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Tissue-specific impacts of aging and genetics
on gene expression patterns in humans

Ryo Yamamoto 1,2,5, Ryan Chung3,5, Juan Manuel Vazquez1, Huanjie Sheng1,
Philippa L. Steinberg1, Nilah M. Ioannidis 3,4 & Peter H. Sudmant 1,3

Age is the primary risk factor for many common human diseases. Here, we
quantify the relative contributions of genetics and aging to gene expression
patterns across 27 tissues from 948 humans. We show that the predictive
power of expression quantitative trait loci is impacted by age in many tissues.
Jointly modelling the contributions of age and genetics to transcript level
variation we find expression heritability (h2) is consistent among tissues while
the contribution of aging varies by >20-fold with R2

age > h2 in 5 tissues. We find
that while the force of purifying selection is stronger on genes expressed early
versus late in life (Medawar’s hypothesis), several highly proliferative tissues
exhibit the opposite pattern. These non-Medawarian tissues exhibit high rates
of cancer and age-of-expression-associated somatic mutations. In contrast,
genes under genetic control are under relaxed constraint. Together, we
demonstrate the distinct roles of aging and genetics on expression
phenotypes.

Organismal survival requires molecular processes to be carried out
with the utmostprecision. However, as individuals agemany biological
processes deteriorate resulting in impaired function and disease. Such
increases in the overall variance of molecular processes are predicted
by Medawar’s germline mutation accumulation theory1, which states
that because older individuals are less likely to contribute their genetic
information to the next generation, there is reduced selection to
eliminate deleterious phenotypes that appear late in life2. This theory
also predicts that genes expressed early in life should be under
increased selective constraint compared togenes expressed late in life.
However, a key challenge remains in both quantifying age-associated
changes in biological processes across tissues and identifying how
genetic variation influences such changes.

At the organismal level, age-associated changes in the hetero-
geneity of gene expression between individuals have been observed
for a handful of genes in humans3. In an analysis of gene expression in
monozygotic (identical) twins, 42 genes showed age-associated dif-
ferences in gene expression, suggesting a role for the environment in
modulating gene expressionwith age2,3. Similarly, the number of genes

with expression quantitative trait loci (eQTLs) detected from blood in
70 year olds declined by 4.7% when they were resampled at 80 years
old4. However, the extent of this phenomenon, both across genes and
tissues, remains unclear5. Age-associated increases in the hetero-
geneity of gene expression have also been observed at the level of
individual cell-to-cell variation; however, only some cell types appear
to be impacted6. In a recent study of immune T-cells from young and
aged individuals, nodifference in cell-to-cell variabilitywasobserved in
unstimulated cells, however, upon immune activation the older cells
appeared more heterogeneous7. It is not known why some cell-types
and not others may be more likely to exhibit increased cellular
variability.

The relationship between the age at which a specific gene is
expressed and the force of purifying selection has also recently been
explored across a number of species8,9. These analyses have broadly
confirmed that, on average, genes expressed later in life are under less
constraint compared to those expressed early in life. However, how
these patterns vary across different tissues and are impacted by
genetic variation has not been systematically explored.
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Here we set out to understand how aging affects the molecular
heterogeneity of gene expression and to model the relative impact of
age and genetic variation on this phenotype across tissues. First, using
gene expression data from 948 individuals in GTEx V810 we show that
age impacts thepredictive power of eQTLs, however to varying extents
across different tissues and in old and young individuals. Increases in
between-individual gene expression heterogeneity were associated
with these reductions in eQTLpower.Using a regularized linearmodel-
based approach to jointly model the impact of both age and genetic
variation on gene expressionwefind that while the average heritability
of gene expression is consistent across tissues, the average contribu-
tion of age varies substantially. Furthermore, while the genetic reg-
ulation of gene expression is similar across tissues, age-associated
changes in gene expression are highly tissue-specific in their action.
We use this joint model to identify each gene’s age of expression and
show that while in most tissues late-expressed genes do tend to be
under more relaxed selective constraint, among a handful of highly
proliferative tissues the opposite trend holds.

Results
Expression quantitative trait loci exhibit varying predictive
power in old and young individuals across several different
tissues
To gain insight into how gene regulatory programsmight be impacted
by aging, we analyzed transcriptomic data collected across multiple
tissues from 948 humans (GTEx version 8)10. We hypothesized that
aging might dampen the effect of expression quantitative trait loci
(eQTLs) due to factors such as increased environmental variance or
molecular infidelity (Fig. 1a, b). To test this hypothesiswefirst classified
individuals into old and young age groups, conservatively grouping
individuals above and below the median age (55 years old, Supple-
mentary Fig. 1), respectively, and restricting our analyses to tissues
with at least 100 individuals in both groups (27 tissues in total, Sup-
plementary Fig. 2, Supplementary Data 1). In each tissue we down-
sampled to match the sample size of old and young individuals while
additionally controlling for co-factors such as ancestry and technical
confounders (Methods). Of note, a common approach to controlling
for unobserved confounders in large gene expression experiments is
to probabilistically infer hidden factors using statistical tools such as
PEER11. We noticed that many of the GTEx PEER factors were sig-
nificantly correlated with sample age, with the top three correlated
PEER factors having a Pearson r of 0.33, −0.21, and −0.15 (Supple-
mentary Fig. 3). To prevent loss of age related variation, we recalcu-
lated a corrected set of PEER factors that were independent of sample
age (Methods).We then assessed the significance of GTEx eQTLs in the
young and old cohorts respectively, comparing the distribution of
P-values over all genes between old and young individuals (Fig. 1c, two-
sidedWelch’s t-test). In 20out of 27 (74%) of the assessed tissues, the P-
value distribution was significantly different between young and old
individuals, with genotypes more predictive of expression in younger
individuals in 12/20 cases. While 8 tissues show the opposite trend,
with increased predictive power in older individuals compared to
younger individuals, the magnitude of this effect was significantly
reduced (Wilcoxon rank sum test, P =0.031, Supplementary Fig. 4).
These results were largely identical when the analyses were performed
with the original non-corrected PEER factors (18/27 tissues, Supple-
mentary Fig. 5). This effect was not significantly associated with the
number of eGenes identified by GTEx (Supplementary Fig. 6).

While the GTEx dataset is unique in its wide sampling of partici-
pant ages and tissues, we validated our observations in the PIVUS
cohort which includes blood tissue from individuals re-sampled at
ages 70 and 804. This study previously demonstrated a reduction in
eQTL heritability with age, supporting our results. We confirmed using
our approach that eQTLswere less predictive of gene expression in 80,
compared to 70 year olds (Supplementary Figs. 7, 8). These results

suggest that the predictive power of eQTLs is impacted by the sample
age across the vastmajority of tissues. Furthermore, this effect is more
pronounced in older samples compared with younger samples.

Age-associated changes in gene expression heterogeneity
impact gene expression heritability
We hypothesized that the overall reduced predictive power of eQTLs
in some tissues might be in part due to an increase in expression
heterogeneity in these tissues, potentially as a result of increased
environmental variance. To test if such an effect would broadly affect
expression across all genes in a tissue (Fig. 2a), we calculated the dis-
tribution of pairwise distances among individual’s tissue-specific gene
expression profiles using the Jensen-Shannon Divergence (JSD)12,13 as a
distance metric. The JSD is a robust distance which is less impacted by
outliers compared to other methods (e.g., Euclidean distance)13.
Comparing the distribution of pairwise differences in transcriptional
profiles within distinct age groups allows us to determine if gene
expression signatures are more similar among younger individuals or
among older individuals.

We compared the mean difference in gene expression distances
among old and young individuals as well as the slope of the inter-
individual JSD when grouping individuals into six bins spanning
20−80 years old (see Methods, Fig. 2b, c). These two strategies yiel-
ded highly similar results (Fig. 2c Pearson’s R = 0.8) identifying tis-
sues exhibiting increased heterogeneity in both young and old
populations. (Supplementary Fig. 9) Thus, contrary to our initial
hypothesis, aging does not universally result in increased hetero-
geneity in gene expression patterns. The difference in JSD between
old and young individuals was also negatively correlated with the
results from our analysis of eQTLs across old and young individuals
(Supplementary Fig. 10, R = −0.48, P = 0.01 two-sided Pearson cor-
relation test) highlighting that tissues with increases in inter-
individual heterogeneity were likely to also exhibit reductions in
the proportion of variance explained by eQTLs.

To expandour eQTL analyses to account for the combined impact
of nearby SNPs, we utilized the multi-SNP regularized linear model
developed in PrediXcan14. This model has the benefit of combining
genetic effects across many loci, instead of examining just a single
eQTL variant. This combined genetic contribution to gene expression
variance results in an estimate of the heritability (h2) for each gene. We
applied this model independently in old and young individuals to
quantify h2 and found that the average per-gene difference in h2

between old and young individuals was strongly negatively correlated
with the difference in JSD between samples (Pearson’s R = −0.6,
P = 9.9e-4 Pearson correlation test, Fig. 2d, Supplementary Fig. 11). To
verify these results we again referred to the PIVUS study and obtained
cis heritability estimates using the GCTA package15. As expected, we
observed that the heritability of gene expression decreases with age,
corresponding with the PrediXcan results in GTEx whole blood (Sup-
plementary Fig. 12). Together, these results suggest that across
numerous tissues gene expression heterogeneity differs between
young and old individuals. Increased expression variance, either in old
or in young individuals, drives a reduction in the average heritability of
gene expression across these tissues.

We additionally sought to identify individual genes exhibiting age-
associated expression heterogeneity by testing if, after regressing out
age-related changes in gene expression levels, the variance of the
residuals correlatedwith age (Breusch-Pagan test). The effect size from
this test (βhet) describes the strength and direction of age related
changes in gene expression variance. Using this approachwe identified
279 genes with age-associated variance changes (FDR <0.05) across
tissues (Supplementary Fig. 13). The estimated βhet values in these
genes were overwhelmingly negative (234/279, 84%, Supplementary
Data 3) indicating that the dominant signature was of reduced gene
expression heterogeneity with age. A Gene Set Enrichment Analysis
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(GSEA) of these genes highlighted pathways involved in metabolism,
cell proliferation, cell cycle and cell death (Supplementary Fig. 14).
While the proportion of positively heteroskedastic genes was weakly
correlated with the transcriptome-wide JSD (P = 1.32e-2 two-sided
Pearson correlation test, Supplementary Fig. 15), the small number of
genes implicated suggests that these metrics are capturing different
phenomena.

Cell-type specific age-associated changes in gene expression
heterogeneity and the predictive power of eQTLs
While no datasets of the magnitude and scale of GTEx exist for
single-cell genomic data, we employed the tool CIBERSORT16 to
deconvolute bulk GTEx blood RNA-seq data into cell-type specific
abundances. Assessing the predictive power of eQTLs in old and

young individuals in six immune cell subtypes we found sig-
nificantly increased explanatory power of eQTLs in younger
individuals compared to older individuals (Supplementary
Fig. 16). Consistent with these analyses, a comparison of the JSD in
old and young individuals revealed increased expression het-
erogeneity across these cell types with age (Supplementary
Fig. 17). We also investigated whether the observed differences in
eQTL power and expression heterogeneity might be driven by
changes in cell-type composition; however, cell-type composi-
tion changes were not reflective of gene expression variance
(P = 0.2 two-sided Pearson correlation test, Supplementary
Fig. 18), suggesting that age associated changes in eQTL
powerand expression heterogeneity are taking place at the
transcript level.
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Fig. 1 | Age impacts the predictive power of eQTLs in many tissues. a A hypo-
thetical model of the differing power to detect eQTLs in old and young cohorts.
b Examples of gene expression binnedby genotype and age for four genes in which
eQTL p-values differ between old and young individuals in whole blood and heart
atrial appendage. Example geneswith both positive and negative effects are shown.
n = 309 samples for old group in blood, n = 361 samples for young group in blood,
n = 202 samples for old group in heart atrial appendage, n = 170 samples for young

group in heart atrial appendage. Center line of the boxplot indicates median, box
limit indicates first and third quartiles and points indicate outliers. c QQ plots of
eQTL p-values (plotted as -log(P)) for old (red) and young (blue) individuals from a
linear model correlating expression with the lead SNP for each gene in 27 tissues
(Supplementary Data 2). P-values for significant differences in eQTL p-value dis-
tributions are obtained from a two-sided Welch's t-test.
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Jointly modeling the impact of age and genetics on gene
expression identifies distinct, tissue-specific patterns of aging
A more powerful approach to understand how both genetics and age
impact gene expression variation is to jointly model these factors
simultaneously. We set out to extend the regularized linear model
employed by PrediXcan14 to incorporate an age factor (Fig. 3a), allowing
us to parse apart the individual contributions of genetics (R2

genetics or h
2),

age (R2
age), and the environment (R2

environment) to the expression variance
of each gene (e.g., Fig. 3b, c and Supplementary Fig. 19). We define
R2
environment as all sources of variation not captured by h2 and R2

age. Esti-
mates of h2 in our extendedmodel were highly consistent with those in
the original PrediXcan approach (Supplementary Fig. 20).

Employing our model across each tissue independently we find
that averageheritability of gene expression is largely consistent among
tissues, ranging from 2.9% to 5.7%, with 40% of genes having an h2 >
10% in at least one tissue (Fig. 3d, Supplementary Fig. 21). Thus, while
the variation in expression of many individual genes is strongly influ-
enced by genetics, on average, genetics explains a small proportion of
overall gene expression variation. In contrast, the average contribution
of aging to gene expression varied more than 20-fold among tissues
from 0.4% to 7.9%, with the average R2

age greater than the average h2 in
5 tissues. Among these 5 tissues the expression of 39–54%of geneswas

more influenced by age than by genetics (i.e. R2
age > h2, Supplementary

Fig. 22), and across all tissues 45% of genes had an R2
age > 10% in at least

one tissue. Assessing the tissue-specificity of these trends on a per-
gene basis we found that while the estimated heritability of gene
expression tended to be similar among different tissues, the age-
associated component exhibited significantly more tissue specificity
(P = 4.21e-313 two-sided paired t-test, Fig. 3e). We note that the wide-
spread signatures of age-associated gene expression variance that we
identify are virtually undetectablewhen using theGTEx-provided PEER
factors. Just 1.84% of the age-associated genes we identify have non-
zero age coefficients when using these GTEx PEER factors (Supple-
mentary Fig. 23).We tested if sex-specific age effectswere contributing
to the observed age associations, as might be expected if changes
related to menopause were playing a role (Supplementary Fig. 24).
Including an interaction term between age and sex in our joint model
we found that while the age term continued to describe a large pro-
portion of the variance (on average 2.6%), the contribution of the age-
sex interaction term was several-fold lower (average of 0.035%, Sup-
plementary Fig. 25, Supplementary Data 4). The model incorporating
age-sex interactions also showed consistent estimates of variance
explained as compared to the baseline joint model (R =0.99, Supple-
mentary Fig. 26). Our model thus widely expands the utility of the
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Fig. 2 | Inter-individual gene expression heterogeneity changes with age for a
subset of tissues. a Hypothesized age-associated changes in gene expression
heterogeneity (top) and our approach for quantifying the inter-individual expres-
sion distance with age using the Jensen Shannon Divergence metric (JSD) for age-
binned individuals (bottom). b The distributions of JSD distances for four example
tissues in old and young bins. Red points show the means for each group. Cloud
plots show individual pairwise distances and half violin plots show distributions.

c Consistency of measuring the average age-associated change in gene expression
heterogeneity across a tissue using a binary binning strategy (y-axis, JSDold-JSDyoung)
or a 6 bin strategy (x-axis, slope of JSD across 6 age bins). R indicates Pearson
correlation value. d The relationship between gene expression heterogeneity and
the difference in expression heritability between old and young individuals. R and
p-value are obtained from two-sided Pearson correlation test.
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GTEx dataset for exploration of critical biological signatures of aging.
Together, these results imply that age-associated patterns of gene
expression exhibit substantially more tissue specificity than those that
are influenced by genetics and among several tissues age plays amuch
stronger role in driving gene expression patterns than genetics.

Coordinated decline of mitochondrial and translation factors is
a widespread signature of aging across tissues
To understand the underlying biological implications of age-
associated gene expression changes we applied gene set enrichment
analysis (GSEA)17 to each tissue independently, ranking genes either by

the relative contribution of genetics (h2) or aging (R2
age). Comparing the

distribution of P-values from enriched GO-annotations we found that
pathways enriched for age-associated variance were substantially
more significant than pathways associated with genetic-associated
variance (e.g. Fig. 4a). We found more age-associated pathway
enrichment even in tissues for which the average age-associated con-
tribution to gene expression was low (e.g. Pancreas, Supplementary
Fig. 27). This implies that while age-associated changes in gene
expression vary widely in their magnitude among tissues, these
changes consistently impact critical biological processes. A GSEA of
genes ranked by the tissue-averaged slope of the age-associated trend
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Fig. 3 | A joint predictive model of gene expression identifies tissue-specific
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multi-SNP gene expression association model incorporating sample age. Common
SNPs around each gene g are used in combination with an individual's age to
predict expression within tissue t. Using this trained model, variation in gene
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genetics (R2
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environment).

b Proportion of each gene's expression variance explained by age and genetics.

c Plot of normalized expression vs age for four genes with age-correlated expres-
sion. Line shows fitted βage from regularized linear model. d Point estimates of the
mean R2

age and h2 for each tissue, error bar indicating standard error for the esti-
mate. e The tissue specificity score of R2 across 27 tissues for each gene from either
age or genetics. Center lineof theboxplot indicatesmedian, box limit indicates first
and third quartiles, points on both ends indicate minima and maxima. P-value is
obtained from two-sided paired samples t-test with n = 812 genes.
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(βage) highlighted several key aging-associated pathways18,19. Pathways
associated with various mitochondrial and metabolic processes and
translation were enriched for having − βage values, implying age-
associated decreases in expression (Fig. 4b). A single immune path-
way, the interferon-gamma response, was enriched having + βage
values. An additional 18 immune pathways were identified as having
age-associated increases in gene expression using a more lenient sig-
nificance threshold (FDR <0.05) (Supplementary Fig. 28, Supplemen-
tary Data 5). In contrast, no pathways were significantly enriched when
genes were ranked by average h2.

To further explore the functional impact of age-associated gene
expression changes we compared the R2

age of all nuclear-encoded
mitochondrial genes20 (n = 1120), and translation initiation, elongation,
and termination factors across tissues (Fig. 4c, Supplementary Fig. 29).
Genes in these pathways were exceptionally enriched for age-
associated gene expression across several tissues. In some cases
>10% of the average expression variation of mitochondrial or transla-
tion factor genes could be explained by age. βage was consistently
negative in these mitochondrial and translation factor genes (Fig. 4d)
highlighting that genes in these pathways exhibit a systematic
decrease in expression as a function of age. Overall across tissues an
average of 36% of all mitochondrial genes (406/1120) and 35% of
translation factors (119/337) exhibited age-associated declines,

however in some tissues these proportions exceeded 60%. In contrast,
the only pathway associated with age-associated increases in expres-
sion, interferon-gamma response genes, was largely specific to blood
and arterial tissue (Fig. 4c), likely due to the role of this pathway in
immune cells. Together these results demonstrate that the coordi-
nated decline of mitochondrial genes and translation factors is a
widespreadphenomenon of aging across several tissues with potential
phenotypic consequences.

Distinct evolutionary signatures of gene expression patterns
influenced by aging and genetics
Evolutionary theory predicts that due to the increased impact of
selection in younger individuals, genes that increase expression as a
function of age (βage > 0) should be under reduced selective constraint
compared to genes that are highly expressed in young individuals
(βage < 0), a theory of aging known as Medawar’s hypothesis1 (Fig. 5a).
Several recent studies have demonstrated the generality of this trend
across species8,9,21, however the tissue-specificity of this theoretical
prediction has not been explored. We sought to test the generality of
this trend across different tissues by comparing βage with the level of
constraint on genes, quantified as the probability loss of function
intolerance (pLI) score from gnomAD22. As expected, across the vast
majority of tissues βage was significantly negatively correlated with pLI
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Fig. 4 | Functional analysis of age-related genes reveals enriched biological
processes. a A QQ plot of p-values for pathways tested for enrichment using gene
set enrichment analysis (GSEA) with genes ranked by either h2 or R2

age in four
example tissues. b GSEA enrichments from genes ranked by the mean βage across
tissues. P-values were obtained using two-sided permutation test. Pathways with a
multiple testing corrected P <0.02 are shown. c Average gene expression variance

explained by age for mitochondrial (MT) genes (red), translation factor genes
(purple), interferon gamma genes (blue) and remaining genes (yellow) across all
tissues, error bar indicating standard error of mean. d Volcano plot of the variance
explained by age vs βage for mitochondrial, translation factors, interferon gamma
factors, and remaining genes. Density plot of each axis shown on top and right.
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(Fig. 5b, c, Supplementary Fig. 30), in line with Medawar’s hypothesis.
However, five tissues exhibited significant signatures in the opposite
direction including prostate, transverse colon, breast, whole blood,
and lung tissue (P < 10−3 linear model two-sided t-test). These five tis-
sues stillmaintained a significant negative relationship after subsetting
to genes that are highly dependent on age (R2

Age > 0:1, Supplementary
Fig. 31). These tissueswithnon-Medawarian trends aredrivenbyhighly
constrained, functionally important genes being expressed at a higher

rate in older individuals (Supplementary Fig. 32). Using dN/dS23 as an
alternative metric of gene constraint yielded highly correlated results
(R = −0.72, P = 2.5e-5 two-sided Pearson correlation test, Supplemen-
tary Figs. 33, 34).

To explore why these five tissues might exhibit distinctive evolu-
tionary signatures of aging we compared the distribution of significant
βage parameters between Medawarian and non-Medawarian tissues
among different hallmark pathways24. We found 11 signatures

Fig. 5 | Tissue-specific evolutionary signatures of aging. a The expected rela-
tionship across genes between the per-gene age-associated slope of gene expres-
sion (βage) and a gene's level of constraint (measured by probability loss of function
intolerance, pLI). Medawar's hypothesis predicts a negative relationship (shown in
red) between the time of expression and the level of constraint. The opposite trend
(non-Medawar) is shown in blue. b βage across genes plotted as a function of pLI for
a tissue exhibiting aMedawarian signature, and a non-Medawarian signature. cThe
slopeof the relationship fromb between βage and constraint across all tissues. Error
bars show estimated standard error of regression slope. Unadjusted p-values in
b and c are calculated using a linear model two-sided t-test (exact p-values in
Supplementary Table 2). d Hallmark pathways in which the βage was significantly
different between Medawarian and non-Medawarian tissues (two-sided t-test).

e Bar chart shows per-tissue relationship between βage and frequency of somatic
mutations in tumor samples for a particular gene and cancer type (left). Colored as
in 5C with alpha indicating unadjusted significance using two-sided t-test (exact p-
values in Supplementary Table 3). Y-axis labels show the number of independent
genes and error bars indicate the estimated standard error of regression slope.
Doughnut chart shows estimated proportion of new cases of cancer in US in 2022
by cancer type from Table 1 of25 (right). Crosshatch indicates that while colon
transverse was identified as a non-Medawar tissue, colon sigmoid was not. f Gene
expression variance explained by genetics or age as a function of binned (10 bins)
gene constraint averaged across all tissues. Points represent the mean and error
bars the standard error of the mean.
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exhibiting significantly increased βage (FDR<0.01 two-sided t-test)
compared to non-Medawarian tissues (Fig. 5d, Supplementary Fig. 35)
including DNA-damage, TGF-β signalling, MYC targets, and epithelial-
to-mesenchymal transition pathways most prominently. All of these
signatures are broadly correlated with cellular proliferation, differ-
entiation, and cancer. Indeed, these five non-Medawarian tissues are
also the top five most commonly diagnosed sites for cancer in 202225

(Fig. 5e). To directly investigate cancer signatures in these tissues we
quantified the per-gene likelihood of having somatic mutations in
tumors using the COSMIC cancer browser26. GTEx tissues were mat-
ched to most representative cancer types for comparisons (e.g. Breast
Cancer→Breast Mammary Tissue, Supplementary Data 6). We found
that the per-gene age of expression (βage) was significantly correlated
withmutation frequency (i.e. mutational burden) across several tissues
(Fig. 5e, Supplementary Fig. 36) with the 5 non-Medawarian tissues
exhibiting some of the strongest signatures (P < 10−4 linear model two-
sided t-test). These results highlight that gene expression patterns in
tissues and cell-types that proliferate throughout the course of an
individuals lifemaybe subjected todistinct evolutionary pressureswith
important implications for the cancer susceptibility of these tissues.

We also explored the relationship between gene expression her-
itability and constraint. Across all tissues h2 was significantly negatively
correlated with pLI (P-value < 10−3 linear model two-sided t-test, Sup-
plementary Figs. 37, 38, 39). Thus, on average genes in which the
variation in expression levels is heritable tend to be under significantly
less functional constraint (Fig. 5f). In contrast however, on averageR2

age
increases as function of pLI, highlighting the increased constraint of
many of the genes that exhibit age-associated changes in gene
expression. These highly conserved genes (e.g. the aforementioned
mitochondrial and translation factors) are thus potentially of critical
importance to disease. Together, these results highlight the stark
contrast in the types of genes with heritable expression patterns
(reduced constraint) compared to those with age-associated gene
expression patterns (increased constraint).

Discussion
Studying age-associated changes in gene expression provides critical
insights into the underlying biological processes of aging. Here, we set
out to quantify the relative contributions of aging and genetics to gene
expressionphenotypes acrossdifferent human tissues. Our study finds
that the predictive power of eQTLs is significantly impacted by age
across several different tissues and that this effect ismore pronounced
in older individuals. These results extend upon previous work exam-
ining blood tissue4 and highlight the varied impact of aging on eQTLs
among different tissues. We show that this result is likely to be in part
due to an increase in the inter-individual heterogeneity of gene
expressionpatterns among individuals in somecontexts, potentially as
a result of the increased impact of the environment. Notably, increased
inter-individual heterogeneity in both younger and older individuals
was associated with reduced predictive power of eQTLs as well as
expression heritability. This relationship is expected as an increase in
gene expression heterogeneity would reduce the proportion of heri-
table gene expression. Our study was not able to determine why the
inter-individual heterogeneity ingene expressionmight differ between
old and young individuals, regardless of the direction of the effect.
Potentially different tissues are subjected to varying contributions of
the environment at different ages, however, testing such a hypothesis
in humans is challenging.

When testing for individual genes with age-associated hetero-
skedasticity we found few significant genes. Furthermore, most of the
heteroskedasticity identified was negative, i.e. exhibiting decreases in
variance associated with age. In contrast however, our analyses con-
sidering the transcriptome of each individual as a whole identified
several instances of increased inter-individual variation (Fig. 2). This
could potentially result from the combined effects of many small

changes in expression variance across genes, not individually detect-
able given the current sample sizes. Alternatively, unique, individual-
specific changes in gene expression, potentially due to unique envir-
onments could increase the variance of the transcriptome as a whole
between individuals. Future work may help distinguish between these
hypotheses.

Our study is however limited in its primary focus on bulk-tissue
transcriptomic data. Early evidence from single cell studies already
suggests that differences in gene expression heterogeneity vary
among cell types of tissues as a function of age6,7,27,28. While these
studies lack sufficient individual sample sizes and genetic diversity for
the statistical approaches used herein, it is possible that in the future
the availability of larger datasets will facilitate studying these phe-
nomena at the single-cell level. The extensive tissue heterogeneity we
observe suggests that patterns of aging will exhibit substantial cell-
type specificity.

We also present an approach to jointly model the impact of
genetics and aging on gene expression variance to parse out the
individual contributions of each of these factors. The increased com-
plexity of our model has little impact on its accuracy with our
expression heritability estimates strongly correlated with previous
heritability measures across all tissues (mean Pearson’s r = 0.89, Sup-
plementary Fig. 20). Using this model we show that age exhibits
exceptionally varied affects on different tissues, and indeed, in several
tissues age contributes more to gene expression variance on average
than genetics. These results also highlight a widespread coordinated
signature of age-associated decline in mitochondrial and translation
factors. Dysregulation in mitochondrial function and ribosome bio-
genesis have been documented as key players in aging29,30, however
our results highlight the tissue-specificity of these trends. Our model
also allows us to quantify the tissue-specific evolutionary context of
age-associated gene expression changes. We corroborate the inverse
relationship between age-at-expression and constraint, aspredictedby
Medawar’s hypothesis and recently documented by others8,9,21 across
the vast majority of tissues. However, we also surprisingly identify five
tissues which exhibit the opposite pattern and show that age-
associated signatures of increased proliferation and cancer are enri-
ched in these tissues. These results highlight the distinct evolutionary
forces that act on late-acting genes expressed in highly proliferative
cell-types. Futurework extending these analyses to the single-cell level
will provide further insights into the cell-type-specific age-associated
patterns of constraint, and its relevance to cancer.

Overall this work has several important implications. Our results
shed light on recent work on the prediction accuracy of polygenic risk
scores (PRS)31 which found that numerous factors, including age, sex,
and socioeconomic status can profoundly impact the prediction
accuracy of such scores even in individuals with the same genetic
ancestry. Our results highlight that genetics exhibit varied predictive
power in several different tissues as a function of age, potentially
playing a role in differential PRS accuracy between young and old
individuals. This also has important implications for disease associa-
tion and prediction approaches that leverage expression quantitative
trait loci to prioritize variants, including colocalization methods32,
transcriptome-wide association studies14,33, and Mendelian
randomization34,35. If a significant proportion of eQTLs exhibit age-
associated biases in their effect size in a tissue of interest, then these
approaches may be less powerful when applied to diseases for which
age is a primary risk factor such as heart disease, Alzheimer’s demen-
tias, cancers, and diabetes. Furthermore our results highlight that
genes with eQTLs tend to be subject to less evolutionary constraint,
and thus potentially less biologically important, in contrast to genes
with age-associated gene expression patterns which exhibit increased
constraint.

The critical role of aging as a risk factor formany common human
diseases underscores the importance of understanding its impact on
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cellular systems at the molecular level. Together our analyses provide
insights into tissue-specific patterns of aging and the relative impact of
genetics and aging on gene expression. We anticipate that future
studies across tissues and cells of gene expression, chromatin struc-
ture, and epigenetics will further elucidate howboth programmed and
stochastic processes of aging drive human disease.

Methods
Data collection age groupings
We downloaded gene expression data for multiple individuals and
tissues from GTEx V810, which were previously aligned and processed
against the hg19 human genome. Tissues were included in the analysis
if they had >100 individuals in both the age ≥55 and <55 cohorts
(Supplementary Fig. 2). For a given tissue, genes were included if they
had >0.1 TPM in ≥20% of samples and ≥6 reads in ≥20% of samples,
following GTEx’s eQTL analysis pipeline. To compare gene expression
heritability across individuals of different ages, for some analyses we
split the GTEx data for each tissue into two age groups, "young" and
"old," based on themedian age of individuals in the full dataset, which
was 55 (Supplementary Fig. 1). Within each tissue dataset, we then
equalized the number of individuals in the young and old groups by
randomly downsampling the larger group, to ensure that our models
were equally powered for the two age groups.

PEER factor analysis
We analyzed existing precomputed PEER factors available from GTEx
to check for correlations between these hidden covariates and age. In
particular, we fit a linear regression between age and each hidden
covariate and identified significant age correlations using an F-statistic
(Supplementary Fig. 3). Because some of the covariates were corre-
lated with age, we generated age-independent hidden covariates of
gene expression to remove batch and other confounding effects on
gene expression while retaining age related variation. In particular, we
first removed age contributions to gene expression by regressing gene
expression on age and then ran PEER on the age-independent residual
gene expression to generate 15 age-independent hidden PEER factors.

Quantifying the effect of eQTLs on gene expression in different
age groups
Using the binary age groups defined above, we assessed the relative
significance of eQTLs in old and young individuals by carrying out
separate assessment of eQTLs identified by GTEx. We report the
number of genes included in analysis for each tissue (Supplementary
Table 1). For each gene in each tissue and eachage group,we regressed
theGTExpre-normalized expression levels on the genotype of the lead
SNP (identified by GTEx, MAF >0.01) using 5 PCs, 15 PEER factors, sex,
PCR protocol and sequencing platform as covariates, following the
GTEx best practices. We confirmed our results using both our
recomputed PEER factors aswell as the PEER factors provided byGTEx
(Supplementary Fig. 5). To test for significant differences in genetic
associations with gene expression between the old and young age
groups, we compared the p-value distributions between these groups
for all genes and all SNPs in a given tissue using Welch’s t-test. To
investigate the validity of the age cutoff used for these binary age
groups, we replicated the eQTL analysis using two additional age
cutoffs of 45 and 65 years old. We observed the same trends in both
cases; however, statistical power decreased due to smaller sample
sizes in the resulting age bins, leading to a non-significant result for age
cutoff 45 (Supplementary Fig. 40).

Jensen-Shannon Divergence as a distance metric between tran-
scriptome profiles
To quantify differences in gene expression between individuals, we
computed the pairwise distance for all pairs of individuals in an age
group using the square root of Jensen-Shannon Divergence (JSD)

distance metric, which measures the similarity of two probability dis-
tributions. Here we applied JSD between pairs of individuals’ tran-
scriptome vectors containing the gene expression values for each
gene, which we converted to a distribution by normalizing by the sum
of the entries in the vector. For two individuals’ transcriptome dis-
tributions, the JSD can be calculated as:

JSDðP1, P2Þ=H
1
2
P1 +

1
2
P2

� �
� 1

2
ðHðP1Þ+HðP2ÞÞ ð1Þ

where Pi is the distribution for individual i and H is the Shannon
entropy function:

HðX Þ= �
Xn
i = 1

PðxiÞlog2ðPðxiÞÞ ð2Þ

JSD is known to be a robust metric that is less sensitive to noise when
calculating distance compared to traditionalmetrics such as Euclidean
distance and correlation. It has been shown that JSDmetrics and other
approaches yield similar results but that JSD is more robust to
outliers12. The square root of the raw JSD value follows the triangle
inequality, enabling us to treat it as a distance metric.

Slope of JSD distance versus age
In addition to comparing JSD between the two age groups defined
above, "young" and "old", we also binned all GTEx individuals into 6
age groups, from 20 to 80 years old with an increment of 10 years. We
then computed pairwise distance and average age for each pair of
individuals within each bin using the square root of JSD as the distance
metric. We applied a linear regression model of JSD versus age to
obtain slopes, confidence intervals, and p-values.

Cell-type specific analysis
To analyze whether cell type composition affects age-associated
expression changes, we utilized the tool CIBERSORTx16 to estimate cell
type composition and individual cell type expression levels in GTEx
whole blood. Cell type composition estimates were computed using
CIBERSORTx regular mode. Individual cell type expression level esti-
mates were computed using CIBERSORTx high resolution mode. We
then repeated our JSD and eQTL analyses on each cell type indepen-
dently (see JSD and eQTL sections for details). In addition, to analyze
tissue-specific differences in cell type composition, we referred to a
previous study36 that computed cell type composition for different
GTEx tissues using CIBERSORTx. We applied the JSD metric to each
tissue, using the cell type composition vector as the distribution.
Additionally, we applied the Breusch-Pagan test to compute hetero-
skedasicity coefficients and p-values with respect to age, after inverse
logit transformation to give an approximately Gaussian distribution
(Supplementary Fig. 44) (see section on heteroskedastic gene
expression).

Heteroskedastic gene expression
We used the Breusch-Pagan test to call heteroskedastic gene expres-
sion with age. For each gene and tissue, we computed gene expression
residuals by regressing out age-correlated PEER factors, other GTEx
covariates, and age. To test for age-related heteroskedasticity, we
squared these residuals and divided by the mean, regressed them
against age, and looked at the age effect size (βhet). We called sig-
nificantly heteroskedastic genes using a two-sided t-test with the null
hypothesis that the βhet is zero. The Benjamini-Hochberg procedure
was used to control for false positives. To determine which tissues
have more genes with increasing gene expression heterogeneity with
age, we compare the number of genes with positive heteroskedasticity
(βhet > 0 and FDR < 0.2) to the total of all heteroskedastic genes
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(FDR < 0.2). We compare this metric to the per-tissue 2-bin JSD (Sup-
plementary Fig. 41) and 6-bin JSD slope (Supplementary Fig. 15).

Multi-SNP gene expression prediction
We used a multi-SNP gene expression prediction model based on
PrediXcan14 to corroborate our findings from the eQTL and JSD ana-
lyses on the two age groups, "young" and "old". For each gene in each
tissue, we trained amulti-SNPmodel separately within each age group
to predict individual-level gene expression.

Yg,t =
X
i

βi,g,tX i + ϵ ð3Þ

Where βi,g,t is the coefficient or effect size for SNP Xi in gene g and
tissue t and ϵ includes all other noise and environmental effects. The
regularized linear model for each gene considers dosages of all com-
mon SNPs within 1 megabase of the gene’s TSS as input, where com-
mon SNPs are defined asMAF > 0.05 and Hardy-Weinberg equilibrium
P >0.05. We removed covariate effects on gene expression prior to
model training by regressing out both GTEx covariates and age-
independent PEER factors (described above). Coefficients were fit
using an elastic net model which solves the problem37:

minβ0, β
1
2N

XN
j = 1

Y j � β0 � XT
j β

� �2
+ λ

1� α
2

∣∣β∣∣22 +α∣∣β∣∣1

� �
ð4Þ

The minimization problem contains both the error of our model pre-
dictions ðY j � β0 � XT

j βÞ
2
and a regularization term λð1�α

2 ∣∣β∣∣22 +α∣∣β∣∣1Þ
to prevent model overfitting. The elastic net regularization term incor-
porates both L1 (∣∣β∣∣1)) and L2 (∣∣β∣∣22) penalties. Following PrediXcan, we
weighted the L1 and L2 penalties equally using α =0.514. For eachmodel,
the regularization parameter λ was chosen via 10-fold cross validation.
The elastic net models were fit using Python’s glmnet package and R2

was evaluated using scikit-learn. From the trainedmodels for each gene,
we evaluated training set genetic R2 (or h2) for the two age groups and
subtracted h2

young � h2
old to get the difference in gene expression

heritability between the groups. We compared this average difference
in heritability to the mean JSDold− JSDyoung and logðPoldÞ � logðPyoung Þ
using P-values from the eQTL analyses across genes.

Joint model for expression prediction using SNPs and age
To uncover linear relationships between gene expression and both age
andgenetics,webuilt a set of gene expressionpredictionmodels using
both common SNPs and standardized age as input. An individual’s
gene expression level Y for a gene g and tissue t is modeled as:

Yg,t =
X
i

βi,g,tX i +βage,g,tA+ ϵ ð5Þ

Where A is the normalized age of an individual. Coefficients were fit
using elastic net regularization, as above, which sets coefficients for
non-informative predictors to zero. The sign of the fitted age
coefficient (βage,g,t), when nonzero, reflects whether the gene in that
tissue is expressed more in young (negative coefficient) or old
(positive coefficient) individuals. We also evaluated the training set
R2 using the fit model coefficients separately for genetics (across all
SNPs in the model) and age:

R2
genetics =h

2 =R2ðYg,t ,
X
i

βi,g,tX iÞ ð6Þ

R2
age =R

2ðYg,t , βage,g,tAÞ ð7Þ

We also tested whether the age-related gene expression rela-
tionship was sex-specific by rerunning the joint model with an

additional age-sex interaction term as follows:

Yg,t =
X
i

βi,g,tX i +βage,g,tA+ βage�sex,g,tA � S+ ϵ ð8Þ

Where βage∗sex,g,t is the additional model weight for the age-sex
interaction term and S is the binary sex of the GTEx individual. The R2

of age, genetics, and the age-sex interaction term are evaluated as
before by determining the variance explained by each term in the
model. We compared the R2

age between the models including or
excluding the age-sex interaction term (Supplementary Fig. 26). We
also compared the tissue-averaged variance explained by age and the
age-sex interaction term. Finally, to check the consistency of tissue-
specific gene expression heritability estimates fromourmodel and the
original PrediXcan model trained on GTEx data, we evaluate Pearson’s
r between our heritability estimates and those of PrediXcan (Supple-
mentary Fig. 20), using heritability estimates from the original
PrediXcan model available in PredictDB.

Tissue specificity of age and genetic associations
We evaluated the variability of age and genetic associations across
tissues using ameasure of tissue specificity for age andgeneticR238.We
measured the tissue-specificity of a gene g’s variance explained R2

g
using the following metric:

Sg =

Pn
t = 1 1� R2

g,t

R2
g,max

� �

n� 1

ð9Þ

Where n is the total number of tissues, R2
g,t is the variance explained by

either age or genetics for the gene g in tissue t and R2
g,max is the max-

imum variance explained for g over all tissues. This metric can be
thought of as the average reduction in variance explained relative to
the maximum variance explained across tissues for a given gene. The
metric ranges from 0 to 1, with 0 representing ubiquitously high
genetic or age R2 and 1 representing only one tissue with nonzero
genetic or age R2 for a given gene. We calculate Sg separately for R2

age

and R2
genetics across all genes.

Functional constraint analysis
We quantified gene constraint using the probability of loss of function
intolerance (pLI) from gnomAD 2.1.122. We analyzed the relationships
between pLI vs βage and pLI vs heritability across genes. For these
analyses, geneswere only included if age or geneticswere predictive of
gene expression (R2 > 0) for that gene. For genes with R2 > 0, we used
linear regression to determine the direction of the relationship
between pLI and βage or heritability for each tissue. The F-statistic was
used to determine whether pLI was significantly related to these two
model outputs. For pLI vs βage, a significant negative slope was con-
sidered a Medawarian trend (consistent with Medawar’s hypothesis)
and a significant positive slope a non-Medawarian trend. To test
whether the non-Medawarian trends were driven by genes with higher
expression, we excluded genes in the top quartile of median gene
expression and repeated the analysis between pLI and βage (Supple-
mentary Fig. 42). We also analyzed the evolutionary constraint metric
dN/dS23 and its tissue-specific relationshipwith βage by determining the
slope and significance of the linear regression, as above.

Cancer somatic mutation frequency
We quantified the per-gene and per-tissue cancer somatic mutation
frequency using data from the COSMIC cancer browser26. For each
tissue, we selected the closest cancer type as noted in Supplementary
Data 5 and downloaded the number of mutated samples (tumor
samples with at least one somatic mutation within the gene) and the
total number of samples for all genes. We computed the cancer
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somatic mutation frequency by dividing the number of mutated
samples by the total number of samples. For each tissue, we plotted
the gene’s βage vs its cancer somatic mutation frequency for all genes
with >200 tumor samples. We report the slope and significance of the
relationship between βage and cancer somatic mutation frequency for
each tissue. To determine whether age-dependent gene expression
heteroskedasticity is related to a gene’s involvement in cancer (Sup-
plementary Fig. 43), we also plotted each gene’s heteroskedasticity
effect size vs the cancer somaticmutation frequency for all genes with
>200 tumor samples and moderately significant heteroskedasticity
(FDR <0.2). Tissues with ≤5 genes meeting these criteria are not
plotted.

Non-Medawarian tissue analysis
To explore the non-Medawarian trend in some tissues, we assessed the
distribution of βage across Medawarian and non-Medawarian tissues
for genes within each of the 50 MSigDB hallmark pathways24. Sig-
nificant differences between the distributions were called using a t-
test, and p-valueswere adjusted formultiple hypothesis testing using a
Benjamini-Hochberg correction.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Processed PEER factors are available on GitHub https://github.com/
sudmantlab/gene_expression_aging39 and full results for joint age and
genetic model can be found on Zenodo https://doi.org/10.5281/
zenodo.655545340. The raw GTEx V8 expression data can be obtained
at https://gtexportal.org/home/datasets. GTEx V8 genetic data are
available under restricted access at https://gtexportal.org/home/
protectedDataAccess. The gene expression measurements and geno-
type for PIVUS cohort is available under European Genome Archive at
EGAD00001004965.

Code availability
All analyses were performed in R version 4.0.2, Python 3.6.13, Numpy
1.19.5, Scikitlearn 0.24.2, Pandas 1.1.5, glmnet 2.2.1, PEER 1.3 and GCTA
1.94.1 CIBERSORTx (https://cibersortx.stanford.edu/). All code is
available online at https://github.com/sudmantlab/gene_expression_
aging39 and archived at https://doi.org/10.5281/zenodo.6555500.
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