuronal areas at different scales. In fact, the correlation that we 
use is a coarse modeling, interesting at the global level, but less significant at the local one.

In conclusion, we can say that modeling with Boolean Networks makes sense from the neurocognitive per-
spective. In fact, in the cognitive process we have simulated, it is known that the first circuit affects the soma-
tosensory cortex and the entorhinal cortex. This means that the two areas are activated for bringing spatial, 
visual and tactile information to the cognitive system (from the somatosensory cortex), which relates in some 
way to the stimulus localization. Then stimuli are conveyed to the entorhinal cortex system, where the grid cell 
systems provide information on the agent’s localization in the space in which he/she is in, especially thanks to 
the head position sensors, in correlation with a series of visual and auditory stimuli. These data, in turn, allow 
information to be obtained on the shape and size of objects on which he/she has to actually carry out the action. 
Furthermore, the entorhinal cortex connects with other systems, including the hippocampus, which plays a sig-
nificant role for storing processes and actions that have already been realized. Brodmann area 43 L is common 
to circuits 2, 7 and 9, while Brodmann area 24L is common to circuits 5, 6 and 10. This might suggest that there 
are 6 circuit clusters of a higher level: the first four coincide with circuits 1, 3, 4 and 8, connected to Brodmann 
areas which do not communicate with other circuits. Two cerebellar areas are made first, from circuits 2, 7, 9, 
while the second of 5, 6, 10 circuits. In reality, circuit 9 has the two sub-circuits 2 and 7 whose areas are strongly 
correlated with each other via area 43L, while the other 2 areas are weakly correlated. Similarly, for circuit 10, 
which contains both circuits 5 and 6, weakly connected between each other and strongly by Brodmann area 24L.

A complex landscape of how cognitive processes emerge is given by the phenomenon we interpreted as the 
emergence of metastable structures, which gave computational data on large-scale networks emergence and on 

Figure 15.   Intersection array (a) and correlation matrix for different simulation parameters (b).
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how the brain creates structures of remote communication. This is a metastable structure88, with a hierarchical 
organization, where each level allows for the emergence of brain organizations which behave at the next superior 
level.

In the dynamics of evolution for this simulation, we observed both stationary and oscillatory behavior, and 
repetitions of rhythms that can be ascribed to the different ways brain areas have to interact, in the Action–Execu-
tion simulation process. At the global level, after evaluating the whole period of the network, we denote that the 
above-described dynamics achieve their behavior each 48 steps of simulation, with complex organization at the 
edge of chaos. This problem can be extensively studied only with a great deal of computational power. In our 
case, we limited our attention to the understanding of what’s going on in the cognitive circuit stability, taking as 
example this first circuit configuration and comparing all the circuits obtained by varying the parameters to this 
reference frame, changing one parameter at a time.
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