
Article https://doi.org/10.1038/s41467-022-33457-9

Ultrathin crystalline-silicon-based strain
gauges with deep learning algorithms for
silent speech interfaces
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A wearable silent speech interface (SSI) is a promising platform that
enables verbal communication without vocalization. The most widely
studied methodology for SSI focuses on surface electromyography
(sEMG). However, sEMG suffers from low scalability because of signal
quality-related issues, including signal-to-noise ratio and interelectrode
interference. Hence, here, we present a novel SSI by utilizing crystalline-
silicon-based strain sensors combined with a 3D convolutional deep
learning algorithm. Two perpendicularly placed strain gauges with mini-
mized cell dimension (<0.1 mm2) could effectively capture the biaxial
strain information with high reliability. We attached four strain sensors
near the subject’s mouths and collected strain data of unprecedently large
wordsets (100 words), which our SSI can classify at a high accuracy rate
(87.53%). Several analysis methods were demonstrated to verify the sys-
tem’s reliability, as well as the performance comparison with another SSI
using sEMG electrodes with the same dimension, which exhibited a rela-
tively low accuracy rate (42.60%).

The lack of clinical treatment for speech impediments caused by
aphasia or dysarthria has been promoting various studies toward
improving nonacoustic communication efficiency1–5. Silent speech
recognition is one of the most promising approaches for addressing
the above problems, in which facial movements are tracked by visual
monitoring6–10 or nonvisual capturing of various biosignals11–14. Visual
monitoring, a well-known vision recognition, is the most direct
method tomap speech-relatedmovements and has the highest spatial
resolution15,16. However, there are many situations in which the daily
use of vision recognition is limited since the continuous shooting of
the face in a static environment is indispensable. Changes in the

shooting direction due to body motion and changes in the light
intensity according to the surrounding environment can lead to a
significant drop in recognition accuracy. Furthermore, it is highly
possible that unnecessary information such as background may
occupy more pixels than speech-related information, resulting in an
inefficient data processing. On the other hand, human–machine
interfaces that exploit wearable electronics1–5,12–14,17–23 for biosignal
recording are used in a relatively dynamic environment. Electro-
physiological signals, such as electroencephalography (EEG)11,24–26,
electrocorticography (ECoG)27–29, and surface electromyography
(sEMG)12,30,31, have been extensively studied for SSI. Neural signals,
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including EEG and ECoG, contain an enormous amount of information
regarding brain activity in specific local regions that are activated
during speech. However, EEG suffers from signal attenuation due to
the skull and scalp32, thereby impeding the differentiation of a large
number of words driven by complex electrical activities33. By contrast,
ECoG exhibits a much higher signal-to-noise ratio (SNR) compared to
that of EEG, but it has limitation in clinical use because it is an invasive
approach involving craniotomy. The sEMG, which measures electrical
activities from facial muscles, can be extracted noninvasively and has
relatively less complexity. Nonetheless, the low spatial resolution
regarding SNR34 and interelectrode correlation35,36 hinder its applica-
tion in the classification of a larger number of words. Furthermore,
external issues, including signal degradation mainly due to body
wastes, such as sweat and sebum alongside skin irritation, preclude
long-term monitoring in real life37.

Facial strain mapping using epidermal sensors provides another
prospective platform to achieve a silent speech interface (SSI) with
many advantages over all other existing systems. Various studies have
explored the robustness of strain gauges in diverse facial movement
detection applications13,38,39, such as facial expression recognition and
silent speech recognition. However, the large deformation of facial
skin generated during expression or speech mostly relies on stretch-
able organic material-based strain sensors fabricated in a bottom–up
approach13,38,40. These devices can make conformal contact with the
skin and withstand tensile stress in severe deformation environments
but suffer from their intrinsic device-to-device variationandpoor long-
term stability. These properties are critical drawbacks regarding deep
learning-assisted classification because their repeatability is directly
related to system accuracy. By contrast, inorganic materials, such as
metals and semiconductors, are representative materials for fabricat-
ing strain gauges with high reliability and fast strain relaxation
time leading to a fast respnse time of the gauges in a dynamic strain
environment. The resistance of a conventional metal-based strain
sensor varies according to the geometrical changes under the applied
strain, resulting in a relatively low gauge factor (~2). However, for a
semiconductor-based strain gauge, the piezoresistive effect is a
dominant factor in the resistance change41–43. Under applied strain, the
shift in bandgap induces carrier redistribution, thereby changing
the mobility and effective mass of semiconductor materials. Because
the resistance change caused by the piezoresistive effect is a few
orders magnitude higher than that caused by the geometrical effect,
the semiconductor-based strain gauge has an incomparable gauge
factor (~100) to the metal-based strain gauge. Some of the latest silent
communication systems based on various strain gauges are compared
and summarized in Supplementary Table 1.

In this study, we propose a novel SSI using a strain sensor based
on single-crystalline silicon with a 3D convolution deep learning
algorithm to overcome the shortcomings of the existing SSI. The
silicon gauge factor can be calculated using the equation:
G= ð4R=RÞ=ð4L=LÞ= 1 + 2ν +πE, where ν and π are the Poisson’s ratio
and piezoresistive coefficient, respectively. Boron doping with a
concentration of 5 × 1018 cm−3 was adopted to minimize resistance
change due to external temperatures44 while maintaining its rela-
tively high piezoresistive coefficient (~80% of its value)45. High
Young’s modulus (Ε) of Si contributes to the fast strain relaxation
time as well as sensitivity according to the equation: T =η=E, where Τ
is the relaxation time and η is the viscous behavior term. However,
since single-crystalline silicon exhibits inherent rigidity with a high
Young’s modulus (~160 GPa), stretchability must be achieved by
modifying its structure into a fractal serpentine design17,19,46. Our
epidermal strain sensor was fabricated with a self-standing ultrathin
(Overall device thickness: <8 µm) mesh and serpentine structure
without requiring an additional elastomeric layer, thereby providing
enhanced air and sweat permeability47, and comfort when attached.
Additionally, we devised a biaxial strain sensor that can measure

directions and magnitudes in two dimension by placing two extre-
mely small-sized (<0.1mm2) strain gauges in the horizontal and ver-
tical directions, respectively. Based on a heuristic area feature study,
four biaxial strain sensors were attached to the part where the skin
deforms the most during silent speech. Because direct electrical
contact is not required for strain measurements, our devices can
leverage double-sided encapsulation, which delivers more secure
protection of the active device layer, minimizing signal degradation
caused by the aforementioned external factors such as sweat and
sebum. Strain data of 100words randomly selected from Lip Reading
in the Wild (LRW)48, each with 100 repetitions from two participants,
were collected and used for deep learningmodel training. Ourmodel
with a 3D-convolution algorithm produced 87.53% recognition
accuracy, which is an unprecedented high performance for this
number of words compared with the existing SSIs using a strain
gauge. Analysis of data measured over multiple days from two sub-
jects suggested that our system captured the signal of each user’s
word characteristics despite the sensor location dependency and
user dependency. We believe that this result is comparable with the
state-of-the-art result of the SSI using the sEMG dry electrode, whose
dimension is approximately two orders of magnitude exceeding our
strain gauge12. We also fabricated an sEMG sensor with identical
dimensions as our strain gauge, which exhibited much lower recog-
nition accuracy, 42.60%, compared to that of our system. This
comparison verifies the advantage of our system’s high scalability,
facilitating extended word classification.

Results and discussion
Overview of SSI with strain sensors
Figure 1a shows the stacked structure of our stretchable sensor
embedding two silicon nanomembrane (SiNM)-based strain gauges
(thickness ~300nm) located perpendicular to each other in flexible
polymer layers. The total thickness of the fabricated device was less
than 8 µm, enabling the conformal attachment to the skin when a
water-soluble tape was used as a carrier of temporary tattoo. During
silent speech, muscle movements around the mouth induce skin
deformation, which can be precisely monitored using perpendicularly
placed strain gauges. Highly sensitive SiNM-based strain gauges and
flexible polyimide film have relatively high Young’s moduli of
approximately 130 and 1 GPa, respectively,making them inappropriate
candidates for stretchable devices. Therefore, the whole components
of our sensor are patterned into mesh and serpentine structures to
achieve stretchability and long-term stability for this application17,19,46.

Each part of the face skin differs in stretching degree and direc-
tion when speaking silently, depending on the targeted words.
Accordingly, determining proper sensor locations significantly con-
tributed to SSI performance. An auxiliary vision recognition experi-
ment that extracts the area features of the face was conducted for this
purpose (Supplementary Fig. 1a). Among the randomly partitioned 24
compartments around the mouth, the sections with larger areal
changes during silent speech were assumed to involve more strain
gradients. Relevance-weighted class activation map (R-CAM) analysis
revealed significant changes in the areas just below the lower lip
(Sections 1, 4, 5, and 9 in Supplementary Fig. 1b)49. In addition, the
ablation study revealed that significant differenceswere unobserved in
the recognition accuracy between acquiring data from the half side
and both sides of the face, as the facial skin moved almost symme-
trically during silent speech (Supplementary Fig. 2a). In order to obtain
the most dynamic strain siganls from the skin and the positions at
which attachments of the devices are convenient, the four sites were
determined as S1(A), S2(B), S3(C), and S4(D) (Fig. 1b), matching Sec-
tions 15, 16, 20, and 24, respectively, in Supplementary Fig. 2b.

Figure 1c shows that the four strain sensors, each incorporating
two SiNM gauges, captured the resistance change in the time domain
through eight independent channels when a word such as
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Fig. 1 | Silent speech recognition systemusing strain sensors anddeep learning.
a Expanded view of single-crystalline silicon nanomembrane (SiNM)-based
stretchable strain sensor; the thickness of transfer-printed SiNM is 300nm. Metal
interconnect comprises a thin layer of Au(250nm)/Cr(5 nm) deposited by thermal
evaporation. Both substrate and encapsulation layers are made of spin-coated
polyimide double-layer (thickness: 3.4 µm). Inset: optical microscopic image of a
unit cell of strain gauge. b Three-dimensional modeling of a human face wearing
four devices. Each device is integrated with two strain gauges, a vertical gauge, and

a horizontal gauge. Inset: photographs of the deformation of each sensor during
silent speech of vowel A; scale bars, 2mm. c Waveform and heatmaps of the
resistance changes from 8-channels strain gauges with respect to time during the
pronunciation of the word, ABSOLUTELY. d Overall flowchart of silent speech
recognition system, including strain DAQ, data preprocessing, feature extraction,
and word classification. The 100 words used in this study are randomly selected
from LRW-1000, which is generally considered a benchmark in word recognition.
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ABSOLUTELY was silently pronounced. Different resistance changes
were monitored at each channel according to the varying shape of the
subject’s mouth by mapping the normalized resistance changes at
each channel over time into a 2 × 4 heatmap. Concatenating these
matrices according to the time sequences, the targeted words can be
digitized into a three-dimensional (3D) matrix containing each desig-
nated position and time information.

Figure 1d shows the overall flow of the hardware and software
processes of our SSI. In this study, when an enunciator silently uttered
a randomword out of the 100words, strain information from the eight
channels was recorded by a data acquisition (DAQ) system (Supple-
mentary Figs. 3 and 4). Considering the positional correlation between
the biaxial gauges, the 1D signal data were processed as sequential 2D
images as input data. We adopted a 3D convolutional neural network
(CNN) to encode spatiotemporal features from an SiNM strain gauge
signal. We trained our network with five-fold cross-validation and
analyzed how it makes decisions based on explainable artificial
intelligence.

Hardware characterization of the biaxial strain sensor
The facial skin expands and contracts in all directions based on a
specific point when a person speaks. Therefore, the degree of skin
extension and information on the direction are necessary for
accurate tracking of facial skin movement. Here, we designed a
biaxial strain sensor that independently quantified the strain in two
mutually orthogonal directions by integrating a pair of strain gau-
ges positioned in the horizontal and vertical directions, respec-
tively (Fig. 2a).

To characterize the electrical properties of the SiNM-based
strain gauge, uniaxial tensile stress was applied on the x- and y-axis
up to 30%, considering the elastic limit of the facial skin during
silent speech50. Finite element analysis (FEA) of the strain distribu-
tion demonstrates that a horizontal gauge experiences much higher
strain with 30% x-axis stretching compared to vertical gauge, and
vice versa with 30% y-axis stretching (Fig. 2b, c). This result corre-
sponds with the actual uniaxial stretching test. Supplementary
Note 1 and Supplementary Table 2 detail the Piezoresistive Multi-
physicsmodel used in FEA. Figure 2d, e shows the relative resistance
change of the horizontal and vertical gauges, respectively, showing
a stepwise increase regarding the increment in applied strain. When
a collateral force was applied to the strain gauge, it induced a
dominant resistance change, whereas the orthogonal force induced
a relatively small resistance change. Along with high sensitivity,
reliable DAQ is important for SSI applications. To confirm our sen-
sor repeatability, a cyclic stretching test was also conducted by
attaching the device to an elastomer with a modulus comparable
with that of human skin. Even after 50,000 cycles of 30% stretching,
our strain sensor showed negligible change in its resistance, con-
firming its high reliability (Fig. 2f).

Ametal-based strain gaugewith an identical structure to an SiNM-
based strain gauge was also fabricated to check the feasibility of this
application. Figure 2g shows the comparison of relative resistance
changes between SiNM-based and metal-based gauges while stretch-
ing up to 30%. The result showed that the SiNM-based gauge was
approximately 42.7, 28.9, and 20.8 times more sensitive for 10%, 20%,
and 30% stretching, respectively, than those of the metal gauge. Fig-
ure 2h shows the captured relative resistance change of twogauges for
eight channels while silently pronouncing the same word WITHOUT
Through its high gauge factor, the SiNM-based gauge exhibited a
remarkable waveform, whereas the metal-based gauge showed almost
indistinguishable changes. For a normalized waveform, which is an
input form for feature extraction, the SiNM-based gauge exhibited a
distinct resistance change between 0.5 and 1.5 s, whereas no con-
spicuous change was monitored because of the similar level of noise
for metal-based gauge (Fig. 2i).

Three-dimensional CNN for SiNM strain gauge signal analysis
Our goal was to classify the 100 words from the SiNM strain gauge
signalswith a time lengthof 2 smeasured at 300 frames per second. To
utilize both spatial and temporal information, we used a 3D CNN
model for the classification task. Figure 3a illustrates the detailed
architectureof themodel. Ourmodel comprised seven 3D convolution
layers and three fully connected (FC) layers.We used the kernel size of
(3,3,3), padding (1,1,1), and stride (1,1,1) except the Conv3 layer where
we used the kernel size of (3,1,3), padding (1,0,1), and strides (2,1,2) for
downsampling. For each layer, we used instance normalization and
ReLU activation. The pooling layer was not used to preserve localized
spatial information. We flattened the output features of the last con-
volution layer (Conv7), then it was connected to several FC layers for
classification. We used cross-entropy loss and the Adam optimizer51 to
train our 3DCNN.More details are provided in Supplementary Table 3.

Results of silent speech recognition
We performed a word classification task with our SSI system to 100
datasets per 100 words recorded by two subjects (See Supplementary
Table 4 for details). To provide an insight on the generalized perfor-
mance of our proposed system to an independent dataset, we per-
formed five-fold cross-validation tests with randomly mixed datasets.
Figure 3b shows the results. The accuracy of the five-fold cross-vali-
dation test ranged from 80.1% to 91.55%, and the average was 87.53%.
We also evaluated word classification accuracy by varying the number
of trained data, and compared the results with a conventional support
vector machine (SVM)-based classification model (Fig. 3c)52. Not sur-
prisingly, the accuracy of the FOLD 5 validation set test improved as
the trained data increased, from 23.70% with 10 cases to 87.50% with
80 cases. Ourmodel showed at least 15% higher accuracy than the SVM
modelwhen thenumber of traineddataset is larger thanorequal to 20.
The performance comparison with other models which are commonly
used to handle sequential data such as speech/audio, text, and video is
provided in Supplementary Table 5. We also investigated the perfor-
mance variation depending on the number of sensors used. As shown
in Fig. 3d, word accuracy improved from 49.87% to 87.53% as the
number of channels increased from 2 to 8. We obtained these results
by averaging all the feasible combinations of horizontal and vertical
channels.

To evaluate our SSI performance, we compared it with the fol-
lowing classifier models: correlation and SVM. Figure 3e shows the
confusion matrix of the recognition results for 20 datasets (Fold 3)
using these classifier models. The correlation model used one target
dataset as a reference, and the results were calculated using the cosine
similarity of eachword between the reference and other datasets. This
experiment predicted words with the highest similarity scores. We
repeated this operation by changing the reference dataset. Figure 3e
shows the results obtained by averaging all the cases. Our proposed
method’s accuracy reached 91.55% for the FOLD 3 validation set, sig-
nificantly exceeding those of the correlation and SVM (average accu-
racy: 10.26% and 76.30%, respectively). Supplementary Tables 6 and 7
present the accuracy per word of our SSI. Furthermore, we evaluated
the performance variation of our model to unseen data, of which
accuracymaydrop due to themismatchof sensor location and subject
dependency. Although the unseen datasets taken from the completely
different domain from the test datasets were used, the classification
accuracy could gradually be improved if we adapted themodel using a
transfer learning, which increased the accuracy sharply even up to
88%. This demonstrated that our sensors extracted meaningful values
even if the attachedpoints could be slightlymisplaced. Supplementary
Tables 8 and 9 detail the accuracy of the results.

Visualization
To visualize the high-dimensional features learned from deep learning
models, we utilized t-distributed stochastic neighbor embedding (t-
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SNE)53, which is commonly used tomaphigh-dimensional features into
two- or three-dimensional planes. We visualized high-dimensional
feature outputs of the 3D convolutional deep learning model in two
dimensions (Fig. 4a and Supplementary Fig. 5). The t-SNE results for

the 100 classes of the test dataset showed that each class was well
grouped together.We selected 10 specific classes out of the 100words
and visualized them for further analysis (Fig. 4b). Observably, the
words with similar pronunciations were mapped to be close to each

Fig. 2 | Characterizations of SiNM-basedbiaxial strain gauge. aMagnifiedoptical
image of biaxial strain gauges comprising a horizontal gauge and a vertical gauge;
scale bar, 300 µm. b, c Finite element analysis of applied local strain to the biaxial
strain gauge on an elastomer substrate with 30% stretching along x (b) and y (c)
directions. d, e Photographs of the biaxial strain gauges before and after 30%
stretching test (left) and resistance change of both horizontal and vertical gauges
during in vitro test at 10%, 20%, and 30% stretching (right) in x (d) and y (e)
directions, showing independent sensing properties of the biaxial strain gauges
where the stretching in parallel and perpendicular directions to the gauge is prone

to apply dominant and minor strain, respectively; scale bars, 1mm. Inset: enlarged
photos of a biaxial strain gauge under an applied strain. f Relative change in elec-
trical resistance during 50000 cycles of 30% stretching along y direction under
10mm/s. Each cycle has a start delay and end delay of 1 s. g Comparison of sensi-
tivity to strain between SiNM- andmetal-based strain gauge through 10%, 20%, and
30% cyclic stretching test.hWaveforms of corresponding in vivo test of both SiNM-
andmetal-based strain gauges during silent speechof the word,WITHOUT (h, top),
andmagnified plots of channels 2 (red highlight) and 7 (blue highlight) (h, bottom).
i Normalized waveforms of h in the training phase.

Article https://doi.org/10.1038/s41467-022-33457-9

Nature Communications |         (2022) 13:5815 5



other (INCREASE vs DEGREES and FAMILY vs FAMILIES). Supplemen-
tary Tables 6 and 7 summarize quantitative results obtained by these
confusing words. The raw signal waveform of these similar words
resembled each other (Fig. 4c). Therefore, it is inevitably difficult for
the word-based classification model to distinguish between these
similar pronounced words. Notably, our model can provide correct
classification by detecting changes in the muscles around the mouth.

We analyzed the characteristic of our deep learning-based classi-
fication model through R-CAM49, a method for visualizing how much
each region is affected by a classification task. Figure 4d illustrates the
R-CAM results to the words, ABSOLUTELY and AFTERNOON. For both
words, our model focused on the part in which the S2 sensor signal
(third- and fourth-row signals) showed dominant characteristic
movements. Regarding the word ABSOLUTELY, our model focused on

Fig. 3 | Method and validation results of silent word recognition. a Pipeline of
our deep learning model architecture comprising mainly 3D convolutional layers.
b Procedure of evaluating the proposed silent speech recognition system. 100
datasets, comprising 100 words each, are randomly divided into five folds and
cross-validated; 58 and 42 datasets out of 100 datasets are acquired from different
subjects: A and B, respectively. c Comparison of the recognition performance of
two different classifiermodels, SVMand our deep learningmodel, as the number of
trained data increases. Each accuracy rate is the average value of five independent

validations where FOLD 5 in b is fixed as a test dataset, and n datasets randomly
selected from the other four folds are trained in our deep learning model. dWord
recognition rates in the numberof sensor channels. Each accuracyof n channelsout
of eight channels is the arithmetic mean of the accuracies from all the n-combi-
nations of the eight channels (8Cn) set. e Confusion matrices of word prediction
results from three different classifier models, including correlation (left), SVM
(middle), and 3D convolution (right), with the average accuracy rates of 10.26%,
76.30%, and 87.53%, respectively.
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Fig. 4 | Analysis and verification of results. a T-distributed stochastic neighbor
embedding (t-SNE) of 100 words, visualizing the result of validation 1 in Fig. 3b. All
100 words are allocated in points of different colors. The denser the cluster of
same-colored points is plotted, the more the model classifies them as similar data.
b t-SNE of themost confused 10words out of 100words. c Twopairs of normalized

waveforms of words exhibiting similar facial movement during pronunciation
(FAMILY/FAMILIES and INCREASE/DEGREES). d Relevance-CAM (R-CAM) that
explains our model by highlighting which region of the entire waveform is domi-
nant to classify each word, demonstrating that themodel focuses on characteristic
signal parts where the variance of the resistance is large.
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the downwardandupward convexities of sensor S2 at the timeof 0.6 s.
Concerning AFTERNOON, similarly, our model focused on the down-
ward convex point in both cases, which is at around 1 s for AFTER-
NOON(i) and at around 0.7 s for AFTERNOON(ii). The results
demonstrated that our model was not overfitted to signal data but
focused on characteristic signal parts where the resistance variance
was large.

Comparison of word recognition performance with sEMG
As shown in Fig. 5a–c, three types of epidermal sEMG electrodes with
various dimensions were also fabricated to determine the dependence
of electrode size to acquired signal quality. The surface area of the
small-sized electrode was nearly identical to the unit cell of our strain
gauge so that we could fairly compare the scalability of the two sys-
tems, whereas those in medium- and large-sized electrodes were
comparable with the conventional epidermal sEMG electrodes for
other SSIs12,31. A pair of 2-channels sEMG electrodes and one com-
mercial EMG reference electrodewere attached to the buccinators and
near the posterior mastoid, respectively, and the sEMG signal was
obtained at a sampling frequency of 1 kHz when the subject’s jaw was
clenched. The raw sEMG signal was preprocessed with a commercial
EMG module comprising three filters and an amplifier before being
transmitted to a DAQ module (Supplementary Fig. 6). The calculated
SNR (1.517, 5.964, and 8.378 for small-, medium-, and large-sized
electrodes, respectively) increased as the electrode dimension
increased because of the lowered surface impedance (see Fig. 5d–f),
revealing the limitation in improving the spatial resolution of
sEMG data.

To compare the word classification accuracy of sEMG-based
model with that of our stran gauges-based system, four pairs of small-
sized sEMG electrodes were attached to the facial muscles, which are
generally selected for SSI, including buccinators, levator anguli oris,
depressor anguli oris, and the anterior belly of digastric (Supplemen-
tary Fig. 7)12. As in the case of DAQusing our strain gauge, 100 datasets
of sEMG signals were obtained from the two subjects when silently
speaking 100 words, followed by hardware and software signal pro-
cessing (Supplementary Fig. 6). The preprocessed datasets were ran-
domly partitioned into five folds, and each fold feature was extracted
and cross-validated using the same method (see the flowchart in
Fig. 3b). Figure 5g shows the confusion matrix of classification results,
where the average recognition accuracy was 42.60%. The state-of-the-
art performance12 used the system electrode whose size is two orders
of magnitude larger than that of this work. Tomake a fair comparison,
we downscaled the sEMG electrodes to be identical size of our strain
gauges. With the sEMGwaveforms from 100 words data as inputs, the
feature embeddings output by the deep learning model are shown in
Fig. 5h. The 2D t-SNE mapping showed that the points with the same
color were scattered rather than clustered at a specific location, indi-
cating the difficulty in learning the representation of the scattered raw
data information. Supplementary Fig. 8 shows themagnified t-SNEplot
with labeling of 100words. This result, probably due to the diminished
SNR, symbolized the impeding factor of sEMG for extended word
recognition because more data with high spatial resolution induce a
higher classification accuracy of extended wordsets.

Conclusion
In summary, single-crystalline silicon-based strain gauges with a mesh
and serpentine structure could be a promising candidate for silent
speech communication with high scalability. Controlled doped single-
crystalline silicon, having the advantages of high gauge factor and
stability as an inorganic material, establishes a more accurate system
for SSI through deep learning model training with high reliability and
repeatability. The FEA simulation and automatic stretching test results
demonstrated that four sets of two adjacent gauges positioned per-
pendicular to each other are suitable for measuring the two-

dimensional movement of the skin. Additionally, we demonstrated
that the silicon-based strain gauge provides superior sensitivity com-
pared to themetal-based one with the same structure under a strain of
30%. Coupled with a novel 3D convolution deep learning model, we
achieved a word recognition accuracy of 87.53% to 100 words with
eight strain gauges, whereas eight EMG electrodes with the same
dimensions as ours only yielded an accuracy of approximately 42.60%.
These results suggest a new platform by scaling the number of chan-
nels of the sensor system for SSIwith a high spatiotemporal resolution,
thereby providing a phoneme unit recognition capability that was
previously impossible with any other systems.

Methods
Materials
SOITEC supplied SOI wafers (300 nm Si/1000 nm SiO2), and KAYAKU
Advanced Materials supplied 495 PMMA A8. Polyamic acid solution
(12.8wt%; 80% NMP/20% aromatic hydrocarbon) was purchased from
Sigma-Aldrich. Two positive photoresists used for the photo-
lithography process, MICROPOSIT S1805 and AZ 5214E, were from
DOW and MicroChemicals, respectively. A photoresist developer and
AZ 300mif from MicroChemicals were used for both photoresists. All
the materials for cleaning (HF solution, buffered oxide etchant 6:1,
sulfuric acid, and hydrogen peroxide) were purchased from
REAGENTS DUKSAN. The PDMS base and curing agent, Sylgard 184,
were purchased fromDOW.Cr etchant (CT-1200S) andAu etchant (AT-
409LB) were purchased from JEONYOUNG. Cu etchant (CE-100) was
purchased from the Transene Company.

SiNM transfer process
First, the SOI wafer was deep cleaned using piranha solution
(H2SO4:H2O2 = 3:1) at 100 °C for 15min and buffered oxide etchant for
5 s, followed by boron doping (high energy implantation, Axcelis) at a
dose of 5e14 cm−2, followed by rapid thermal annealing (RTA200H-SP1,
NYMTECH) at 1050 °C for 90 s. The above cleaning process was
repeated once more after the doping process. Second, microholes
with 3 µm diameter and 50 µm pitch were defined throughout the
device layer of the SOI wafer via UV–lithography (MDA-400S, Midas
System) and reactive ion etching (Q190620-M01, Young Hi-Tech).
MICROPOSIT S1805 was used as a positive photoresist for better
adhesion with an elastomer stamp due to its high surface uniformity.
Hole-patterned SOI wafers were then immersed in the HF solution for
25min to dissolve the BOX layer and to release the device layer from
thehandle substrate. After rinsingwithDIwater, the releasedSiNMwas
transferred to the elastomer stamp (PDMS base: curing agent = 4:1)
with moderate pressure, and the stamp was then pressed onto a PI
layer soft-baked at 110 °C for 1min. After baking at 150 °C for 3min, the
transfer printing process was completed by removing the stamp and
photoresist.

Biaxial strain sensor fabrication
The fabrication process started with preparing the two substrates on a
silicon thermal oxide wafer cleaned using a piranha solution. A
500 nm-thickPMMAwas spin coated andbaked at 180 °C for 3min as a
sacrificial substrate to release completed devices after the whole fab-
ricationprocess. Subsequently, a thinfilmof aPI double-layer (~3.4 µm)
was formed as a supporting substrate by spin coating of liquid
polyamic acid solution on the PMMA sacrificial layer. The PI substrate
was then fully baked in a vacuum oven at 210 °C for 2 h after the
transfer printing process of the SiNM layer. Two gauges perpendicular
to each other were defined by photolithography and RIE. For better
electrical contact with metallization, SiNM-based gauges were cleaned
with buffered oxide etchant to remove the native oxide layer. Thermal
evaporators (KVE-T2000, Korea Vacuum Tech) were used to deposit
the metal layer of Au(250nm)/Cr(5 nm) followed by UV–lithography
with AZ-5214E positive photoresist to avoid overetching and then wet
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Fig. 5 | Control experiment of silent word recognition using EMG. a–c Sche-
matics (top) and photographs (bottom) of three epidermal sEMG electrodes with
different electrode dimensions. The exposed contact areas of small-sized (a),
medium-sized (b), and large-sized (c) electrodes are ~0.1, ~5.5, and ~22.3 mm2,
respectively. Other than the exposed contact area is encapsulated with a polyimide
layer. Inset in (a, bottom): magnified optical image of small-sized electrode; scale
bars, 1mm (a, b) and 1.5mm (c). d–f Raw EMG signals of three sEMG electrodes

while the subjects clench their jaw tightly with electrodes attached to the bucci-
nators. Insets: magnified views of noise part. g Confusion matrix of the result of
silent 100words recognition using our small-sized EMG sensor (four channels with
eight electrodes on buccinators, levator anguli oris, depressor anguli oris, and
anterior belly of digastric) with the recognition rate of 42.60%. A total of 100
datasets are acquired, 46 of which are from Subject A and 54 are from Subject B.
h, t-SNE of the total 100-word classification.
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etching. After spin coating and curing the additional PI double-layer
(~3.4 µm) for the encapsulation layer, 150 nm of the Cu mask layer was
deposited and patterned to define the mesh and serpentine design.
Thewhole structure of thedevicewas thendryetched according to the
etch mask, and the Cu mask was then wet etched. Afterward, the
PMMA sacrificial layer was dissolved by immersing it in an acetone
bath, and the released device was transferred to the water-soluble
tape. Supplementary Fig. 9 illustrates the schematics of the fabrication
process. For themetal-based strain sensor, thewhole sequencewas the
same, except that the SiNM transfer and metal wet etching processes
were substituted for deposition of Au(50nm)/Cr(5 nm) and liftoff,
respectively. Step-by-step fabrication process is detailed in Supple-
mentary Note 2.

sEMG electrode fabrication
As with the strain sensor above, the fabrication process of sEMG
electrodes started with a coating of the PMMA sacrificial layer and a
subsequent thin film of the PI layer (1.7 µm) on a cleaned silicon ther-
mal oxide wafer. An electrode layer of Au(160 nm)/Cr(5 nm) was
deposited by thermal evaporation and then patterned via
UV–lithography and wet etching. An additional layer of PI (1.7 µm) for
passivation was spin coated followed by thermal deposition of a
Cu(100 nm)mask layer, as mentioned before. The unmasked area was
dry etched using RIE, providing a mesh and serpentine design.
Through this process, the designated active area was simultaneously
exposed to direct contact with the skin (Fig. 5a–c). Finally, the device
was immersed in an acetone bath to remove the underlying PMMA
layer, resulting in device detachment from the handle substrate and
subsequent transfer to a water-soluble tape. Supplementary Fig. 10
illustrates the schematics of the fabrication process, and step-by-step
fabrication process is detailed in Supplementary Note 3.

Experimental process of strain DAQ
Before attaching the strain sensor, the targeted skin was cleaned with
ethanol and water. A skin-safe pressure-sensitive adhesive (Derma-tac
from Smooth-On) was applied to the backside of the sensors on water-
soluble tapes. And then, the sensors were attached to the position
which was selected through the preliminary study presented in Sup-
plementary Figs. 1 and 2 with moderate pressure, and DI water was
then gently sprayed using a dispenser for 1min to dissolve the PVA
film. Residues of water-soluble tape were carefully peeled up using a
tweezer. The whole device attachment process is demonstrated in
Supplementary Movie 3. The strain sensors were connected to the
breadboard comprising voltage divider circuit components by a pre-
soldered ACF cable and jumper wires. The voltage divider provided Vin

from a 3 V common supply voltage generated by a voltage output DAQ
module (PXIe-6738 from NI). Vin was then measured with a voltage
input DAQ module (PXIe-6365 from NI) with a 300Hz sampling fre-
quency. The flowchart and experimental setting image of the strain
DAQ system with the voltage divider circuit are shown in Supple-
mentary Figs. 3 and 4. The demonstrations of word recognition pro-
cess are provided in Supplementary Movie 1 and 2.

Experimental process of sEMG DAQ
For an unbiased comparison of the two SSIs, the DAQ of sEMG was
performed following previous literature with state-of-the-art perfor-
mance. A pair of sEMG electrodes on a water-soluble tape was trans-
ferred to a 3M Tegaderm with 2 cm spacing, followed by the removal
of the water-soluble tape in a temporary tattoo-like manner. By using
Tegaderm, a transparent dressing adhesive film directly attached onto
the backside of the sEMG sensor, the sEMG electrode areas located on
the front side are fully opened tomake direct contact to the skin while
elsewhere is firmly attached to the skin. After cleaning the allocated
locations with ethanol and water, four pairs of electrodes were
attached to the adhesive of Tegaderm (Supplementary Fig. 10). The

reference electrode was attached near a posterior mastoid, which was
electrically neutral from the sEMG measurement sites. All the elec-
trodes were connected to commercial sEMG modules (PSL-iEMG2
from PhysioLab), incorporating three filters and an amplifier. The
obtained sEMG signals were then carried to the voltage input DAQ
module (PXIe-6365, NI) with a 1000Hz sampling frequency. Supple-
mentary Fig. 6 shows the details of the DAQ process.

Software environment and the SSI process
The environment was based on Ubuntu 18.04. CUDA 11.2, anaconda3,
and python 3.8 were installed. Adjacent location values were located
sequentially to reflect the geometric characteristics in which theywere
correlated with each other. Signals with a video as input are
X 2 R1 ×H ×W ×T , where 1 is the number of videos, and T is the number
of frames. H × W is the size of the frame where H is 2 with the paired
horizontal and vertical axes, andW is 4with the number of the location
of strain gauge sensors. To extract the properties of resistance chan-
ges, we used min–max normalization for each signal and applied a
Savitzky–Golay filter to reduce noise. The preprocessed signal data
were fed into the 3D convolution-based model to consider spatio-
temporal information. The detailed structure of each model is pro-
vided in Supplementary Tables 10–13.

Ethical information for human subjects
According to Article 13, Paragraph (1) of the Enforcement Regulations
of the Bioethics and Safety Act of the Ministry of Health and Welfare,
Korea, the authors confirmed that there is no need to obtain Institu-
tional Review Board approval as volunteers have conducted research
using wearable sensors and simple contact measuring equipment
without any physical modification nor invasive measurement on
human. The authors affirm that human research participants provided
informed consent for publication of the images in Fig. 1c and Supple-
mentary Figs. 1a, 2, and 7.

Data availability
All datasets generated during this study are available from the corre-
sponding author upon reasonable request. The raw data of device
characteristics are provided in the Source Data files. The silent speech
data for 100 LRWwords generated by strain and sEMGDAQ system are
available at the following link. https://drive.google.com/file/d/
1UssIGck1sy9wDtiSYt_YrEM59bx6nPIc/view?usp=sharing. Source data
are provided with this paper.

Code availability
All codes used in this study are available at the following database.
https://github.com/MAILAB-Yonsei/Silent-Speech-Interfaces.
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