
ORIGINAL RESEARCH

As a driving force of the current technological trans-
formation, robust and trustworthy artificial intel-

ligence is in greater need than ever. Despite achiev-
ing expert-level accuracies on many disease-screening 
tasks (1–9), deep learning (DL)–based (10) artificial 
intelligence models can make correct decisions for the 
wrong reasons (11–13) and demonstrate considerably 
degraded performance when applied to external data 
(13–15). This phenomenon is referred to as “shortcut 
learning” (16), wherein deep neural networks unin-
tendedly learned dataset biases (17) to fit the training 

data quickly. Specifically, dataset biases are the patterns 
that frequently co-occurred with the target disease and 
are more easily recognized than the true disease signs 
(18). Although widely adopted DL diagnosis models 
are often developed with image-level binary annotations 
(with “1” indicating the presence and “0” indicating the 
absence of disease), such spurious correlations could be 
captured by the DL model to fit the training data quick-
ly (11,19). For example, previous studies have found 
that DL-based classification models could rely on hos-
pital tokens (see examples in Figure E1 [supplement]) 
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Purpose: To evaluate the ability of fine-grained annotations to overcome shortcut learning in deep learning (DL)–based diagnosis using 
chest radiographs.

Materials and Methods: Two DL models were developed using radiograph-level annotations (disease present: yes or no) and fine-grained 
lesion-level annotations (lesion bounding boxes), respectively named CheXNet and CheXDet. A total of 34 501 chest radiographs 
obtained from January 2005 to September 2019 were retrospectively collected and annotated regarding cardiomegaly, pleural effu-
sion, mass, nodule, pneumonia, pneumothorax, tuberculosis, fracture, and aortic calcification. The internal classification performance 
and lesion localization performance of the models were compared on a testing set (n = 2922); external classification performance was 
compared on National Institutes of Health (NIH) Google (n = 4376) and PadChest (n = 24 536) datasets; and external lesion localiza-
tion performance was compared on the NIH ChestX-ray14 dataset (n = 880). The models were also compared with radiologist perfor-
mance on a subset of the internal testing set (n = 496). Performance was evaluated using receiver operating characteristic (ROC) curve 
analysis.

Results: Given sufficient training data, both models performed similarly to radiologists. CheXDet achieved significant improvement 
for external classification, such as classifying fracture on NIH Google (CheXDet area under the ROC curve [AUC], 0.67; CheXNet 
AUC, 0.51; P , .001) and PadChest (CheXDet AUC, 0.78; CheXNet AUC, 0.55; P , .001). CheXDet achieved higher lesion detec-
tion performance than CheXNet for most abnormalities on all datasets, such as detecting pneumothorax on the internal set (CheXDet 
jackknife alternative free-response ROC [JAFROC] figure of merit [FOM], 0.87; CheXNet JAFROC FOM, 0.13; P , .001) and 
NIH ChestX-ray14 (CheXDet JAFROC FOM, 0.55; CheXNet JAFROC FOM, 0.04; P , .001).

Conclusion: Fine-grained annotations overcame shortcut learning and enabled DL models to identify correct lesion patterns, improving 
the generalizability of the models.

Supplemental material is available for this article.
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Materials and Methods
This retrospective study was approved by the institutional ethi-
cal committee (approval no. YB-2021–554). The requirement 
for individual patient consent was waived, and all data from 
the institution were de-identified. Other data used for addi-
tional training or testing were publicly available. Figure 1 illus-
trates the construction and splitting of all datasets. This study 
followed the Standards for Reporting of Diagnostic Accuracy 
reporting guideline.

Construction of Internal Dataset
We retrospectively collected 34 501 frontal-view chest radio-
graphs and corresponding text reports of 30 561 patients from 
the clinical picture archiving and communication system from 
January 1, 2005, to September 31, 2019. This dataset is re-
ferred to as dataset 1 (DS1), in which each radiograph was la-
beled “yes” or “no” for presence of nine diseases (cardiomegaly, 
pleural effusion, mass, nodule, pneumonia, pneumothorax, 
tuberculosis, fracture, and aortic calcification) and each con-
tained bounding boxes (ie, fine-grained annotations) of the 
corresponding lesions. The radiographs were split into three 
different sets for training (n = 28 673), tuning (n = 2906), and 
internal testing (n = 2922) without overlapping of patients. 
To assess the influence of the training data scale, we developed 
several different versions of the models using random samples 
containing 20% (n = 5763), 40% (n = 11 493), 60% (n = 
17 180), 80% (n = 22 943), and 100% of the training set. In 
addition, a subset (n = 496) was randomly sampled from the 
internal testing set to compare the performance between the 
models and radiologists.

Ground Truth Labeling of DS1
For each radiograph in DS1, two readers were assigned for 
ground truth labeling from a cohort of 10 radiologists (with 4–30 
years of experience in general radiology). The chest radiographs 
and text reports were provided to the readers to label the men-
tioned pathologic findings and bounding boxes of the lesions. 
The radiologists’ consensus with the text report was considered 
as the ground truth. For annotations of lesion bounding boxes, 
disagreements between the two readers were reviewed by another 
senior radiologist (with at least 20 years of experience) from the 
cohort who made the final decision. These readers were not fur-
ther involved in evaluation of model performance. All readers 
were provided with a graphical user interface–based annotation 
infrastructure. All images were kept the same size as their original 
Digital Imaging and Communications in Medicine format. The 
readers could zoom in and out using the software and change 
the window settings of the images, and images were viewed us-
ing monitors with resolutions equivalent to those used in clinical 
reporting. All readers were provided with the same guidelines for 
the annotation software and rules.

External Testing Datasets and Additional Training Data
Three publicly available datasets were used for external testing: 
(a) the National Institutes of Health (NIH) Google dataset: a 

to decide whether a chest radiograph contains pneumonia, 
fracture, or even COVID-19 lesions (12,13,20), leading to 
concerns about the credibility of the DL models.

A possible way to alleviate shortcut learning is enlarg-
ing the learned distribution of the model by incorporating 
more training data (15,20). Previous works have also pro-
posed using annotations, such as bounding boxes of objects 
to constrain the DL models to learn from targeted regions 
(12,21,22). However, several questions are yet to be explored: 
Would increasing training data always lead to a better disease 
classification model? Could fine-grained annotations alleviate 
shortcut learning and substantially improve the DL models? 
More important, does overcoming shortcut learning help im-
prove the generalizability of DL models on multicenter data?

In this study, we developed a classification model using 
radiograph-level annotations (CheXNet [4]) and a detection 
model using lesion-level annotations (CheXDet) for an ex-
tensive comparison on the tasks of disease classification and 
lesion detection. We aimed to investigate the ability of fine-
grained annotations on chest radiographs to improve DL 
model–based diagnosis.

Abbreviations
AUC = area under the ROC curve, DL = deep learning, DS1 = 
dataset 1, FOM = figure of merit, JAFROC = jackknife alternative 
free-response ROC, NIH = National Institutes of Health, ROC = 
receiver operating characteristic

Summary
Fine-grained annotations (ie, lesion bounding boxes) help chest 
radiograph diagnosis models overcome learning shortcuts by enabling 
the models to identify the correct lesion areas, leading to significantly 
improved radiograph-level classification performance.

Key Points
 n A deep learning model trained with chest radiograph–level anno-

tations (CheXNet) achieved radiologist-level performance on the 
internal testing set, such as achieving an area under the receiver 
operating characteristic (ROC) curve (AUC) of 0.93 in classifying 
fracture but made decisions from regions other than the true signs 
of the diseases, leading to dramatically degraded external perfor-
mance for external test.

 n A deep learning model trained with fine-grained lesion-level an-
notations (CheXDet) also achieved radiologist-level performance 
on the internal testing set, with significant improvement for exter-
nal performance, such as in classifying fractures on the National 
Institutes of Health (NIH) Google dataset (CheXDet AUC, 0.67; 
CheXNet AUC, 0.51; P , .001) and on the PadChest dataset 
(CheXDet AUC, 0.78; CheXNet AUC, 0.55; P , .01).

 n CheXDet achieved higher lesion localization performance than 
CheXNet for most abnormalities on all datasets, such as in detect-
ing pneumothorax on the internal testing sets (CheXDet jackknife 
alternative free-response ROC [JAFROC] figure of merit [FOM], 
0.87; CheXNet JAFROC FOM, 0.13; P , .001) and the external 
NIH ChestX-ray14 dataset (CheXDet JAFROC FOM, 0.55; 
CheXNet JAFROC FOM, 0.04; P , .001).

Keywords
Computer-aided Diagnosis, Conventional Radiography, Convolu-
tional Neural Network (CNN), Deep Learning Algorithms, Machine 
Learning Algorithms, Localization
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Figure 1: Flowchart of images used from different cohorts. (A) Split of dataset 1 (DS1), where five training sets containing different numbers of 
images and lesions were used for developing different versions of the models, a tuning set was used to select the best models, and a testing set was 
used for final evaluation. A subset was further randomly selected from the testing set for comparing the deep learning models with radiologists. (B) 
Frontal chest radiographs (CXRs) from the original CheXpert dataset were used as the additional training data. (C) Two subsets from the original Na-
tional Institutes of Health (NIH) dataset were used for external testing. (D) The manually labeled posterior-anterior (PA) and anterior-posterior (AP) 
views from the PadChest dataset were used for external testing. LEs = lesions.
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E2 [supplement]). CheXNet contained four dense blocks, in 
which the features from every shallow layer were concatenated 
and fed into the deeper layers for better gradient backpropaga-
tion. A convolutional layer and a pooling layer were appended 
after each dense block to conduct dimension reduction. The 
original output layer (1000-way softmax) of DenseNet-121 
was replaced with a nine-way sigmoid layer (nine neurons, each 
of which was tailed with a sigmoid function to output disease 
probability).

CheXDet is a two-stage object detection network trained with 
lesion-level annotations to output lesion bounding boxes and the 
disease probabilities of suspected abnormal regions (Fig 2). In 
brief, CheXDet used EfficientNet (27) as the feature extractor 
and three bidirectional feature pyramid network (28) layers for 
feature aggregation and enrichment. The bidirectional feature 
pyramid network features were further fed into a region proposal 
network (29) module and a region of interest alignment mod-
ule (30) for object proposal generation. The proposal features 
were further fed into four convolutional layers, and two fully 
connected layers were then used to conduct classification and 
bounding-box regression based on the proposals, respectively.

Five versions of CheXNet and CheXDet were developed with 
20%, 40%, 60%, 80%, and 100% of DS1 training data. For 
simplicity, we use subscripts in model names to indicate how 
much data were used to develop the model (eg, CheXDet20 

subset from the original NIH ChestX-ray14 database (23) con-
taining 4376 frontal chest radiographs; each radiograph was 
labeled with “yes” or “no” findings of airspace opacity, fracture, 
mass or nodule, or pneumothorax by at least three radiologists 
from Google Health (7), and the latter three classes overlapped 
with those in DS1; (b) the PadChest dataset: a subset from 
the original PadChest (24) was used, containing 24 536 fron-
tal radiographs labeled by trained physicians at the radiograph 
level; PadChest contained all nine classes in DS1; and (c) the 
NIH ChestX-ray14 dataset: 880 frontal chest radiographs with 
bounding-box annotations of lesions hand labeled by a board-
certified radiologist were used, in which six diseases (cardio-
megaly, pleural effusion, nodule, mass, pneumonia, and pneu-
mothorax) overlapped with the annotations from DS1.

Moreover, to evaluate whether increasing training data led 
to better performance for CheXNet (4), 179 919 frontal chest 
radiographs from the CheXpert dataset (25) were included as ad-
ditional training data. This dataset was automatically annotated 
at the radiograph level with text reports by a natural language 
processing algorithm.

Implementation of CheXNet and CheXDet
CheXNet is a 121-layer, densely connected network 
(DenseNet-121) (26), which was trained with radiograph-
level annotations to predict existence of the nine diseases (Fig 

Figure 2: CheXDet architecture. An EfficientNet backbone is used for feature extraction, which also downsamples the data in width and height. The multiscale features 
(ie, p2, p3, p4, p5, and p6) are then fed into three bidirectional feature pyramid network (BiFPN) layers for information aggregation and enrichment. The bidirectional 
feature pyramid network introduces top-down feature aggregation (red arrows), bottom-up feature aggregation (green arrows), and feature aggregation from the same 
scales (blue arrows). Next, a region proposal network (RPN) module and a region of interest (ROI) alignment module are used to generate bounding-box proposals based 
on the bidirectional feature pyramid network features. The proposal features are further fed into four convolutional (conv) layers. Finally, two fully connected layers conduct 
classification and regression based on the proposals, respectively, and generate the predictions.
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radiographs from datasets other than DS1 were directly normal-
ized to have an intensity range of zero mean and unit variance.

We concatenated three copies of one chest radiograph to 
construct three-dimensional inputs for the DL models. For 
CheXNet, the input chest radiographs were linearly scaled into 
[0, 1] and resized to 512 3 512 pixels. For CheXDet, the global 
mean and variance computed from ImageNet (31) were used for 
final normalization, and the input images were resized to 768 
3 768 pixels. For data augmentation, we randomly flipped the 
input images horizontally to enrich the training data.

Model Evaluation and Comparison
To study shortcut learning and the effect of fine-grained anno-
tations, we evaluated CheXNet and CheXDet performance in 
two tasks: disease classification and lesion localization.

For the disease classification task, we compared performance 
on the internal testing set between CheXNet and CheXDet 
with varying numbers of training data. We also compared 
CheXNet1001

 with CheXNet100 to validate whether incorporating 

indicates the CheXDet model developed with 20% of the train-
ing data). Moreover, we developed another version of CheXNet 
with training data from both DS1 and CheXpert, and this model 
is indicated as CheXNet1001

. All hyperparameters of the models 
were tuned on the tuning set (see the details in sections 2.1 and 
3.1 of Appendix E1 [supplement]). Figure 3 illustrates the brief 
training and testing processes of CheXNet and CheXDet. More 
details of the development processes for the two models can be 
found in sections 2 and 3 of Appendix E1 (supplement).

Data Preprocessing
The original DS1 chest radiographs were gray-scale UNIT16 
images in Digital Imaging and Communications in Medicine 
format. The chest radiographs went through several preprocess-
ing steps before being used to train the DL models. We first 
calculated the mean and variance of each chest radiograph and 
clipped the range of intensity values into [mean – 3 3 variance, 
mean 1 3 3 variance] to reduce the outlier points. Each image 
was then normalized to have zero mean and unit variance. The 

Figure 3: Training-testing flows of CheXNet and CheXDet. (A) CheXNet is trained with radiograph-level annotations that indicate whether specific diseases exist on 
the whole radiograph. (B) CheXDet is trained with lesion-level annotations that further point out the exact locations of lesions with bounding boxes. (C) A testing chest ra-
diograph. (D) CheXNet predicts the probabilities of each abnormality. (E) CheXDet could identify the lesion regions with corresponding disease scores. (F) Another testing 
image with pleural effusion lesions bounded in the red boxes. (G) The localization results were given by CheXNet using the class activation map method, which is widely 
adopted by researchers to interpret the results of a deep classification model. Lighter color indicates a higher probability of abnormality found by CheXNet. The top 40% 
pixels on the heatmaps are bounded by the green boxes as the final localization results. (H) The localization results given by CheXDet are indicated with green boxes.
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additional training data improves classification performance. On 
the testing subset, we compared CheXNet100 and CheXDet100 
with three radiologists (with 4, 13, and 19 years of experience 
in chest radiology, respectively; they were not the original chest 
imagers and were not involved in the ground truth labeling). For 
the lesion detection task, we compared CheXNet100 with CheX-
Det20, CheXDet40, CheXDet60, CheXDet80, and CheXDet100.

To investigate whether the models could achieve acceptable 
performance (eg, performance similar to that of the radiolo-
gists), we compared CheXNet100 and CheXDet100 with the three 
radiologists mentioned before. These radiologists were asked to 
independently classify the radiographs from the testing subset 
given only the image data. Readers’ performance was reported 
in sensitivities and specificities for each disease. More details of 
the reader study process can be found in section 1 of Appendix 
E1 (supplement).

If shortcut learning was alleviated, the model would learn 
more precise features for the diseases, improving their generaliz-
ability for external testing. Therefore, disease classification per-
formance of CheXNet100, CheXNet1001

, CheXDet20, and CheX-
Det100 were evaluated on NIH Google and PadChest. Note that 
NIH Google contains a class “Mass or Nodule,” which treats 
nodule and mass as the same class. We thus took the maximum 
prediction between the two classes, mass and nodule, to be a 
single probability for the class “Mass or Nodule.” External le-
sion localization performance of CheXNet100, CheXDet20, and 
CheXDet100 was evaluated on the NIH ChestX-ray14 dataset. 
Although the external datasets did not cover all diseases studied 
in DS1, we reported performance on the classes that overlapped 
with those used in DS1.

Evaluation Metrics and Statistical Analysis
To evaluate the disease classification performance, we used the 
area under the receiver operating characteristic (ROC) curve 
(AUC). We used the DeLong test (32) to compute the 95% 
CIs and P values for the ROC curves. CheXNet generates 
radiograph-level probabilities for each disease, and the AUCs 
could hence be directly computed. CheXDet outputs multiple 
bounding boxes with disease probabilities for each image, and 
we took the maximum probability among every box as the ra-
diograph-level prediction and computed the AUCs.

To evaluate the lesion localization performance, we used the 
weighted alternative free-response ROC as the figures of merit 
(FOMs) by jackknife alternative free-response ROC (JAFROC) 
(version 4.2.1; https://github.com/dpc10ster/WindowsJafroc). We 
performed the 95% CI computation and significance test for 
JAFROC FOMs, applying the Dorfman-Berbaum-Metz model 
with the fixed-case, random-reader method (33). For CheXDet, 
we filtered out the generated bounding boxes with a threshold 
wherein the summation of sensitivity and specificity was the high-
est, and the remaining bounding boxes were used to compute the 
JAFROC of CheXDet. For CheXNet, we thresholded the heat-
maps generated by the gradient-weighted class activation map 
(hereafter, Grad-CAM [34]) and obtained the connected compo-
nents as the detection results. A predicted bounding box would 
be regarded as a true positive if the intersection over union with 

a ground truth bounding box was greater than 0.5. The gener-
ated bounding boxes were then used to compute the JAFROC 
of CheXNet. More details for obtaining lesion-level results of 
CheXNet are in section 2.2 of Appendix E1 (supplement).

All statistical tests were two sided. All the measurements and 
statistical analyses were done using R software, version 3.6.0 
(35). We reported P values after adjustment with the Benjamini-
Hochberg procedure (36) to control the false discovery rate for 
multiple testing, and we considered a postadjusted P , .05 to 
indicate a statistically significant difference.

Data Availability
The code used in this study can be acquired upon reasonable 
request from the corresponding author (H.C.).

Results

Summary of Datasets
For DS1, the mean 6 SD for patient age was 49 years 6 19; 
there were 16 959 men, 11 458 women, and 2144 patients for 
whom sex was unknown. The detailed characteristics of all the 
datasets are summarized in Table 1.

Comparison of Internal Disease Classification Performance 
on DS1
Figure 4 illustrates the AUCs with 95% CIs of the different 
models on the internal testing set. AUC, sensitivity, and speci-
ficity values of each model are given in Table E1 (supplement).

Given the same amount (at least 40%) of training data, there 
were no statistically significant differences (P > .05) between 
performance of CheXNet and CheXDet. To investigate whether 
the failure cases of CheXDet were also failures of CheXNet, we 
compared the false-positives and false-negatives of CheXNet100 
and CheXDet100. Among the false-positives of CheXDet, for car-
diomegaly, effusion, mass, nodule, pneumonia, pneumothorax, 
tuberculosis, fracture, and aortic calcification, there were 69.4% 
(154 of 222), 66.3% (134 of 202), 40.8% (142 of 348), 51.5% 
(234 of 454), 66.9% (368 of 550), 55.5% (106 of 191), 54.4% 
(160 of 294), 39.4% (117 of 297), and 38.9% (82 of 211) of 
samples that were also the false-positives of CheXNet, respec-
tively. Among the false-negatives of CheXDet, for cardiomegaly, 
effusion, mass, nodule, pneumonia, pneumothorax, tuberculo-
sis, fracture, and aortic calcification, there were 66.7% (eight of 
12), 57.1% (32 of 56), 60.6% (20 of 33), 50.0% (46 of 92), 
54.9% (39 of 71), 55.0% (11 of 20), 72.3% (68 of 94), 25.0% 
(three of 12), and 77.8% (seven of nine) of samples that were 
also the false-negatives of CheXNet, respectively.

With only 20% of the training data, CheXNet20 achieved 
higher performance than CheXDet20 in classifying pneumonia 
(AUC, 0.85 vs 0.82; P , .05), tuberculosis (AUC, 0.91 vs 0.90; 
P , .05), and fracture (AUC, 0.91 vs 0.86; P , .05) but lower 
performance than CheXDet20 in classifying pneumothorax 
(AUC, 0.92 vs 0.95; P , .05) and aortic calcification (AUC, 
0.85 vs 0.94; P , .001).

CheXNet1001
 trained with 100% of DS1 plus additional 

CheXpert data showed lower performance in classifying four of 
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nine diseases than CheXNet100, including mass (P , .05), nod-
ule (P , .001), tuberculosis (P , .001), and aortic calcification 
(P , .001). In classifying the other five diseases, CheXNet1001

 
showed no evidence of a difference compared with CheXNet100.

Comparison of DL Models with Radiologists on DS1
Figure 5 illustrates the performance of the three radiologists and 
the ROC curves of CheXNet100 and CheXDet100 on the test-
ing subset. The radiologists showed high specificities for clas-
sifying all the diseases, with trade-offs on sensitivities. All the 
points representing individual experts lie on or near to the right 
of the ROC curves of the models, indicating thresholds where 
the models performed on par with or better than radiologists.

Comparison of External Classification Performance on NIH 
Google
Table 2 reports the AUCs with CIs for CheXNet100, CheXNet1001

, 
CheXDet20, and CheXDet100, as well as the P values for compari-
sons with CheXNet100 on NIH Google. CheXNet1001

 showed 
considerably lower performance than CheXNet100 on classifying 
nodule or mass (P , .001) on this external set; in contrast, there 
was no evidence of a difference for pneumothorax and fracture 
classification between these two models. CheXDet20 and CheX-
Det100 achieved higher performance than CheXNet100 on clas-
sifying nodule or mass (P , .001) and fracture (P , .001), and 
CheXDet100 also showed higher AUC on classifying pneumo-
thorax (P , .05) than CheXNet100.

Table 1: Clinical Characteristics of Each Dataset

Characteristic DS1 Training DS1 Tuning DS1 Testing

CheXpert 
Additional 
Training

NIH Google  
External Testing

PadChest External 
Testing

NIH ChestX-ray14 
External Testing

Patients 25 019 2751 2791 62 170 860 22 953 726

Images 28 673 2906 2922 179 919 1962 24 536 880
Sex
 Male 13 848 1525 1586 34 534 490 10 716 412
 Female 9405 1052 1001 27 635 370 12 235 314
 Unknown 1766 174 204 1 0 2 0
Mean age 6 SD 

(y)
49 6 19 49 6 18 489 6 18 61 6 18 47 6 167 59 6 18 49 6 21

Note.—Data are numbers of patients, unless otherwise noted. DS1 = dataset 1, NIH = National Institutes of Health.

Figure 4: Bar plots with error bars show disease classification performance of models on the internal testing set under different ratios of training data. Blue bars repre-
sent the areas under the receiver operating characteristic curve (AUCs) with 95% CIs for CheXNet, red bars represent AUCs with 95% CIs for CheXDet, and green bars 
represent AUCs with 95% CIs for CheXNet trained with additional data from CheXpert dataset. Under many scenarios, CheXDet and CheXNet achieve similar perfor-
mance without evidence of a difference on the internal disease classification task. Whiskers represent the 95% CIs. n.s. = not significant. * represents P < .05, *** represents 
P < .001.
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Comparison of External Classification Performance on 
PadChest
Table 2 also reports the AUCs with CIs for CheXNet100, 
CheXNet1001

, CheXDet20, and CheXDet100, as well as P values 
for comparisons with CheXNet100 on PadChest.

CheXNet1001
 showed higher performance on cardiomegaly (P 

, .001), mass (P , .001), and fracture classification (P , .05) but 
lower performance on nodule (P , .001), pneumonia (P , .01), 
and aortic calcification (P , .001) compared with CheXNet100. 
There was no evidence of differences between these two models in 
classifying pleural effusion, pneumothorax, and tuberculosis.

CheXDet20 achieved higher performance than CheXNet100 
on mass (P , .001), nodule (P , .001), and fracture classifi-
cation (P , .001) and lower performance on classification of 
cardiomegaly (P , .001), pleural effusion (P , .01), and aortic 
calcification (P , .05). There was no evidence of a difference in 
model performance for classifying pneumonia, pneumothorax, 
and tuberculosis.

With the same amount of training data, CheXDet100 
achieved higher AUCs than CheXNet100 in classifying four of 
nine diseases, including mass (P , .001), nodule (P , .001), 
pneumonia (P , .001), and fracture (P , .001). CheXDet100 
and CheXNet100 demonstrated no evidence of a difference in 
cardiomegaly, pleural effusion, pneumothorax, tuberculosis, and 
aortic calcification classification.

Comparison of Internal Lesion Detection Performance on 
DS1
Figure 6 illustrates the JAFROC FOMs with 95% CIs for 
CheXNet100, CheXDet20, CheXDet40, CheXDet60, CheX-
Det80, and CheXDet100, as well as P values, compared against 
CheXNet100 on the internal testing set. Here, we compared 
CheXDet developed with 20%, 40%, 60%, 80%, and 100% 
training data against CheXNet trained with 100% data. The 
JAFROC FOMs of CheXDet on each disease increased pro-
gressively by about 10% when the amount of training data 

Figure 5: Comparison of radiograph-level abnormality classification performance among models and radiologists on the testing subset. Blue curves represent receiver 
operating characteristic (ROC) curves of CheXNet. Red curves represent ROCs of CheXDet. The performance levels of the radiologists (Rad) are represented as single 
points. Radiologist performance is reported in parentheses as (specificity, sensitivity). Almost all the points representing individual radiologists lie on or under the ROC of one 
of the models, which means there exist thresholds where at least one model performs on par with or better than practicing radiologists. AUC = area under the ROC curve.
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increased from 20% to 100%. In all scenarios and for all dis-
eases, CheXDet achieved higher performance (P , .001) than 
CheXNet, even when developed with only 20% of training 
data. Specific statistics of JAFROC FOMs with CIs of differ-
ent models can be found in Table E2 (supplement).

Comparison of External Lesion Detection Performance on 
NIH ChestX-ray14
Table 3 shows the JAFROC FOMs with 95% CIs for 
CheXNet100, CheXDet20, and CheXDet100, as well as P val-
ues compared against CheXNet100 on NIH ChestX-ray14. 
CheXDet20 trained with only 20% data also showed appar-
ently higher JAFROC FOMs than CheXNet100 on four of six 
diseases, including cardiomegaly (P , .001), pleural effusion 
(P , .05), pneumonia (P , .001), and pneumothorax (P , 
.001). There was no evidence of differences between CheX-
Det20 and CheXNet100 on localizing nodule and mass.

With increased training data, CheXDet100 achieved higher 
performance on five of six types of lesions, including cardio-
megaly (P , .001), pleural effusion (P , .01), mass (P , .01), 
pneumonia (P , .001), and pneumothorax (P , .001) than 
CheXNet100, with no evidence of a difference between CheX-
Det100 and CheXNet100 on nodule detection.

Discussion
In this study, we developed CheXNet and CheXDet and fo-
cused on evaluating the models from two aspects, following the 
recommended shortcut learning evaluation practice (16,17): 

whether the models attend to the lesion regions and whether 
the models generalize well for external testing. Existing works 
have reported shortcut learning in artificial intelligence for 
medical image diagnosis (13,20), yet, to our knowledge, few 
of them have tried to quantify or tackle this challenge. We 
provided a possible solution to make DL models right for 
the right reasons, which could substantially improve external 
performance.

Our study showed that for internal testing, incorporat-
ing additional training data from CheXpert led to a consider-
able performance drop on four of nine diseases. One possible 
reason is that CheXpert dominated the training set and made 
CheXNet1001

 fit on a different distribution from the original 
distribution of DS1, as the CheXpert dataset is labeled by natu-
ral language processing and has a much older participant pool. 
These observations suggest that incorporating more training data 
does not always benefit the classification accuracy for DL models 
and alternative solutions should be sought. On the other hand, 
CheXDet mainly showed no evidence of differences in internal 
disease classification compared with CheXNet when given the 
same amount (at least 40%) of training data from DS1.

Generalizability on external datasets is crucial for determin-
ing whether a DL system can be applied to real-world clinical 
use. Existing works have proposed solutions that focused on 
increasing the diversity of the training data (eg, with data aug-
mentation techniques or training with multicenter data) (37). 
Here, we demonstrated that fine-grained annotations signifi-
cantly improved the generalizability of the DL model on chest 

Table 2: Comparison of Chest Radiograph Classification Performance between Models on External Datasets

Dataset and 
Disease CheXNet100 AUC

CheXNet1001
CheXDet20 CheXDet100

AUC P Value AUC P Value AUC P Value

NIH Google
 Nodule or mass 0.68 (0.66, 0.70) 0.64 (0.61, 0.66) .002 0.74 (0.72, 0.76) ,.001 0.80* (0.78, 0.81) ,.001
 Pneumothorax 0.84 (0.81, 0.87) 0.84 (0.82, 0.87) .92 0.82 (0.80, 0.85) .22 0.87* (0.85, 0.89) .03
 Fracture 0.51 (0.47, 0.55) 0.51 (0.46, 0.55) .92 0.66 (0.62, 0.70) ,.001 0.67* (0.63, 0.71) ,.001
PadChest
 Cardiomegaly 0.91 (0.91, 0.92) 0.92* (0.92, 0.93) ,.001 0.88 (0.88, 0.89) ,.001 0.91 (0.91, 0.92) .61
 Pleural effusion 0.95 (0.94, 0.96) 0.95* (0.94, 0.96) .91 0.94 (0.93, 0.95) .007 0.94 (0.93, 0.95) .06
 Mass 0.55 (0.53, 0.57) 0.59 (0.57, 0.61) ,.001 0.67 (0.65, 0.69) ,.001 0.63* (0.61, 0.65) ,.001
 Nodule 0.66 (0.63, 0.69) 0.55 (0.53, 0.58) ,.001 0.73 (0.70, 0.75) ,.001 0.78* (0.76, 0.80) ,.001
 Pneumonia 0.79 (0.77, 0.81) 0.77 (0.76, 0.79) .002 0.80 (0.79, 0.82) .11 0.83* (0.81, 0.84) ,.001
 Pneumothorax 0.83 (0.77, 0.88) 0.81 (0.75, 0.87) .62 0.78 (0.71, 0.85) .25 0.85* (0.79, 0.92) .34
 Tuberculosis 0.89 (0.86, 0.93) 0.88 (0.85, 0.91) .60 0.90 (0.87, 0.93) .45 0.92* (0.89, 0.95) .06
 Fracture 0.55 (0.53, 0.57) 0.58 (0.56, 0.60) .01 0.74 (0.71, 0.76) ,.001 0.78* (0.76, 0.80) ,.001
 Aortic calcifica-

tion
0.86 (0.85, 0.87) 0.81 (0.79, 0.82) ,.001 0.85 (0.84, 0.86) .04 0.87* (0.86, 0.88) .14

Note.—Data are area under the receiver operating characteristic curve (AUC) values with 95% CIs in parentheses, unless otherwise noted. 
CheXNet (developed with 100% of the dataset 1 [DS1] training data [CheXNet100]) was compared against CheXNet (trained with 100% 
of DS1 and additional data from CheXPert [CheXNet1001

]) and CheXDet (developed with 20% [CheXDet20] and 100% of the DS1 train-
ing data [CheXDet100]) for the radiograph classification performances on the external National Institutes of Health Google and PadChest 
datasets. P values were computed between CheXNet100 and every other model.
* Best performance.
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radiographs from new centers (ie, NIH Google and PadChest), 
without training the models with multicenter data. Specifi-
cally, CheXDet could achieve higher external performance than 
CheXNet1001

 without loss of accuracies on the internal data. 

When both were developed by all training data from DS1, 
CheXDet100 also outperformed CheXNet100 for all three diseases 
on NIH Google and four of nine diseases on PadChest without 
degraded performance on other diseases. Moreover, for small 

Figure 6: Bar plots with error bars show comparison of lesion detection performance among models on the internal testing set. CheXNet developed with 100% data 
(cls100) is compared against CheXDet developed with different ratios of data (det20, det40, det60, det80, and det100; subscripts denote ratios of training data). Blue bars rep-
resent jackknife alternative free-response receiver operating characteristic (JAFROC) figures of merit (FOMs) with 95% CIs of CheXNet, and red bars represent JAFROC 
FOMs with 95% CIs of CheXDet. Whiskers represent the 95% CIs. CheXDet performs higher than CheXNet on the internal lesion detection task, even when trained with 
20% of the data. *** represents P < .001.

Table 3: Comparison of Lesion Localization Performance between Models on External NIH ChestX-ray14 Testing Set

Disease CheXNet100 JAFROC FOM

CheXDet20 CheXDet100

JAFROC FOM P Value JAFROC FOM P Value

Cardiomegaly 0.08 (0.06, 0.11) 0.65 (0.60, 0.70) ,.001 0.79* (0.75, 0.83) ,.001
Pleural effusion 0.17 (0.12, 0.22) 0.25 (0.21, 0.29) .01 0.26* (0.21, 0.30) .002
Nodule 0.31* (0.29, 0.33) 0.31 (0.25, 0.37) .99 0.30 (0.24, 0.37) .91
Mass 0.45 (0.44, 0.46) 0.40 (0.35, 0.46) .13 0.56* (0.48, 0.63) .009
Pneumonia 0.18 (0.14, 0.22) 0.33 (0.28, 0.39) ,.001 0.34* (0.27, 0.40) ,.001
Pneumothorax 0.04 (0.01, 0.08) 0.41 (0.34, 0.47) ,.001 0.55* (0.48, 0.61) ,.001

Note.—Data are jackknife alternative free-response receiver operating characteristic (JAFROC) figure of merit (FOM) values with 95% 
CIs in parentheses, unless otherwise noted. CheXNet (developed with 100% of dataset 1 [DS1] training data [CheXNet100]) was compared 
against CheXDet (developed with 20% of DS1 training data [CheXDet20] and 100% of DS1 training data [CheXDet100]) for the lesion lo-
calization performances on the external National Institutes of Health ChestX-ray14 dataset. P values were computed between CheXNet100 
and every other model.
* Best performance.
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Figure 7: Sample localization results of CheXNet and CheXDet. Qualitative samples of lesion localization results for 
(A, B) cardiomegaly and (C, D) pneumonia on the (A, C) internal dataset (dataset 1) and (B, D) external set (National 
Institutes of Health ChestX-ray14). Ground truth with bounding boxes (red, left column), gradient-weighted class activation 
map generated by CheXNet (middle column), and localization of output of ChexDet (right column) are demonstrated. For 
gradient-weighted class activation maps, the color overlay indicates a higher probability of abnormality found by CheXNet, 
and the top 40% pixels on the heatmaps are bounded by the green boxes as the final localization results. CheXDet outputs the 
correct bounding box for cardiomegaly, outlining the entirety of the heart (same as ground truth labeling), while CheXNet only 
focuses on the left side of the heart. This was evident on both the internal and external datasets. CheXDet localizes the correct 
locations for pneumonia changes; CheXNet included nontargeted areas in C, likely due to fibrotic changes, and missed the 
targeted area entirely in D, instead identifying false-positive areas, which appear normal radiographically.
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lesions without fixed positions, such as nodules, masses, and 
fractures, even CheXDet20 performed higher than CheXNet100, 
despite being developed with only 20% of the training data. 
Of note, these findings suggest that DL models developed with 
fine-grained lesion annotations are more generalizable to exter-
nal data.

Because Grad-CAM has been widely adopted in many pre-
vious works to show that CheXNet could identify correct dis-
ease signs, we quantified the disease localization capability of 
CheXNet and CheXDet. Our data revealed that CheXNet relies 
highly on patterns other than the true pathologic signs to make 
decisions, as it showed low performance in finding the lesions 
but achieved radiologist-level internal classification results. Apart 
from providing quantitative comparison, we present some sam-
ple detection results of CheXNet100 and CheXDet100 in Figure 
7. For internal data, it can be observed that CheXNet’s Grad-
CAM might not precisely cover the intended lesions (Fig 7A) 
and sometimes even attend to false-positive regions (Fig 7C). 
Moreover, CheXNet might then use incorrect patterns to make 
decisions for the external data (Fig 7B, 7D). The degraded lesion 
detection performance and external classification performance 
of CheXNet, together with the visualization results, demon-
strated that a DL model trained with radiograph-level annota-
tions is prone to shortcut learning (ie, using unintended pat-
terns for decision-making). Worse yet, such a model achieved 
performance similar to that of radiologists on the internal testing 
subset, as shown in Figure 5. On the basis of these results, the 
claim that DL demonstrates performance similar to that of phy-
sicians may need further investigation. On the contrary, training 
with fine-grained annotations enabled CheXDet to focus on the 
correct pathologic patterns and become more robust to external 
data and less prone to shortcut learning. Our findings highlight 
the importance of using fine-grained annotations for developing 
trustworthy DL-based medical image diagnoses.

We acknowledge the limitations of the current work. First, 
we chose NIH Google, PadChest, and NIH ChestX-ray14 as the 
external testing sets, which were the few publicly available data-
sets hand labeled by radiologists. Because some external testing 
datasets did not obtain the same disease categories as our internal 
dataset, we could test only the diseases that overlapped with our 
annotations. Second, according to recent studies (38,39), devel-
oping a localization model does not completely address auto-
matic radiograph screening. CheXDet also had failure cases, as 
shown in the examples from Figure E3 (supplement). Moreover, 
our results showed that the external performance of CheXDet 
was not as good as its internal performance. Because this per-
formance drop could imply shortcut learning (16), we believe 
that CheXDet also experienced shortcut learning but to a lesser 
degree than CheXNet. Third, fine-grained annotations bring 
more burden on the labelers. The trade-off between the labor for 
fine-grained annotations and the improved generalizability thus 
remains to be explored and elaborated.

To summarize, we showed that a DL model trained with 
radiograph-level annotations was prone to shortcut learning that 
used unintended patterns for decision-making for disease de-
tection on chest radiographs. We also showed that fine-grained 
annotations on chest radiographs improve DL model–based 

diagnosis, especially when applied to external data, by alleviat-
ing shortcut learning and correcting the decision-making regions 
for the models. We highlighted that successful application of 
artificial intelligence models to clinical use lies in the annota-
tion granularity in addition to data size and model architecture, 
which requires further investigation.
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