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Abstract

When navigating uncertain worlds, humans must balance exploring new options versus exploiting 

known rewards. Longer horizons and spatially structured option values encourage humans to 

explore, but the impact of real-world cognitive constraints such as environment size and memory 

demands on explore-exploit decisions is unclear. In the present study, humans chose between 

options varying in uncertainty during a multi-armed bandit task with varying environment size and 

memory demands. Regression and cognitive computational models of choice behavior showed that 

with a lower cognitive load, humans are more exploratory than a simulated value-maximizing 

learner, but under cognitive constraints, they adaptively scale down exploration to maintain 

exploitation. Thus, while humans are curious, cognitive constraints force people to decrease their 

strategic exploration in a resource-rational-like manner to focus on harvesting known rewards.
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Effective learning and decision-making requires balancing two strategies: exploiting known 

good options versus exploring uncertain, potentially better ones (Sutton & Barto, 1998). 

Exploration involves forgoing short-term rewards to reduce uncertainty and discover better 

long-term values, while exploitation maximizes short-term rewards at the expense of 

learning about other options. The inherent tradeoff between exploration and exploitation 

requires learners to shift adaptively between these behavioral strategies to maximize long-

term rewards. Factors that affect explore-exploit decisions are essential to our understanding 
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of how learners navigate uncertain environments. Reducing uncertainty through exploration 

is potentially advantageous but features of the environment can limit the utility of 

exploration. For example, in environments with a short horizon, when learners anticipate 

few future encounters with a choice, the benefit of exploring to reduce uncertainty for future 

choices is low. Accordingly, humans reduce their exploration in such environments (Rich 

& Gureckis, 2018; Wilson et al., 2014). Environment size is another, less studied feature 

affecting exploration; humans can use spatially structured values to explore (Schulz, Bhui, et 

al., 2019; Wu et al., 2018), but effects of systematic manipulations of environment size on 

exploration have not been investigated. As the number of options available to choose from 

relative to the horizon increases, exploration should become less advantageous; however, 

whether humans can adaptively adjust exploratory strategies as they do with horizon changes 

is unknown.

In addition to normative reductions in exploration with increasing environment size, 

cognitive constraints may cause humans to adjust their exploration rate. Tracking and 

updating many potential options to enable effective exploration places demands on 

cognitive resources, as does maintaining accurate value estimates for exploitation. Cognitive 

constraints interfere with learning and valuation processes, but humans can anticipate and 

adjust for this interference: people proactively employ strategies for efficient learning under 

cognitive constraints, such as adjusting effort based on the expected value of control 

(Shenhav et al., 2013, 2017), exploiting hidden structure (Collins & Frank, 2013; Wu et 

al., 2018), and balancing resource-intensive but fast and flexible working memory with 

reinforcement learning (Collins et al., 2017). These adjustments allow performance to be 

maintained even with cognitive challenges, but how cognitive constraints affect how humans 

adjust the tradeoff between exploration and exploitation is less clear.

Work manipulating cognitive load during exploratory choices has used techniques such as 

concurrent working memory tasks or time pressure; these manipulations have been found 

to variously change exploratory strategies or reduce exploration in favor of exploitation 

(Cogliati Dezza et al., 2019; Otto et al., 2014; Wu et al., 2022). Exploration strategies 

in more complex environments also likely involve a shift from simpler subcortical explore-

exploit processes to more sophisticated cortical strategies (Badre et al., 2012; Costa et 

al., 2019; Daw et al., 2006; Ebitz et al., 2018). Much of this work to date, however, 

has examined cognitive demands and exploration in stylized bandit tasks, whereas most 

real-world explore-exploit decisions are made in large option spaces where option values 

are spatially structured, forming advantageous or disadvantageous subspaces (Schulz, Wu, 

et al., 2019; Wu et al., 2018). The strategies people use to adaptively resolve the explore-

exploit dilemma when navigating large action spaces are debated: it is unclear what factors 

promote uncertainty-seeking vs. uncertainty-averse behaviors, for example (Frank et al., 

2009; Hallquist & Dombrovski, 2019). In particular, we lack empirical knowledge of how 

human exploration is affected by naturalistic cognitive demands, such as environment size 

or the need to maintain multiple latent option values. Another question is to what extent 

behavioral responses to increased cognitive demands reflect proactive strategies like those in 

resource-rational models (Lieder & Griffiths, 2020; Wu et al., 2022) versus cognitive failures 

such as inability to maintain precise value representations.
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Specifically, shifts in exploratory behavior under cognitive demands could result from 

several factors (Dubois et al., 2021; Frank et al., 2009; Gershman, 2018; Sutton & Barto, 

1998; Wilson et al., 2014; Wu et al., 2018). At the simplest level, less precise value 

representations would manifest in increased choice stochasticity or random exploration. 

Another, strategic process potentially sensitive to cognitive constraints is the directed 

exploration of more uncertain options guided by exploration bonuses (Auer, 2002; Sutton, 

1990). Here, choices are based on both the expected value and the uncertainty (exploration 

bonus) of each option. In their full form, exploration bonuses require tracking both value and 

uncertainty of all options; a simpler form that may be adopted in cognitively challenging 

environments is switching (inverse of perseveration) or novelty bonuses. In this form, 

uncertainty is reduced to choice history and uncertainty seeking behavior simply favors 

options less recently chosen. Random and directed exploration differ in their purpose and 

interpretation: increases in random exploration reduce the influence of value on choice and 

so make choices more noisy, while increases in directed exploration specifically prioritize 

more uncertain options. For example, imagine ordering a dish at an Italian restaurant, 

where one has enjoyed some previously ordered dishes (e.g., cacio e pepe) and not others 

(e.g., lasagna), while other dishes (e.g., gnocchi) are novel. Increased random exploration 

would make one less value-sensitive and decrease how often one chooses higher-valued 

relative to lower-valued dishes (e.g., more likely to order lasagna relative to cacio e pepe), 

while increased directed exploration would increase the probability of a novel choice (e.g., 

ordering gnocchi).

Competing explanations for exploratory choices can be hard to differentiate on standard 

learning tasks for two reasons. The first is the natural anticorrelation between value and 

uncertainty that emerges during value-based decision-making, as options with higher values 

will be selected more often, reducing their uncertainty. Paradigms with initial forced choice 

trials can decorrelate value and uncertainty to enable assessment of different exploratory 

strategies (random versus directed) on the first free choice (Dubois et al., 2021; Wilson 

et al., 2014). This manipulation also experimentally controls the local uncertainty of each 

choice to assess effects of environment size and memory demands. Second, the pattern 

of choices only provides a rough picture of different strategies, such as exploitation or 

directed exploration. Computational models instantiate these strategies explicitly. Thus, by 

inferring model parameters corresponding to each strategy from human behavior, we can test 

hypotheses about alternative underlying strategies more precisely. Computational models of 

choice behavior during exploration represent choice stochasticity, exploration bonuses, and 

perseveration as specific parameters (Dubois et al., 2021; Frank et al., 2009; Gershman, 

2018; Wu et al., 2018).

In the present study, participants made decisions to maximize rewards with long choice 

horizons (30 free choices per block) to encourage initial exploration. We then assessed 

how manipulations changed this exploratory behavior. First, we used initial forced choice 

sampling to manipulate value and uncertainty independently under varying cognitive 

demands. Then, we assessed exploratory and exploitative strategies to understand how 

different cognitive demands – environment size and memory demands – affected exploratory 

and exploitative behavior. We focused on the first free choice in each block to assess 

independent effects of value and uncertainty, a strategy enabled by the initial forced choice 
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sampling. We then compared participants’ choices to chance and value-maximizing behavior 

to determine if changes in exploratory and exploitative behavior were proactive adjustments 

or cognitive failures. We hypothesized that increased environment size would decrease 

exploration in empirical data, and that this decrease in exploration was adaptive based 

on normative models. We further examined whether this decreased exploration was due 

to increased memory load by comparing effects of environment size (where decreases in 

exploration may or may not be memory-dependent) and memory demands (which explicitly 

measures memory-dependent changes in exploration) and whether exploration was affected 

by spatial generalization. We then sought to characterize, using regression and formal 

computational models, what choice strategies drove changes in exploration with these 

manipulations.

Methods

Participants

Participants were 95 undergraduate students enrolled in psychology courses who completed 

the experiment in exchange for course credit. Seventy-two (76%) identified as female (22 

[23%] male, 1 [1%] declined to answer), median age was 19 years (range: 16-22), 73 

(77%) identified as White (9 [9%] as Asian, 7 [7%] as Black, 3 [3%] as multiracial, and 

2 [2%] as American Indian/Alaskan Native), and 92 (97%) identified as non-Hispanic (3 

[3%] Hispanic). All participants gave informed consent and the study was approved by the 

Pennsylvania State University IRB.

Task

Participants completed eight blocks of the PiE (Probabilistic Exploration) task (Figure 1). 

This task was based on a task previously used to study exploration (the ‘clock’ task; 

(Moustafa et al., 2008)) but with explicitly spatially arranged segments requiring fewer 

assumptions about how learners binned state spaces, and with varied cognitive demands 

based on environment size and memory demands. Participants were instructed that the goal 

of the task was to maximize winnings by learning which segments in the pie were the 

most likely to provide a reward (nickel shown) versus no reward (nickel crossed out). The 

probabilities of reward for each segment ranged from 0.35 to 0.65 and were stable within 

a block of trials. Participants were not instructed on the reward distributions. Each block 

consisted of 4 or 8 initial forced choice trials, followed by 30 free choice trials. The task had 

a 2 (environment size: 4 or 8 segments) x 2 (memory demands: outcomes for each action 

in the block shown or hidden) x 2 (initial forced choice trials: even or uneven sampling) 

design, such that each combination of conditions was consistent throughout each block and 

was experienced in one block only.

During the initial forced choice trials at the beginning of each block, all but one segment was 

grayed out on each trial and participants were instructed to select the highlighted segment. 

As reward probabilities were consistent throughout free and forced choice sampling, 

observed outcomes during forced choice sampling were informative about the reward 

probability for those segments. During the remaining free choice trials, participants freely 

selected from all segments. The number of forced choice trials was equal to the number of 
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segments in each block (4 or 8). During blocks with even sampling during forced choice 

trials, each segment was highlighted and chosen once. During blocks with uneven sampling, 

segments were highlighted 3, 2, 2, 1, 1, 0, and 0 times (for 8 segments) or 2, 1, 1, and 

0 times (for 4 segments). How often segments were highlighted and in what order was 

randomly chosen each block. This design, modeled after (Wilson et al., 2014), allowed for 

value and uncertainty to be independently manipulated for each segment for the trial of 

interest, the first free trial, in each block.

Statistical Regression Analyses

All analyses used R (version 4.1.1) and focused on choices during the first free trial 

in each block. Multilevel logistic regressions assessed differences between participants’ 

probability of choosing segment types versus chance performance. Segment types were 

defined as previously sampled, always rewarded (segment chosen during forced choice 

sampling and all selections during forced choice sampling resulting in a reward), previously 

unsampled (segment not chosen during forced choice sampling), and previously sampled, 

not always rewarded (segment chosen during forced choice sampling but not always 

rewarded). These segment types are a model-free approximation of exploitative, directed 

exploratory, and random exploratory choices. Since we focused on factors affecting 

uncertainty and exploration, present analyses focused on blocks with unsampled segments 

and full manipulation of uncertainty (i.e., those with uneven initial sampling). Chance 

performance was estimated as the proportion of segments in each segment type for each 

combination of conditions, averaged across all participants. Separate regressions were run 

for each segment type, predicting the probability of choosing it as a function of condition 

and participant’s random intercept. As standard logistic regression assumes a chance level 

of 0.5 rather than the true chance probabilities, log odds were adjusted based on the 

calculated chance proportions of each segment type for each combination of conditions. 

Identical analyses were run on simulated choices compared to chance behavior (see below 

for simulation details); additional analyses compared simulated choices and participants’ 

empirical choices, with log odds adjusted to account for the empirical probability of each 

type of choice in the same way as adjustments for chance performance.

Beyond changes in how sampled versus unsampled segments are chosen, another form of 

reduced exploration that may be adaptive in large environments is spatial generalization (Wu 

et al., 2018). To assess the extent of spatial generalization based on participants’ choices, 

multilevel linear regressions assessed the distance between segments chosen on consecutive 

trials (only on trials in which the participant switched segments), measured as number of 

segments traveled versus chance as a function of previous reward receipt, points shown 

vs. hidden, initial even vs. uneven sampling, and the interactions of these effects. Segment 

distance ranged from 1 if a neighboring segment was chosen to 2 (for 4 segment blocks) or 

4 (for 8 segment blocks) if a segment across the circle from the previous choice was chosen. 

Chance performance was calculated from the average distance of all segments (4 segments: 

2*1 + 2, divided by 3; 8 segments: 2*1 + 2*2 + 3, divided by 7).

Regression models were estimated in a Bayesian framework using the ‘brms’ package in 

R (Bürkner, 2017; Carpenter et al., 2017)(brms version 2.16.1; rstan version 2.21.1). Three 
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Monte Carlo chains were run with 3000 samples each (500 of which were warmup samples), 

for a total of 7500 samples used for inference. Significance was defined as 97.5% of 

samples falling above or below 0; however, as any binary significance threshold is arbitrary 

(McElreath, 2020), results where 85-97.4% of samples fell above or below 0 are noted but 

qualified as weaker evidence for an effect.

Generative Computational Model

Categorizing choices by reward and sampling history gives a rough approximation of 

influences on choice. For a more accurate measurement of the influences of exploitation 

and directed and random exploration, we constructed a process-based computational model 

including these influences. The computational model used an ideal Bayesian learner to learn 

the value distribution of each segment and a choice rule incorporating choice stochasticity, 

exploration bonuses, and perseveration. The Bayesian learner was chosen as a parsimonious 

learning rule to focus on influences on choice behavior.

The ideal Bayesian learner represented the value of each segment as a beta distribution that 

was updated with the outcome of each trial. At the beginning of each block, the α and β 
parameters of each segments’ beta distribution were reset to 1, yielding an expectation of 

0.5. After the outcome was revealed for a chosen segment, the α (if a reward was received) 

or β (if a reward was not received) parameter for that segment was increased by 1:

αt + 1 = W + αt; βt + 1 = (1−W) + βt; W = 1 if reward ∕ 0 if no reward (1)

The choice rule was based on a softmax function transforming the mean value of each 

segment into a probability of being chosen relative to other segments (equation 2). Free 

parameters affecting choice were inverse temperature (β), which controlled the level of 

choice stochasticity versus sensitivity to mean values (Smean), an exploration bonus (ω), 

which changed the probability of a segment being chosen based on its uncertainty (Svar; 

positive values increased probability whereas negative values decreased probability), and 

perseveration (τ), which increased the probability of choosing the segment chosen on the 

last forced choice trial. For the exploration bonus, uncertainty was defined as the variance of 

the mean value of each option, reflecting the uncertainty about the true value of each option. 

This variance was calculated from the beta distribution of each segment’s value (Bach & 

Dolan, 2012; E. Payzan-LeNestour & Bossaerts, 2011).

P(S)t = 1 ∕ (1 + exp(−(β∗Smean(S)t + ω∗Syar(S)t + τ∗Ct−1))); Ct−1 = 1
if S chosen on trial t‐1 and −1 otherwise (2)

Generative Model Fitting

Models were fit using the ‘rstan’ package in R, which uses a Hamiltonian Monte Carlo 

sampler for Bayesian estimation (rstan version 2.21.1; (Carpenter et al., 2017). For each 

model, three chains were run with 3000 samples per chain (1000 of which were used for 

warmup), for 6000 total samples used for inference. Hamiltonian Monte Carlo diagnostics 
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did not indicate a lack of convergence. Data were estimated hierarchically, with parameter 

values estimated for each participant and for the distribution over the sample.

All free parameters (β, ω, and τ) were estimated using a non-centered parameterization with 

a mean, standard deviation, and participant-specific variation. Priors for mean parameter 

values were normally distributed, with means of 0 and standard deviations of 5 (β and ω) or 

1 (τ). Priors for standard deviation parameter values used Student’s t distributions with 10 

(β), 5 (ω), or 3 (τ) degrees of freedom, means of 0, and standard deviations of 3 (β and ω) or 

2 (τ). All participant-specific variation parameter values used priors of a normal distribution 

with mean of 0 and standard deviation of 1. Values of prior distributions were based on prior 

predictive checks simulating behavior on the task.

To assess the effects of environment size and memory demands, a regression estimated 

changes in the mean of each parameter value with greater number of segments (8 vs. 4) 

and with points hidden (hidden versus shown). Multiple univariate regressions were run 

simultaneously with model estimation as recommended by (Brown et al., 2020). Therefore, 

the reference parameter values were fit to behavior from the blocks with four segments and 

points shown (minimal cognitive load condition), with additional dummy-coded estimated 

effects of 8 segments, points hidden, and the interaction of these effects on each parameter. 

These estimated effects were all given priors that were normally distributed with means 

of 0 and standard deviations of 1. Effects of environment size and memory demands were 

assessed based on the posterior distribution of each condition and their interaction. Similar 

to the regression analyses above, effects were deemed significant if 97.5% of the posterior 

was above or below 0, with effects with 85-97.4% of the posterior above or below 0 

interpreted as providing more limited evidence for an effect. Identical analyses were run 

on simulated behavior, with the exception of eliminating the effects of memory demands. 

Additionally, to test possible changes in behavior once people learned the overall structure 

of the task, changes in each parameter in the minimal cognitive load condition were tested 

with the linear effect of block number and by comparing parameter values in the first versus 

second half of the task.

Parameter Recovery

To check whether generative model parameters could be independently estimated and related 

to changes in performance with changes in cognitive demands, parameters were simulated 

and recovered. This approach assessed the proportion of times that the median of the 

parameter recovered from simulated data fell within the 95% credible interval for the 

distribution of the empirically estimated parameter used to simulate the data. Specifically, 

we simulated behavior for 95 participants (the empirical sample size) using the median 

parameter values estimated for each condition from the empirical data. We then refit these 

simulated data with the same computational models to determine whether the recovered 

parameter values (during the minimal cognitive load condition and with changes in cognitive 

demands) match those that were originally estimated. This simulation was carried out 100 

times and the median recovered parameter values for each simulation were plotted against 

the posterior distribution of the parameter values fit to empirical data. Successful recovery 

was further quantified as the proportion of recovered posterior median parameter values 
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falling within the 95% credible interval for the posterior distribution of the parameter values 

fit to empirical data.

Simulations

To assess whether changes in exploration with increased environment size represented 

value-maximizing behavior, task behavior was simulated for different environment size. 

Simulated behavioral performance was measured by the proportion of free choice trials 

resulting in reward, averaged over 100 simulated participants. For the primary simulations, 

as a parameter reflecting noise in participants’ value estimates, β was fixed at the median 

empirical reference condition value of the human sample, 7.9. Ranges of parameter values 

for ω (−10 to 10) and τ (−1 to 1) parameters were based on ranges of values estimated 

from participants’ behavior. In follow-up simulations with a smaller environment size and 

when allowing inverse temperature to vary, β was allowed to vary from 0 to 10. Additionally, 

behavior was simulated for a smaller environment size of 2 segments. In this condition, 

initial uneven sampling meant that one segment was sampled twice and the other not at all; 

probabilities of reward for each segment were set to 0.4 and 0.6.

Results

In all conditions, participants made a mix of exploitative and exploratory choices (Figure 

2A). The proportion of choices attributable to different choice policies (previously sampled, 

always rewarded, reflecting primarily exploitative choices; previously sampled, not always 

rewarded, reflecting possible random exploration; and previously unsampled, reflecting 

directed exploration) differed by both memory demands and environment size. Notably, 

none of the condition effects were in the direction of chance performance (chance 

performance illustrated by dotted lines in Figure 2A). To confirm that behavior in the 

minimal cognitive load condition was adaptive and differed from chance and to quantify 

differences with increased cognitive demands, a multilevel Bayesian logistic regression was 

run. In this regression, log odds were adjusted for proportion of choices under chance 

performance. Distributions of coefficients are displayed in Figure 2B. Relative to chance 

performance, participants in the minimal cognitive load condition were more likely to 

choose options that were previously sampled and always rewarded (median log odds = 

0.481; 98.6% of samples from the posterior distribution of log odds greater than 0) and 

less likely to choose options previously sampled and not always rewarded (median log odds 

= −1.34; 100% less than 0), with somewhat reduced tendency to choose the previously 

unsampled options as well (median log odds = −0.439; 94.8% less than 0). With greater 

memory demands, participants chose the previously unsampled options less (median log 

odds = −0.700; 98.4% less than 0) and the previously sampled, always rewarded options 

somewhat more (median log odds = 0.649; 96.6% greater than 0), with little change in 

frequency of choosing previously sampled, not always rewarded options (median log odds 

= 0.140; 67.3% greater than 0). Further, in a larger environment, participants chose the 

previously sampled, always rewarded (median log odds = 0.464; 90.8% greater than 0) 

and previously sampled, not always rewarded (median log odds = 0.484; 93.6% greater 

than 0) options somewhat more, with no change in choosing previously unsampled options 

(median log odds = −0.228; 76.4% less than 0). Taken together, both forms of cognitive 
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load manipulation increased exploitation, as shown by choosing previously sampled, always 

rewarded options more, but had dissociable effects on directed exploration of unsampled 

options (decreased with greater memory demands) and random exploration of previously 

sampled, not always rewarded options (increased with larger environment size). Regarding 

spatial generalization, participants chose marginally closer segments than chance in larger, 

but not smaller environments. For 8 segment blocks, the average distance traveled between 

choices was 2.04 segments (91.3% of samples less than the chance distance of 2.29) and 

for 4 segments the average distance was 1.37 (31.5% of samples less than chance distance). 

In both environment sizes, spatial generalization did not significantly differ by memory 

demands, initial sampling, or reward receipt on the previous trial.

These behavioral results broadly support the notion that directed exploration decreases 

under memory demands and, possibly, in larger environments (a point we examine in-depth 

in normative simulations below). To more precisely measure how participants’ choice 

policies shifted under cognitive demands, a learning model was fit to participants’ first 

free choices on each block. Choice models (based on an ideal Bayesian learner; Figure 

3A) included parameters representing inverse choice stochasticity (β), exploration bonus 

(ω), and perseveration (τ). Model checks showed that parameters from the model could 

measure changes in choice policies accurately: reference (minimal cognitive load) condition 

parameters and their shifts with cognitive demands (memory demands and environment 

size) were uncorrelated (Supplementary Figure 2A) and were well recovered from simulated 

behavior (Supplementary Figure 2B). Specifically, for parameter recovery, the percentage of 

median recovered parameter values that fell within the 95% credible interval of posterior 

distribution fit to empirical behavior ranged from 90-100%, with a median of 98%. Initial 

choices simulated from median fit parameters per condition also recapitulated patterns 

seen in participants’ empirical choices (Figure 3B), indicating that the model captured 

participants’ choice behavior well.

Compared to chance, parameters of the model under the minimal cognitive load condition 

showed less choice stochasticity (reflecting value-sensitive choices, β: median=7.94, 100% 

greater than 1 [chance]), greater exploration bonus (ω: median=2.48, 97.7% greater than 

0), and negligible change in perseveration (τ: median=−0.02, 55.5% less than 0). This 

basic result confirms that participants made value-sensitive choices and favored options 

with higher uncertainty (greater variance), and did not rely on simpler, choice history-

driven exploration as would be measured by changes in perseveration. Participants’ choice 

strategies did not meaningfully change across blocks (relationship between block number 

and parameter: beta median = 0.425, 80.9% greater than 0; tau median = −0.083, 83.1% 

less than 0; omega median = 0.012, 50.5% greater than 0; results were similar when 

comparing parameters estimated from trials in the first versus second half of the task instead 

of assuming a linear change in parameters across blocks), ruling out participants’ initial 

unfamiliarity with the task as an explanation for their high exploration rate. Under greater 

memory demands, participants became moderately less sensitive to values and decreased 

the exploration bonus, with little effect on perseveration, indicating that choices became 

slightly noisier and less uncertainty-seeking (median β change=−1.81, 88.4% less than 0; 

median ω change=−2.80, 95.5% less than 0; median τ change=−0.02, 54.6% less than 

0). With larger environment size, participants showed a reduced exploration bonus and a 
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slightly decreased choice stochasticity parameter (median ω change=−3.92, 99.8% less than 

0; median β change=1.79, 86.9% greater than 0) and little change in perseveration (median 

τ change=−0.18, 76.7% less than 0), suggesting their choices were less uncertainty-seeking 

and more value-driven. The interaction of memory demands and environment size was 

modest, with participants becoming slightly more perseverative (median β change=−1.31, 

73.0% less than 0; median ω change=−0.88, 64.7% less than 0; median τ change=0.42, 

90.5% greater than 0). Therefore, both conditions independently reduced the uncertainty 

seeking seen in the minimal cognitive load condition, with greater memory demands leading 

to increased noise and larger environment size causing increased value sensitivity.

Decreased exploration may be adaptive as environment size increases relative to the choice 

horizon and exploring all options becomes infeasible. To test this idea, behavior was 

simulated at different levels of exploration bonus and perseveration. Parameter values 

were then related to average probability of reward for chosen options for all free trials 

in a block. For both exploration bonus and perseveration, parameter values representing 

more exploitative behavior (higher, more negative values of ω and higher, more positive 

values of τ) resulted in choices with a greater average probability of reward (effect of 

parameter value on average reward probability of chosen option, ω: t = −24.29, p < .001; 

τ: t = 14.12, p < .001; Figures 4A and 4B). This effect was present regardless of initial 

sampling type (even vs. uneven) and number of segments. Interestingly, parameter values 

resulting in greater average probability of reward also had more variance in performance 

across participants. This pattern suggests that more exploitative agents perform better on 

average even though they can become stuck in local maxima (good but not great segments), 

since the performance overall is improved more than the occasionally poor performance 

is harmful. Simulated initial free choices from the combination of parameters leading 

to the highest average reward probability (β=7.9, ω=−10, τ=1) are shown with thick 

solid lines in Figure 4C. A Bayesian multilevel logistic regression (Figure 4D) compared 

value-maximizing simulated initial choices to chance to relate value-maximizing simulated 

behavior to regression-based analyses of empirical behavior. This analysis showed that 

simulated value-maximizing choices, relative to random choices, were much less likely to be 

previously unsampled options (median log odds = −3.09, 100% below 0) or previously 

sampled, not always rewarded options (median log odds = 0.26, 100% below 0) and 

more likely to be previously sampled, always rewarded options (median log odds = 1.42; 

100% greater than 0). Next, these simulated value-maximizing choices were compared to 

the frequency of choosing each option in participants’ empirical data (Figure 4E). When 

compared to empirical choice frequencies, simulated value-maximizing choices were more 

likely to be either previously sampled, always rewarded (median log odds = 0.75, 100% 

greater than 0) or previously sampled, not always rewarded options (median log odds = 

0.85, 100% greater than 0), and less likely to be previously unsampled options (median 

log odds = −2.00, 100% less than 0). Therefore, although participants chose previously 

unsampled options less than chance (as shown above), they still chose these options more 

than a value-maximizing agent.

Overall, these results suggest that the shift from chance to value-maximizing behavior 

involves increased exploitation and decreased directed exploration. Relative to participants’ 

actual choices, value-maximizing choices were more likely to be known options, regardless 
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of whether they had been consistently rewarded, and less likely to be unsampled options. 

Therefore, participants explored novel, uncertain options more than was needed to maximize 

value. The reduction in both directed and random exploration suggests that humans 

deliberately explore more than is needed in this task; in contrast, if only random exploration 

was reduced in simulated compared to empirical data, this pattern would suggest that 

behavior may be more exploratory due to noise only.

This uniformly high cost of directed exploration could be due to two factors: the large 

environment size in the task and the degree of random exploration shown by participants. 

To understand if directed exploration improves performance in smaller environments 

or with higher random exploration, ω, τ, and β parameters were allowed to vary 

simultaneously for environments with 2 segments as well as 4 and 8. With inverse 

temperature fixed at a relatively high value (10), a gradient emerged as the number of 

segments decreased (Supplementary Figure 1A). Specifically, in the smallest environment 

(2 segments), a combination of greater directed exploration and increased perseveration led 

to the best performance. Conversely, with a relatively low inverse temperature (3), more 

exploitative behavior led to better performance, particularly in 4 and 8 segment conditions 

(Supplementary Figure 1B). This finding suggests that under certain conditions – small 

environment size and less random exploration, and when accompanied with perseveration – 

greater directed exploration can be beneficial, but is not helpful with greater environment 

size and with relatively low random exploration.

Changes in participants’ behavior with increasing cognitive demands could reflect cognitive 

failures or a shift towards value-maximizing behavior given the cognitive constraints in the 

task. To determine what drove behavior changes, changes in value-maximizing behavior 

with greater environment size were simulated. With greater environment size relative to 

the reference condition, simulated value-maximizing choices were more likely to be both 

previously sampled, not always rewarded (median log odds = 0.485, 100% greater than 

0) and previously unsampled options (median log odds = 0.51, 100% greater than 0), 

with little change in previously sampled, always rewarded options (median log odds = 

0.01; 55.6% greater than 0; Figure 4D). Memory demands reflect cognitive constraints 

and do not affect value-maximizing behavior and so were not simulated. Compared to the 

frequency of choosing each option in participants’ empirical data (Figure 4E), increases in 

environment size caused simulated value-maximizing behavior to increase the frequency 

of previously sampled, not always rewarded (median log odds = 0.16, 97.8% greater 

than 0) and previously unsampled options (median log odds = 1.61, 100% greater than 

0) and did not increase the frequency of choosing previously sampled, always rewarded 

options with greater environment size as much as in empirical choices (median log odds = 

−0.42, 100% less than 0). As the frequency of choosing unsampled options with simulated 

value-maximizing choices was still very low with greater environment size, the increases 

relative to chance and empirical choices represent a significant but very small increase 

from negligible directed exploration with minimal cognitive load, while the increase in 

previously sampled, not always rewarded options relative to both chance and empirical data 

suggests that increased environment size causes value-maximizing behavior to encompass 

less-frequently rewarded options.
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Discussion

We investigated how human exploration responds to cognitive challenges often encountered 

in the real world – large environment sizes and memory demands. We found that in the 

baseline low-demand condition participants made exploitative choices but also engaged 

in both random and directed exploration (Wilson et al., 2014). Under cognitive demands, 

people adjusted their behavior to maintain exploitation. These adjustments did not reflect a 

shift towards chance characteristic of cognitive failures; instead, they were consistent with 

anticipating and proactively maintaining exploitation with increases in cognitive load.

Under cognitive load, participants became even more exploitative and shifted their 

exploratory choices. The adjustment depended on the type of cognitive demand: in a 

larger environment participants chose previously sampled but infrequently rewarded choices, 

reflecting greater random exploration, while under memory demands, participants reduced 

directed exploration by choosing fewer options that were unsampled to that point. Fitting 

participants’ behavior with a generative model allowing choice stochasticity (representing 

ability to maintain accurate values), an exploration bonus, and perseveration to affect value-

based choices showed that, in a smaller environment and with low memory demands, 

behavior was driven by exploiting intact value representations and an exploration bonus, 

with little effect of perseveration. Increased environment size decreased the exploration 

bonus and further decreased choice stochasticity, while increased memory demands 

decreased the exploration bonus and increased choice stochasticity.

These changes with increased cognitive load could be due to two effects: first, participants 

may change their behavior in response to increasingly noisy value representations once 

their cognitive resources are overwhelmed. Conversely, they may proactively adjust behavior 

when they anticipate that the demands of the environment will exceed their capacity to 

maintain and update the reinforcement history for each of the many options. Our data 

suggest that participants engage in the latter strategy by increasing exploitative choices 

and decreasing directed exploration. If participants instead became overwhelmed by noisy 

value representations, behavior would have shifted closer to chance, resulting in decreased 

exploitative choices and increased random exploration, or have showed a shift from a more 

complex form of exploration driven by exploration bonuses to a simpler form driven by 

reduced perseveration. This proactive adjustment was mirrored in the parameters governing 

the computational model that best captured participants’ choices: chance performance would 

have resulted from large increases in choice stochasticity, but instead the clearest shift was 

a decrease in the exploration bonus. This shift in behavior was present even under memory 

demands, which should not shift optimal behavior away from exploration (unlike increased 

environment size). Taken together, these results suggest that when entering a cognitively 

demanding environment, participants proactively shift choices to maintain exploitative, 

value-driven behavior at the expense of exploration. Therefore, the uncertainty aversion 

participants show with increased cognitive demands suggests that participants engage in 

meta-reasoning about their cognitive capacity. This shift is similar to a resource-rational 

strategy (Lieder & Griffiths, 2020; Shenhav et al., 2017); to further test resource rationality, 

future work should explicitly derive a resource-rational model to measure against behavior 

in this paradigm.
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Choices simulated from a computational model, composed of an ideal Bayesian learner 

with a choice rule incorporating choice stochasticity, exploration bonuses, and perseveration, 

revealed that this shift away from exploration was in line with value-maximizing behavior. 

The best performance resulted from parameter values that severely curtailed exploration. 

With an even smaller environment size than used here (two segments only), some 

exploratory behavior was adaptive, but in the environment sizes in the present task (four 

and eight segments), returns increased monotonically with reductions in exploration. These 

results indicate that, given the reward structure of the task, exploration can be helpful 

in small but detrimental in large environments. Therefore, the decreased exploration 

seen in larger environments adaptively reflects both a value-maximizing strategy and, by 

reducing the cognitive load associated with maintaining the uncertainty of each choice’s 

outcome, a further adjustment to cognitive demands. Interestingly, although participants 

decreased exploration under cognitive demands, their exploration in the minimal cognitive 

load condition, as measured by the exploration bonus parameter, was higher than needed 

to maximize value. Positive exploration bonuses, indicated by good fits of models 

incorporating upper confidence bound (UCB) choice rules, have been found in a variety of 

tasks (Frank et al., 2009; Gershman, 2018; Schulz, Bhui, et al., 2019); however, participants 

show ambiguity aversion with greater environment size (É. Payzan-LeNestour & Bossaerts, 

2012) or when learning from continuous action spaces is approximated by many discrete 

values (Hallquist & Dombrovski, 2019). The presence of directed exploration under lower 

cognitive load in this task and others indicates that while people may explore more than 

indicated by value-maximizing behavior, when faced with increasing cognitive demands, 

they are able to decrease exploration and adjust in the direction of maximizing value. 

Why, despite the ability to adjust exploration with increasing cognitive load, do people 

explore more than a value-maximizing agent overall? We have found that exploration can be 

beneficial when rewards in an environment are very sparse (Hallquist & Dombrovski, 2019), 

or when the reward functions are monotonic across the task, and the agent can therefore 

assume a coarse segmentation across the environment (Frank et al., 2009). When navigating 

a rewarding environment, greater exploratory behavior may reflect an optimistic prior on the 

utility of exploring that enables rewarding options to be discovered even in discontinuous 

or non-stationary environments. This belief in the utility of exploration may persist even in 

stable environments and with reward functions that are monotonic across choices that do not 

encourage exploration, as participants’ exploratory behavior did not decrease as they gained 

more experience with the task. Further work should seek to understand the causes of this 

above-optimal exploration.

The two cognitive load manipulations– increased environment size and increased memory 

demands – had partially dissociable effects on exploratory and exploitative behavior. In 

a larger environment, participants became more value-sensitive at the expense of both 

random and uncertainty-directed exploration. They also showed some evidence for spatial 

generalization of values. This pattern of behavior suggests that as environment size increases 

beyond participants’ capacity to track value and uncertainty simultaneously, they forgo 

tracking uncertainty and engage in spatial generalization to maintain value estimates. 

Meanwhile, memory demands degrade representations of both value and uncertainty. 

Although participants’ behavior did not shift toward chance performance overall, the 
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increased choice stochasticity with increased memory demands reflected noisier value 

representations. Therefore, participants may be able to adjust their exploration/exploitation 

tradeoff in a more resource-rational way with increasing environment size, whereas with 

increased memory demands people may show a mix of proactive adjustment (decreased 

uncertainty seeking) and reactive inability to maintain value estimates leading to noisier 

choices. Increased working memory demands with greater memory demands and not 

increased environment size may explain this difference in behavioral adjustments between 

conditions.

Neurally, reductions in exploration are accompanied by increased value-related signals in 

ventromedial prefrontal cortex and decreases in associative neocortical areas, including 

frontopolar cortex, insula, dorsal anterior cingulate cortex, and inferior parietal cortex 

(Blanchard & Gershman, 2018; Daw et al., 2006; McGuire et al., 2014); future work 

should investigate the role of these neural systems in cognitive load-based adjustments 

in directed exploration and exploitation. Additionally, noradrenergic activity (balanced by 

acetylcholine signals (Yu & Dayan, 2005) or tonic versus phasic activity (Aston-Jones & 

Cohen, 2005)) may regulate exploring novel options versus optimizing performance on the 

task at hand. Our finding that increased cognitive load decreases uncertainty seeking may 

indicate that anticipated increases in cognitive demands shift noradrenergic activity away 

from an exploratory state to maximize focus on value-driven behavior.

The present findings add to the existing literature on exploration, complex environments, 

and cognitive load. In large environments where outcomes are correlated, participants use 

the underlying structure of the environment to guide exploration (Schulz, Bhui, et al., 

2019; Wu et al., 2018). In the present task, where outcomes of different options were 

unrelated, we found minimal spatial generalization with greater environment size. Previous 

work attempting to study effects of cognitive load on exploration has used simultaneous 

working memory tasks alongside learning tasks (Cogliati Dezza et al., 2019; Otto et al., 

2014). These concurrent working memory tasks decreased exploration or, alternatively, 

reduced model-based choices with no effect on exploration. In the current task, we found 

decreased exploratory behavior across cognitive demand types (environment size, memory 

demands). Completing two concurrent tasks may not represent real-world cognitive demands 

well, since performance on the working memory task is not needed (and is, in fact, 

detrimental) to perform well on the learning task. By incorporating cognitive demands into 

the task, we show that the reduction in directed exploration is adaptive rather than reflecting 

increased noise in value representations. Another type of cognitive demand, adding time 

pressure to a learning task (Wu et al., 2022) simultaneously reduces exploitation and 

directed exploration while increasing perseveration. Time pressure may make maintaining 

values more difficult, leading to increased perseveration and decreased exploitation, whereas 

increased environment size led to greater exploitation and no cognitive demands affected 

perseveration.

In summary, we found that increased cognitive demands, in the form of a larger environment 

and increased memory demands, shifted participants’ exploratory and exploitative strategies. 

These behavioral adjustments were consistent with a shift towards value-maximizing, rather 
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than chance, behavior, and indicated that participants responded to cognitive demands in a 

proactive, resource-rational-like way.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Task schematic. On each trial, participants choose a segment and receive feedback of 

reward (nickel shown) or no reward (nickel crossed out). Each segment has a stable, 

randomly assigned probability of reward per block. In each block, participants choose from 

either 4 or 8 segments (manipulating environment size) and are shown points representing 

past outcomes or not (manipulating memory demands). At the beginning of each block, 

participants have 4 or 8 forced choice trials (equivalent to the number of segments in 

that block), during which only one segment is highlighted and available to choose. The 

remaining 30 trials are free choice and participants can choose any segment. The initial 

forced choice sampling is either even (each segment chosen once) or uneven (some segments 

chosen multiple times while some segments are unchosen). Participants completed eight 

blocks and each block was a unique combination of environment size, memory demands, 

and initial sampling (even or uneven).
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Figure 2. 
Initial free choices compared to chance performance. A: Types of choices on the first free 

trial in each block versus chance performance, blocks with uneven sampling only. Choices 

likely due to exploitation (green) occurred when participants chose a segment that had 

been consistently rewarded during forced choice sampling. Choices resembling directed 

exploration (blue) occurred when participants chose a segment that was unchosen during 

forced choice sampling, and choices resembling random exploration (salmon) occurred 

when participants chose a segment that had been chosen but not always rewarded during 

forced choice sampling. Chance performance is indicated by dotted lines for each type 

of choice. B: Statistical comparison of the likelihood of each first free choice type, with 

log odds (x axis) adjusted for chance performance. Y axis shows differences from chance 

in the minimal cognitive load condition (intercept) and with change in each type of 

cognitive demand and their combination. Posterior distributions from Bayesian hierarchical 

regressions are shown, with shading and asterisks indicating the percentage of samples from 

the posterior greater than or less than 0.
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Figure 3. 
Model parameters fit to initial free choices. A. Distributions of model parameters fit 

to empirical data. X axis indicates model parameters under the minimal cognitive load 

condition (intercept) and effects of changes in each type of cognitive demand. Y axis 

indicates parameter values, with shading and asterisks indicating the percentage of samples 

from the posterior supporting exploitative or exploratory behavior. Positive inverse choice 

stochasticity, negative exploration bonus, and positive perseveration parameter values 

indicate more exploitative vs. exploratory behavior. B. Distribution of initial free choices 

on each block for empirical data (left; identical to Figure 2A) versus simulated performance 

from median fitted parameters (right).
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Figure 4. 
Value-maximizing simulated behavior. A. Reward probability of behavior simulated at each 

parameter value, averaged within each simulated participant. Violin plots and boxplots 

indicate variability in average reward probability across simulated participants. Shading 
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indicates exploitative vs. exploratory parameter values. X axis on each plot indicates 

the simulated parameter value and Y axis indicates the average reward probability per 

simulated participant. B. Simulated performance (average reward across participants) for all 

combinations of exploration bonus (X axis) and perseveration (Y axis) parameter values. 

Each panel indicates performance by the environment size and type of initial sampling. 

C. Distribution of initial free choices on each block for empirical data with simulated 

performance from parameters from model with value-maximizing performance (solid thick 

lines) and chance performance (dotted lines). D. Statistical comparison of the likelihood 

of each first free choice type of behavior from simulated value-maximizing model, with 

log odds (x axis) adjusted for chance performance. Y axis shows differences from chance 

during the minimal cognitive load condition (intercept) and with change in each type of 

cognitive demand and their combination. Posterior distributions from Bayesian hierarchical 

regressions are shown, with shading and asterisks indicating the percentage of samples 

from the posterior greater than or less than 0. E. Statistical comparison of the likelihood of 

each first free choice type of behavior from simulated value-maximizing model, with log 

odds (x axis) adjusted for comparison to empirical performance. Y axis shows differences 

from empirical performance during the minimal cognitive load condition (intercept) and 

with change in each type of cognitive demand and their combination. Posterior distributions 

from Bayesian hierarchical regressions are shown, with shading and asterisks indicating the 

percentage of samples from the posterior greater than or less than 0.
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