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Abstract Seed germination is one of the critical stages
of plant life, and many quantitative trait loci (QTLs) con-
trol this complex trait. Meta-analysis of QTLs is a power-
ful computational technique for estimating the most stable
QTLs regardless of the population’s genetic background.
Besides, this analysis effectively narrows down the confi-
dence interval (CI) to identify candidate genes (CGs) and
marker development. In the current study, a comprehensive
genome-wide meta-analysis was performed on QTLs associ-
ated with germination in rice. This analysis was conducted
based on the data reported over the last two decades. In
this case, various analyses were performed, including seed
germination rate, plumule length, radicle length, germina-
tion percentage, coleoptile length, coleorhiza length, radi-
cle fresh weight, germination potential, and germination
index. A total of 67 QTLs were projected onto a reference
map for these traits and then integrated into 32 meta-QTLs
(MQTLs) to provide a genetic framework for seed germina-
tion. The average CI of MQTLs was considerably reduced
from 15.125 to 8.73 ¢cM compared to the initial QTLs. This
situation identified 728 well-known functionally character-
ized genes and novel putative CGs for investigated traits.
The fold change calculation demonstrated that 155 CGs had
significant changes in expression analysis. In this case, 112
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and 43 CGs were up-regulated and down-regulated during
germination, respectively. This study provides an overview
and compares genetic loci controlling traits related to seed
germination in rice. The findings can bridge the gap between
QTLs and CGs for seed germination.
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Introduction

Rice (Oryza sativa L.) is one of the most important crops
and staple food products. It is the principal food for the
majority of the world’s population. Also, it is ranked third
in agricultural products (Rao et al. 2010; Islam et al. 2019).
From the food security viewpoint, it is the second most
major strategic product after wheat (Matzke et al. 2000).
However, the population growth, climate change, and loss
of agricultural land revealed the necessity of finding novel
ways for plant breeders to meet the increasing demand for
high-yielding rice (Wu et al. 2016).

Seed germination is the first step of rice seedling develop-
ment. Besides, it is one of the most critical plant life stages,
particularly while facing environmental stress (Wang et al.
2011; Guo et al. 2019). Also, it is a complex biological pro-
cess that starts with water uptake by the dry seed and ends
with the appearance of the embryonic axis, usually the radi-
cle, through the structures surrounding it (Li et al. 2011;
Bewley et al. 2013).

From a genetic viewpoint, seed germination is a poly-
genic and complex trait, which is controlled by QTLs. These
traits are highly influenced by the environment conditions
and cannot be detected by classical approaches of quantita-
tive genetics (Lai et al. 2016). The QTL mapping is a power-
ful approach for identifying the action, interaction, numbers,
and chromosomal locations of loci affecting such complex
traits (Zhang et al. 2017). Previous studies demonstrated that
QTL mapping as a detection tool dramatically increased the
genetic control of traits (Zhang et al. 2005a; Dong et al.
2017).

Over the last two decades, many QTLs related to seed
germination traits have been reported in rice using differ-
ent genetic backgrounds (Redona and Mackill 1996; Cui
et al. 2002; Zhang et al. 2005a, b; Wang et al. 2010, 2011;
Mardani et al. 2013; Lai et al. 2016; Li et al. 2017; Sanchouli
etal. 2021; Zeng et al. 2021). However, several factors (e.g.,
marker sets, statistical methods, parents, size and genera-
tion of populations, experimental design, and environment)
can strongly influence detection, location, and QTLs sig-
nificance level (Van and McHale 2017). On the other hand,
undesirable epistatic interactions between different genetic
backgrounds and the inconsistency and variability of QTLs
due to the mentioned factors may limit their application in
breeding programs (Islam et al. 2019).

The meta-analysis of QTLs is a suitable and powerful
computational approach for resolving this issue (Islam et al.
2019; Khahani et al. 2021). It integrates independent QTL
studies into a single dataset to estimate the number of "true"
QTLs and obtain a more accurate estimate of QTL posi-
tions by reducing the confidence interval (CI) (Khowaja
et al. 2009; Li et al. 2013b; Acufa-Galindo et al. 2015).
In recent years, this method has frequently been used by
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various authors for some plants such as maize (Hao et al.
2010), barley (Li et al. 2013b), wheat (Acuia-Galindo et al.
2015), and Soybean (Van and McHale, 2017). Also, several
reports are available regarding the meta-analysis of QTLs in
rice for traits such as panicle-related traits (Wu et al. 2016),
seedling-stage salt tolerance (Islam et al. 2019), disease
resistance (Kumar and Nadarajah, 2020), yield and yield-
related traits (Khahani et al. 2021), and drought response
(Selamat and Nadarajah, 2021).

These studies defined a genome-wide landscape on the
most stable loci associated with reliable genetic mark-
ers and candidate genes (CGs). The results can be used in
future studies such as marker-assisted selection, identifying
CGs, molecular breeding, and genetic engineering (Kha-
hani et al. 2020; Selamat and Nadarajah 2021). Wu et al.
(2016) employed a meta-analysis to identify 87 meta-QTLs
(MQTLs) for panicle-related traits across 82 populations. In
this case, 24 CGs (e.g., EP3, LP, MIP1, HTD1, DSH]I, and
OsPNH1) were recognized in these MQTL regions. Sela-
mat and Nadarajah (2021) identified 70 MQTLs for 13 traits
in rice that respond to drought. In this case, several genes
were annotated in the MQTL areas through Blast2GO. These
genes were associated with regulatory proteins to regulate
signal transduction and gene expression that respond to
drought stress.

The literature survey demonstrated that the previous
studies paid less attention to the meta-analysis of QTLs for
seed germination and related traits. Thus, the current study
performed a comprehensive genome-wide meta-analysis on
QTLs reported over the last two decades. This analysis was
conducted on seed germination in rice. In this case, several
analyses were performed, including seed germination rate
(GR), plumule length (PL), radicle length (RL), germination
percentage (GP), coleoptiles length (CL), coleorhiza length
(COL), radicle fresh weight (RFW), germination potential
(GPO), and germination index (GI). The objective of this
study was to perform a meta-analysis to identify regions
of the rice genome associated with seed germination traits.
Also, this study identified molecular markers and potential
CGs present in the meta-QTL regions so that the obtained
results provide valuable information for applying in marker-
assisted selection and genetic engineering of rice.

Materials and methods
Data collection

The literature survey was conducted by collecting pub-
lished articles (up to the year 2021) regarding QTL map-
ping of seed germination and its component traits in rice
from PubMed (http://www.ncbi.nlm.nih.gov/pubmed) and
Google Scholar (https://scholar.google.com/). In this case,
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the search process was accomplished using appropriate key-
words including “meta-QTL”, “seed germination”, “seed
vigor”, “rice”, and “QTL mapping”. Besides, QTLs identi-
fied from rice associated with seed germination (available
online: Gramene (https://archive.gramene.org/qtl/) were
considered in the current study.

All QTL studies except those lacking proper genetic map
information or QTL-related information were used in the
meta-analysis of QTLs. This information consists of the
mapping population’s parent, type, and size, the logarithm
of odds (LOD score), the proportion of phenotypic vari-
ance (R?), molecular markers flanking, additive effects of
favorable alleles, and QTL position. Two types of input data
text files (i.e., map and QTL information files) were pre-
pared for each study according to the instruction manual
of BioMercator v3/v4 (Veyrieras et al. 2007). The position
of genetically controlling regions of traits was determined
by applying a meta-analysis of QTLs and merging different
QTLs collected from independent studies. Indeed, this pro-
cedure was performed by constructing the consensus map
regardless of their genetic backgrounds, population type, and
evaluated locations and years (Arcade et al. 2004; Sosnowski
et al. 2012).

In this study, the empirical formulas proposed by Darvasi
and Soller (1997) and Guo et al. (2006) were employed for
data homogenization and CI estimation, respectively. At the
95% level for BC and F, populations, the QTL CI is formu-
lated as Eq. (1). In addition, the RIL and DH populations
were formulated as Egs. (2) and (3), respectively.

530

Cl= (N*Rz) (1)
163

Cl= (N*Rz) 2
287

=R 3

where N is the population size, and R? is the proportion of
the total variance explained by the individual QTL.

The construction of consensus map and QTLs
projection

A rice reference map developed by Islam et al. (2019) was
utilized for constructing the consensus map process. This
reference genetic map was integrated by International Rice
Microsatellite Initiative 2003 (McCouch et al. 2002) and
SNP-based high-density linkage maps (De Leon et al. 2016;
Gimhani et al. 2016). This situation generated 12,096 mark-
ers with an average distance of 0.14 cM between markers.

Also, the average chromosome length was 139.47 cM for a
total length of 1673.63 cM. In the first step, an integrated
consensus map was developed using maps of all studies and
the reference map. In the second step, the QTL detected in
each study were projected onto the consensus map using
BioMercator V4.2.3 (Veyrieras et al. 2007).

Meta-analysis of QTLs

MQTL analysis was performed on an integrated consensus
map for each chromosome through Goffinet and Gerber
algorithm (2000) and employing BioMercator V4.2.3 avail-
able at https://urgi.versailles.inra.fr/Tools/BioMercator-V4.
According to Goffinet and Gerber algorithm (2000), if n
individual QTLs are available, BioMercator examines the
most likely assumption between 1, 2, 3, 4, and n underlying
QTLs. Besides, the most likely QTL arrangement in every
five models is determined using the maximum likelihood
method. The calculation process was performed by assum-
ing a Gaussian distribution for each model. Among the five
MQTLs, the best fit was derived by analyzing the lowest
Akaike information criterion (AIC) value. In each model, the
consensus QTL positions were determined as the mean of
QTL distribution by maximizing the likelihood. Besides, the
consensus QTL was reported as a “real” QTL/MQTL. Also,
the individual QTLs were analyzed for all traits related to
seed germination as a meta-trait (Germination Traits (GT))
using the option “regrouping the traits into meta-traits” in
the software. The GT-related traits included seed germina-
tion rate (GR), plumule length (PL), radicle length (RL),
germination percentage (GP), coleoptiles length (CL), cole-
orhiza length (COL), radicle fresh weight (RFW), germina-
tion potential (GPO), and germination index (GI). Various
studies reported the significant relationship between germi-
nation components and related traits (Borjas Artica, 2017;
Zeng et al. 2021; Yang et al. 2019a; Dimaano et al. 2020).

A circular plot was drawn using an R/Shiny application
(ShinyCircos) to visualize the position of each MQTL (Yu
et al. 2018).

Detection of CGs within the MQTL genomic regions

The genes underlying individual MQTL regions were iden-
tified in the 0.1 Mb interval on either side (i.e., upstream
and downstream) of the MQTL’s peak position (total
0.2 Mb region). This procedure was accomplished using the
BioMart tool in Ensembl Plants (https://plants.ensembl.org/
biomart/martview). The RNA-seq data deposited in Gen-
evestigator (https://genevestigator.com/gv/) was employed
to expression profiling of candidate genes in the rice germi-
nation procedure. These data available as log2 transformed
TPM (transcripts per million) values. Only candidate genes
showing fold change (FC) > 2 or FC <- -2 relative to control

@ Springer


https://archive.gramene.org/qtl/
https://urgi.versailles.inra.fr/Tools/BioMercator-V4
https://plants.ensembl.org/biomart/martview
https://plants.ensembl.org/biomart/martview
https://genevestigator.com/gv/

1590

Physiol Mol Biol Plants (August 2022) 28(8):1587-1605

were considered as differentially expressed genes. Plant-
TFDB (http://planttfdb.gao-lab.org/) and iTAK (http://itak.
feilab.net/cgi-bin/itak/index.cgi) used to identify potential
transcription factors (TF) and kinase coding gens.

Gene ontology (GO) analysis was carried out by estab-
lishing a framework and set of concepts to describe the func-
tions of gene products and pre-digestion of elucidating the
biological implications of unique genes (Zhou et al. 2020).
In the current study, the significant enrichment analysis of
gene ontology (GO) terms was carried out using TBtools
software (P <0.05). This procedure was performed on CGs
with considerable changes in the expression patterns survey.

Results and discussion

Analysis of identified QTLs associated with germination
components and their related traits

Seed germination is the first step of plant growth, and it is
a critical process for seedling establishment and crop yield
(Han and Yang 2015). Also, seed germination and related
traits are redacted by QTLs. Although numerous QTLs have
been reported for seed germination in rice (Miura et al.
2002; Cui et al. 2002; Zhang et al. 2005a, b; Wang et al.
2010; Li et al. 2013a; Mardani et al. 2013; Liu et al. 2014,
Xie et al. 2014; Cheng et al. 2015; Mahender et al. 2015;
Yang et al. 2019a; Dimaano et al. 2020; Zeng et al. 2021),
the knowledge of the gene networks regarding the control of
rice seed germination remains limited (Yang et al. 2019a).
A total of 90 individual QTLs related to GT were derived
from 14 studies, and then they were combined to discover
consensus genomic regions associated with seed germina-
tion traits in rice. These studies included ten populations:
two F2, one backcross, one double haploid, and six recom-
binant inbred lines (RIL) populations. Table S1 represents

these 14 studies, which have been reported since 1996.
Among these populations, RIL is the most preferred and
suitable mapping population. Indeed, this mapping popu-
lation is immortal and consists of a series of homozygous
lines that can be reproduced without genetic change occur-
ring in different locations and years. This situation makes
RILs highly suited for mapping QTLs (Collard et al. 2005).
According to Table S1, these studies have different numbers,
types of markers, parents, and population sizes. The popula-
tion size in the current study ranges from 71 to 282 lines.
Also, the markers’ number is between 45 (Behrozbeh et al.
2019) and 236 (Mardani et al. 2013; Rabiei et al. 2014).
QTLs were unevenly scattered across the 12 rice chromo-
somes, ranging from one on chromosome 9 to 13 on chromo-
some 7. In this case, the average was 7.5 QTL per chromo-
some (Fig. 1). As shown in Fig. 1, the numbers of QTLs per
trait were different on the chromosomes. Among these traits,
the GR and GP had the highest numbers of QTLs of 31 and
18, respectively. The other traits were ranked as follows:
RL, CL, GI, PL, GPO, RFW, and COL, respectively. Also,
this figure depicts that chromosomes 6 and 7 have QTLs
for seven traits; chromosomes 3, 5, and 8 have QTLs for
six traits; chromosomes 1 and 11 have QTLs for four traits;
chromosome 4 has QTLs for three traits; chromosomes 2
and 10 have QTLs for two traits; chromosomes 9 and 12
have QTLs for one trait. The phenotypic variance explained
(PVE%) by the individual QTLs varied from 0.3 to 68.5%,
and the CI of markers was different from 0.9 to 47.2 cM.

Detected MQTLs for germination traits (GT)

The meta-analysis does not include all the existing data in
the studies. This issue is due to the unavailability of QTL
data or missing principal information on some QTLs (Flather
et al. 1997; Pogue and Yusuf 1998). However, it can enhance
the knowledge of the genetic basis for complex traits using
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the integrated results of multiple QTL studies, robust identi-
fication of the genetic regions, and validation of QTL effects
on environments/genetic backgrounds (Swamy and Sarla
2011a; Van and McHale 2017). In the present study, a meta-
analysis of QTLs was performed to integrate the locations
of 90 QTLs associated with seed germination. These data
were collected from nine traits (i.e., GR, PL, RL, GP, CL,
COL, RFW, GPO, and GI traits) based on the information of
QTLs, such as population size, type and number of markers,
and additional QTL information (Table S1). In the current
study, 67 initial QTLs (74.4%) were successfully projected
onto the consensus map and considered for the meta-anal-
ysis. Also, 32 MQTLs were identified on 11 chromosomes
if at least one MQTL was observed on each chromosome
(Figs. 2, 3, and 4). In this case, the MQTL was not detected
on chromosome 9. Table 1 provides a comprehensive list of
32 MQTLs with information, including physical distance,
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Fig.3 The identified MQTLs are displayed for seed germination
traits on rice on chromosomes 5, 6, 7, and 8. Also, the filled colors
on the chromosome arm represent 95% CI of each MQTL region.
The brown color denotes the first MQTL, grey second MQTL, orange

9 MQTLs had a CI fewer than the value of 5 cM. Jan et al.
(2021) introduced criteria for the low CI, high PVE mean
(%), and the number of QTLs. This procedure was carried
out by excluding the MQTL for choosing breeders” MQTLs.

The identified CGs in the MQTL regions

A total of 728 CGs were identified in the 32 MQTL regions
(Table S2). In each MQTL, the average value was 22.75
CGs. Also, MQTLI.1 covers an area of 13.28 Mb in chro-
mosome 1 through 41 genes containing the most CGs.
But MQTL3.2 had three CGs and a physical length of
0.000032 Mb in chromosome 3. It was the smallest number
of CGs (Table 1).

The molecular function of CGs was considered through
the expression patterns obtained from the transcriptome
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datasets. Expression data were available for only 522 out
of 728 CGs (Table S3), and only 155 CGs had significant
changes (FC>2, or FC< - 2).

The significant enrichment analysis of gene ontology
(GO) terms was carried out on the 155 CGs to understand
the molecular function and identify common characteristics
of CGs in biological functions. Thus, the GO terms were
classified into the three main GO categories (i.e., biological
process, molecular function, and cellular component) and
17 GO terms (Fig. 6, Table S4). In the biological process
category, the CGs are involved in various processes such
as the organelle organization regulation, cellular compo-
nent organization regulation, cellular process regulation,
cell differentiation, response to a toxic substance, and cel-
lular developmental process. In the cellular component cat-
egory, the CGs were active in different cell places such as
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symplast, anchoring cell, cell-cell junctions, plasmodesma,
and nucleus. In the molecular function category, various bio-
chemical activities of gene products were available such as
antiporter activity, secondary active transmembrane trans-
porter, sequence-specific DNA binding activity, DNA bind-
ing, and active transmembrane transporter activity.

Among these 155 CGs, 112 and 43 CGs were up-reg-
ulated and down-regulated, respectively (Fig. 7a, b, and
c; Table S5). These 155 CGs showing significant changes
in expression belonged to only 29 out of 32 MQTLs.
Although CGs and expression data were available for the
remaining three MQTLs (i.e., MQTL3.2, MQTL7.3, and
MQTL 10.1), these were insufficient for expression analy-
sis. Expression profiling study revealed that most of the
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orange third MQTL, and fourth blue MQTL on each chromosome.
The molecular markers’ names and positions (cM) are shown on the
right side. Table 1 gives the details of each MQTL

differentially expressed genes belong to chromosomes 11
(26 genes), 1 (20 genes), 5 (19 genes) and 8 (18 gens),
respectively (Fig. 7a, b, and c; Table S5). Interestingly,
expression pattern of promising genes showed that gradu-
ally increased the number of genes with FC >2 from the
beginning of germination process to 96 h after germina-
tion. In 1 h after imbibition 2 genes, 3 h after imbibition
12 genes, 12 h after imbibition 51 genes, 24 h after imbi-
bition 53 genes, 48 h after germination 65 genes, 72 h
after germination 64 genes, and 96 h after germination
68 genes have expression level (FC) >2 (Fig. 7a, b, and
c; Table S5). Similar results were observed for genes with
FC <2. These results indicate an increase in seed metabo-
lism during the germination process.
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Expression pattern of the identified 155 CGs was shown
to encode various proteins such as protein kinases, con-
served hypothetical protein, helix-loop-helix DNA domain-
containing protein, cytochrome P450, the transcription
factors, and beta-catenin-like protein. Some genes encode
proteins of unknown function (Table S6). It is essential to
investigate the influence of these genes on regulation of seed
germination and its component traits in rice.

Transcription factors (TFs) are substantial regulatory
proteins that play crucial roles in growth, development, and
stress response in higher plants (Liu et al. 2001; Huo et al.
2019). In other words, TFs are mediators of stress responses
and developmental programs (Licausi et al. 2013). Besides,

protein kinases are dynamic regulatory proteins that act as
principal regulators in diverse biological processes (Taylor
and Kornev 2011; Naithani et al. 2021). Since the protein
kinases and TFs were critical regulators, 27 CGs were evalu-
ated in detail.

The Os01g0113200 (OsRLCK2), Os01g0113300
(OsRLCK3), O0s01g0113800 (OsRLCKY9),
and Os01g0114900 were receptor kinase-related genes
identified on MQTLI1.1 and up-regulated during the seed
germination stages. Besides, the OsRLCK2, OsRLCK3,
and Os01g0114900 are receptor-like cytoplasmic kinases,
which play substantial roles in diverse processes such as
development and stress responses in rice (Vij et al. 2008).

@ Springer
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Fig. 7 (continued)

"1

Zhao et al. (2020) described receptor kinase-related genes
such as the OsRLCK?2 and OsRLCK3. These genes might
act as signal transducers in the stress response pathway
and play pivotal roles in the initial imbibition stage dur-
ing seed germination in rice. In addition, the OsRLCK3
was up-regulated as the salt stress-responsive gene in rice
(Um et al. 2021). The OsRLCK?9 is a representative of the
receptor kinase LRK14. This issue was reported by Volante
et al. (2017) during a search for CGs with a putative role in
bakanae disease resistance. Also, Deng et al. (2018) stated
that the OsRLCK9 was identified through the P-deficiency-
stress and control samples in the leaf and root tissues of

@ Springer
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Dongxiang wild rice seedlings, and it was up-regulated
during seed germination. This issue may be related to the
receptor kinase LRK10 synthesis and a specific domain of
tigr01615 family proteins. The OsRLCK9 gene (resistance-
related receptor-like kinase) was previously reported in the
regulatory networks for flavonoid and phytoalexin biosyn-
thesis in rice leaves as one signal perceiving receptor kinases
(Park et al. 2013). The analysis of the MQTL 2.3 candidate
genes demonstrated three transcription factor coding genes,
including Os02g0747400 (OsTCP9) and Os02g0747900
(IL15) with FC >2 and Os02g0747600 (AP2/EREBP#022)
with FC <-2 during seed germination. Also, the OsTCP9
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Fig. 7 (continued) C

is a member of the TCP family genes identified in the rice
genome. It is up-regulated in the P2 stage of panicle devel-
opment (mainly involving differentiation of male meiocytes)
and the S1 stage of seed development (Sharma et al. 2010).

Among these CGs, AP2/EREBP#022 belongs to the AP2/
EREBP (ethylene-responsive element-binding protein) fam-
ily. The AP2/EREBP gene family is a transcription factor
family (Xiong et al. 2002) and plays a crucial role in devel-
opmental processes. Also, it provide resistance to biotic and
abiotic stresses in plants (Liu and Zhang 2017; Dong et al.
2021). The ILI5 (OsPGL2) is a member of the bHLH (basic
helix-loop-helix) gene family in rice (Carretero-Paulet et al.
2010; Mendes et al. 2014). In addition, it is associated with

05060152100

00601522 8.00

Os0GE01 52600

030630348300 a0

OWGEDIHHTN) 4.0

050620611050 .

00620612200 2.00

()ﬂ](!_ﬁ”(ll 25(4) 0.00

040620612800

OWGENAT IS 2.00
050720150100 G

07201 SOT0

Q)71 51200 o0 MQATLT
050720151300 -, Mo
OWD7 152200 | e

0s0720202200
00720203300
Od)7e)2041(4)
050720204400
OWDT 204500
OsO7e0205504)
0407205311100
Q753150
050720531700
OTSIINMN)
Os070333804)
040720534700
O<11eD1206%(H)
Os11g0126900
O 110127600
Os110128300
Os11g0128100
O<11¢)1285(0)
Os] 120128700
O 10125000
011 e01292(4)
05110129600
O 1 eD1S52700)
Os] 120153200
O g0183100
Os11e0153300)
Os11g0153900
O« g1 S45(H)
| Qs 120154900
O g01S3S00
O<11 D1 55G(H)
Os 1150155900
O D1 563(0)
Os110156401
Os11g0431700
Q<11 e4324(0)
Os11g0432600
O 432900

leaf angle changes in rice (Mantilla-Perez and Salas Fer-
nandez 2017; Zhu et al. 2021). On the other hand, this gene
controls grain length and rice weight through interaction
with a typical bHLH protein APG (Heang and Sassa 2012;
Qiu et al. 2015).

The 050320650000 (OsShl) was located in MQTL 3.3
and up-regulated during seed germination. It was identified
as a gene in seed shattering control (Htun et al. 2014; Ishi-
kawa et al. 2021; Zhang et al. 2021). Besides, this gene may
function downstream of ¢gSHI, which accounts for a prin-
cipal gene involved in abscission zone differentiation (Li
et al. 2020) and controlling cell numbers at the abscission
(Lin et al. 2012).
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The Os04g0356600 on MQTLA4.2 is another gene iden-
tified in this study. This gene encoded protein kinase and
was up-regulated during seed germination stages. Also, it
belonged to the rice SDRLK family genes (the S-domain
subfamily of receptor-like kinases) (Naithani et al. 2021).

Two genes were identified on MQTLS5.2 on chr5 (i.e.,
05050139100 (APG) and Os05g0140100 (OsMYB2P-1)).
These genes significantly changed expression patterns
(FC >2) and encoded transcription factors. Besides, the
APG/OsPILI16 gene was reported to function in leaf angle
regulation (Heang and Sassa 2012; Wang et al. 2020). Since
it is a member of the bHLH transcription factor family, it is
known as a regulator of grain size (Heang and Sassa 2012;
Yang et al. 2018; Li et al. 2018b). This situation is efficient
for grain yield improvement in rice (Yang et al. 2018). The
OsMYB2P-1 was another gene, and it was up-regulated dur-
ing seed germination. This gene was initially identified in
vigor-related QTL (Yan et al. 1998) and belonged to the
MYB transcription factor family (one of the largest transcrip-
tion factor families) (Zhang et al. 2012). Dai et al. (2012)
reported that the OsMYB2P-1 was involved in phosphorus
starvation signaling and root architecture of rice. Also, its
overexpression in rice conferred greater tolerance to Pi star-
vation. Thus, they suggested that the OsMYB2P-1 could act
as a Pi-dependent regulator in controlling the expression of
Pi transporters.

The expression pattern of CGs showed that the
050620152200 (OsBBX16) was down-regulated during
germination. This gene was identified on MQTL6.1 and
encoded a BBX transcription factor (the B-box), which
accounts for a kind of zinc finger transcription factor (Klug
and Schwabe 1995; Huang et al. 2012; Khanna et al. 2009;
Shalmani et al. 2019). Besides, it was reported that the
OsBBX16 could participate in the light signaling pathway
(Huang et al. 2012).

The Os06g0348800 (OsGLK1) gene on MQTL6.2 and the
0s06g0612300 and Os06g0613500 (OsbHLH095) genes on
MQTL6.3 (FC>2) are the CGs identified in chromosome
6 that encode transcription factors. Besides, the OsGLK]
encodes a transcription factor involved in the regulation of
photosynthesis (Zhang et al. 2021). Also, it was reported that
the overexpression of this gene along with OsGLK2 induced
the expression of genes associated with chloroplast biogen-
esis (Nakamura et al. 2009; Wang et al. 2013). According to
Li et al. (2007) and Li et al. (2006), the Os06g0612300 and
OsbHLH095 genes belonged to the zinc finger protein gene
and the bHLH gene family in rice, respectively.

The 0s07g0150700 (CIPK23) and Os07g0152200 were
two CGs identified on MQTL7.1 with significant expression
changes that encode protein kinase. These genes were up-
regulated during seed germination. Also, the CIPK23 gene
was identified as the drought-responsive gene (Yang et al.
2008; Lopus et al. 2020) and salt-responsive gene (Liu et al.

@ Springer

2020a) in rice. In addition, Yang et al. (2008) reported that
overexpression of this gene enhanced drought tolerance in
rice plants. Zhao et al. (2020) detected the Os07g0152200
in a study of signaling-related differentially expressed genes
involved in phase I of seed germination in rice. The authors
found that in the same vein as the OsRLCK2 and OsR-
LCK3 on MQTL1.1, this gene (receptor-like protein kinase
precursor) was associated with the gene responses involved
in the initial imbibition of rice seed germination.

The 0s07g0534700 on MQTL7.4 was identified as a gene
that encoded protein kinase. It had significant expression
changes and showed up-regulation during seed germina-
tion. Silveira et al. (2015) and Nifio and Cho (2020) detected
the 0s07g0534700 in drought stress response and bacte-
rial blight disease in two rice cultivars (Douraddo and Jin-
baek cultivars), respectively. Naithani et al. (2021) reported
that the Os07g0534700 was regulated in response to biotic
(bacterial panicle blight response and leaf-sheath blight
response) and abiotic stresses (chilling response). Also, they
found that this gene was a member of the SDRLK family and
significantly affected plant development and responded to
the biotic and abiotic stresses.

In the MQTLI11.1 region, four CGs (i.e., Os11g0126900
(NAC122), Os11g0127600 (ONACO045), Os11g0128300, and
Os11g0128500) encoded transcription factors. These genes
showed significant changes in expression patterns and were
up-regulated during seed germination. The NAC122 gene
was one of the stress-related genes. It encoded the reported
transcription factor related to stress resistance (Yang et al.
2019b). This gene belonged to NAC (nascent polypeptide-
associated complex) TFs. Also, its expression was induced
by abiotic stresses in rice leaves and roots (Li et al. 2018a;
Lang et al. 2021; Liang et al. 2021) and identified as a stress-
responsive NAC gene according to Zheng et al. (2009).
The Os11g0128500 encoded the MYB-like DNA binding
domain protein (Mohanty 2021), and its role was indicated
in drought stress (Tan et al. 2020). In addition, it regulated
the transcription of auxin-responsive genes (Deng et al.
2018).

In this case, 3 out of 33 CGs were identified in the
MQTL11.2 region (i.e., Os11g0152700 (OsbZIP79),
Osl11g0154500 (NACI17), and Osl1g0154900
(OsbZIP80)). These CGs had significant changes in
expression patterns and encoded transcription factors.
The NAC17 and OsbZIP79 were up-regulated, and the
OsbZIP80 was down-regulated during seed germination.
Su et al. (2020) indicated that the NACI7 gene was a mem-
ber of the NAC gene family and involved in abiotic stress
responses. Also, Chi et al. (2011) suggested that this gene
was up-regulated under juglone stress in rice roots. On
the other hand, Kan et al. (2017) showed that NAC17 was
one of the early glutamate-responsive genes and encoded
transcription factors in rice roots. Besides, it functions as a
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negative regulator of terpenoid phytoalexin biosynthesis in
rice (Miyamoto et al. 2015; Guo et al. 2018). Some reports
showed that the OsbZIP80 functioned as a dehydration
stress-inducible gene in rice (Nijhawan et al. 2008; Hoang
et al. 2019). It is worth noting that the expression of this
gene is induced by ABA, suggesting that this gene is one
of the OsbZIP09 target genes (involved in controlling seed
germination in rice).

The candidate gene Os12g0621100 (OsYAB6) was
identified on MQTL12.1 (FC > 2) during seed germina-
tion. This gene encoded the YABBY transcription factor
(Liu et al. 2020b). In the same vein as the OsShl gene, it
is a member of the YABBY transcription factor family and
plays a vital role in rice morphogenesis (Xia et al. 2017).

The findings showed that the discussed CGs were the
main players in rice seed germination. Also, these CGs
had multiple functions and played different roles in plants,
ranging from stress response to rice plant growth and
development. This information can be reviewed to eluci-
date the molecular basis of seed germination and its use
in rice breeding programs.

It is worth noting, the present study is the first and most
comprehensive meta-analysis QTL to identify stable loci
controlling germination traits in rice. It is the first study to
identify the positions of QTLs associated with seed germi-
nation and narrowed down the average CI of MQTLs from
15.125 to 8.73 compared to the initial QTLs; moreover, led
to identifying a set of promising candidate genes (155 CGs
with significant changes) associated with germination.

Nevertheless, it is essential to perform further analyses
to understand genes’ precise role in seed germination and
the interactions among the expressed proteins. In addition,
further work will be required to validate experiments for the
identified MQTLSs and biological functions of CGs in rice.
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