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Natural language processing (NLP) techniques have been 
steadily evolving over the past years and offer several op-

portunities for retrieving information traditionally trapped 
by narrative language in electronic medical records (1). 
Among these, radiology reports are a valuable source of on-
cologic data that contain detailed information on patients’ 
disease status and can provide a longitudinal representation 
of a patient’s clinical course, which aids therapeutic deci-
sion-making and outcome estimation. However, although 
studies emphasize the use of structured reports, which have 
the potential to reduce the effort required to extract useful 
data for further automated analyses, most radiology reports 
remain composed of prose text (2–4). Accordingly, the 

extraction of timelines and key clinical end points, such as 
response to therapy and disease progression, from free-text 
oncology reports (FTOR) has become a driving factor of 
NLP development in the oncology field (5–7).

Current NLP methods applied for information re-
trieval range from traditional rule-based systems (eg, 
string matching) to feature-rich learners (eg, support 
vector machines) and newer, high-performing deep 
learning techniques such as transformer-based pre-
trained language models (eg, bidirectional encoder rep-
resentations from transformers [BERT]), which have 
shown superior performance to classic machine learning 
in free-text classification tasks (8–11). The advantage of 
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Purpose: To train a deep natural language processing (NLP) model, using data mined structured oncology reports (SOR), for rapid 
tumor response category (TRC) classification from free-text oncology reports (FTOR) and to compare its performance with human 
readers and conventional NLP algorithms.

Materials and Methods: In this retrospective study, databases of three independent radiology departments were queried for SOR and 
FTOR dated from March 2018 to August 2021. An automated data mining and curation pipeline was developed to extract Response 
Evaluation Criteria in Solid Tumors–related TRCs for SOR for ground truth definition. The deep NLP bidirectional encoder represen-
tations from transformers (BERT) model and three feature-rich algorithms were trained on SOR to predict TRCs in FTOR. Models’ 
F1 scores were compared against scores of radiologists, medical students, and radiology technologist students. Lexical and semantic 
analyses were conducted to investigate human and model performance on FTOR.

Results: Oncologic findings and TRCs were accurately mined from 9653 of 12 833 (75.2%) queried SOR, yielding oncology reports 
from 10 455 patients (mean age, 60 years 6 14 [SD]; 5303 women) who met inclusion criteria. On 802 FTOR in the test set, BERT 
achieved better TRC classification results (F1, 0.70; 95% CI: 0.68, 0.73) than the best-performing reference linear support vector 
classifier (F1, 0.63; 95% CI: 0.61, 0.66) and technologist students (F1, 0.65; 95% CI: 0.63, 0.67), had similar performance to medi-
cal students (F1, 0.73; 95% CI: 0.72, 0.75), but was inferior to radiologists (F1, 0.79; 95% CI: 0.78, 0.81). Lexical complexity and 
semantic ambiguities in FTOR influenced human and model performance, revealing maximum F1 score drops of −0.17 and −0.19, 
respectively.

Conclusion: The developed deep NLP model reached the performance level of medical students but not radiologists in curating onco-
logic outcomes from radiology FTOR.
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Materials and Methods
This Health Insurance Portability and Accountability Act–com-
pliant retrospective study was approved by our institutional re-
view board (approval no. S-083/2018), and the requirement to 
obtain informed consent was waived. All anonymized reports 
handled in this study were created in the German language and 
stored locally on a dedicated computing resource.

Datasets and Patient Characteristics
Consecutive reports for CT, MRI, and US examinations of 
all body regions, performed between March 2018 and August 
2021, were retrieved from the radiology information system 
of three independent radiology departments associated with 
a nationwide cancer center, as follows: SOR were obtained 
from a tertiary care center and FTOR from a cancer research 
center (FTOR1) and a hospital specializing in chest diseases 
(FTOR2). The reports included all oncologic diagnoses occur-
ring in routine patient care but differed in terms of reported tu-
mor entities according to each department’s field of oncologic 
expertise. Duplicates and reports that lacked an assessment of 
tumor burden change were excluded (Fig 1). The initial data-
base query returned 14 569 radiology reports, including 13 685 
SOR and 884 FTOR. After removing 852 (6.2%) duplicate 
SOR database entries, we excluded 3180 (24.8%) SOR be-
cause the rule-based extraction of TRCs for ground truth la-
bel assignment failed. Following manual FTOR ground truth 
definition, 82 (9.3%) FTOR were excluded because there was 
no evidence of cancer in patients’ radiologic history or no clear 
assessment of tumor burden change using short- and long-term 
imaging (Fig 1).

Complexity Analysis of Report Corpora
We performed a lexical complexity analysis for all text corpora as 
previously described (14). The calculated variables included word 
count, number of unique words, number of unique bigrams, type-
to-token ratio, Yule I metric, and BERT split factor (14,15).

Automated Ground Truth Definition from SOR
The concept of SOR used in this study has been published 
before (14). A pictorial overview of the structured report-
ing concept and its translation into the NLP development 
pipeline is shown in Figure 2. The conceptual design of the 
SOR template corresponds to a level 2 reporting structure, 
with reports created by means of a browser-based tool that 
provides drop-down menus and pick lists but also free-text 
forms at predefined positions (http://www.targetedreporting.
com/sor/) (3,16). The oncologic assessment followed a stan-
dardized terminology related to the Response Evaluation 
Criteria in Solid Tumors (RECIST) version 1.1 guidelines 
and considered baseline and nadir imaging if applicable 
(17). Key oncologic findings were automatically extracted 
using a rule-based NLP technique called regular expressions, 
and the mined TRCs were mapped onto the four TRC labels 
of progressive disease, stable disease, partial response, and 
complete response, serving as the ground truth classifier for 
NLP model building.

deep learning over rule-based and feature-rich algorithms is 
the ability to automatically discover convenient abstractions 
from the raw data required for classification without the need 
for explicit definition of domain-specific rules prior to data 
extraction (12). However, the limited availability of a proper 
sample size of well-annotated data for training and testing 
of such models remains a major obstacle, usually requiring 
vast and expensive effort for the curation and annotation 
process (13). Recently, it has been shown that structured re-
port content created in clinical routine is readily accessible 
for accurate extraction of radiologic findings and that mined 
structured report data conform favorably to parameters ac-
quired in dedicated research interpretations by medical ex-
pert readers (4). Therefore, radiologic data primarily stored as 
disaggregated structured reports in the radiology information 
system may serve as basis for an automated and efficient label-
ing approach to build ground truth for artificial intelligence 
algorithm development (13).

This study aimed to exploit the data mining advantages of 
structured radiology reports (SOR) to train a deep learning 
NLP model for classifying tumor response categories (TRCs) 
in FTOR without prior domain-specific feature engineering. 
The model’s performance was then compared against three 
conventional NLP algorithms and seven human annotators 
with different levels of radiologic expertise.

Abbreviations
AUC = area under the receiver operating characteristic curve, BERT 
= bidirectional encoder representations from transformers, FTOR = 
free-text oncology reports, ICC = intraclass correlation coefficient, 
NLP = natural language processing, RECIST = Response Evalua-
tion Criteria in Solid Tumors, RT = radiology technologist, SOR = 
structured oncology reports, SORTEST = test subset of SOR dataset, 
SVC = support vector classifier, TRC = tumor response category

Summary
Natural language processing models, trained using data mined struc-
tured oncology reports, accurately ascertained oncologic outcomes in 
free-text oncology reports, reaching human-level performance.

Key Points
 n In a retrospective study of 10 455 radiology reports for oncology, 

accurately mined tumor response categories from 9653 structured 
oncology reports served as ground truth for natural language pro-
cessing model building.

 n Trained bidirectional encoder representations from transform-
ers and linear support vector classifier models achieved F1 scores 
of 0.70 (95% CI: 0.68, 0.73) and 0.63 (95% CI: 0.61, 0.66), 
respectively, for predicting oncologic outcomes in 802 free-text 
oncology reports (FTOR), which was comparable to humans from 
different domains of medical knowledge (mean F1, 0.72; range, 
0.65–0.79).

 n Lexical complexity and semantic ambiguities lowered human and 
model performance, revealing maximum F1 score drops of −0.17 
and −0.19 on FTOR, respectively.

Keywords
Neural Networks, Computer Applications–Detection/Diagnosis, 
Oncology, Research Design, Staging, Tumor Response, Comparative 
Studies, Decision Analysis, Experimental Investigations, Observer 
Performance, Outcomes Analysis
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radiologists (A.B. [in training] and M.M. [board certified], 
with 4 and 6 years of experience in oncologic imaging, respec-
tively), two medical students (M.S. and M.K., third and 12th 
semesters, respectively), and three radiology technologist (RT) 
students (all third semesters). All annotators were blinded to 
the FTOR impression section. In addition, confidence in TRC 
labeling was recorded for each report using a five-point Likert 
scale (1 = not confident at all; 5 = very confident).

NLP Model Development
On the basis of the mined SOR data, we trained two NLP 
model types. Model type 1 applied a deep NLP algorithm 
based on BERT pretrained on the German vocabulary, 
which we fine-tuned on the SOR oncologic findings section 
(10,20,21). Model type 2 served as the NLP reference and 
comprised the three feature-rich NLP methods, linear sup-
port vector classifier (Linear-SVC), k-nearest neighbors, and 
multinomial naive Bayes, which were built on a bag-of-words 
model and the term frequency–inverse document frequency, 
or TF-IDF, term weighting scheme (22). For both model 

Manual Ground Truth Definition of FTOR
All FTOR were reviewed independently in random order by 
two radiologists (M.A.F. [in training] and J.K. [board certi-
fied], with 5 and 6 years of experience in oncologic imaging, re-
spectively) using a dedicated open source text annotation tool 
(Doccano; https://doccano.herokuapp.com), which was hosted 
on the Joint Imaging Platform of the German Cancer Consor-
tium (18,19). On the basis of the information provided in the 
“findings” and “impression” sections, all reports were classified 
into one of the four TRCs, which served as ground truth for 
evaluating the machine and human classification task. Further-
more, comparisons of nononcologic findings (eg, “increase in 
degenerative changes of the spine”) were mapped onto three 
nononcologic labels (worsening, constant, improving). Any 
disagreements between the two radiologists were resolved in a 
consensus review.

Human Annotations of FTOR
Using the Doccano tool, manual labeling of the TRC in all 
FTOR was performed independently in random order by two 

Figure 1: Flowchart of study design. CR = complete response, FTOR = free-text oncology reports, PD = progressive disease, PR = partial response, RECIST 
= Response Evaluation Criteria in Solid Tumors, RT = radiology technologist, SD = stable disease, SOR = structured oncology reports.

http://radiology-ai.rsna.org
https://doccano.herokuapp.com


4 radiology-ai.rsna.org n Radiology: Artificial Intelligence Volume 4: Number 5—2022

Assessing Oncologic Outcomes with NLP of Structured Radiology Reports

Statistical Analysis
Statistical analyses were performed by two authors (M.A.F. and 
K.K.) using the scikit-learn metrics API version 0.24.2 (Py-
thon; Python Software Foundation) and R version 2021.09.1 
(R Foundation for Statistical Computing). Statistical signifi-
cance was indicated at a P value less than .05. Differences in 
baseline characteristics, TRC, and recorded tumor families 
were compared with the t test for continuous variables and 
with the x2 test for categorical variables. The assumption of 

types, the SOR dataset was further randomly divided into a 
training and held-out test subset (SORTEST) at approximately 
an 85%:15% split. To estimate generalizability of the models, 
we performed a fivefold (k = 5) cross-validation on the SOR 
training set. Once the models were fine-tuned to achieve the 
best performance on the SOR training and validation subsets, 
they were used to classify the TRC in our test sets. The chosen 
hyperparameter settings are described in detail in Table E1 
and Figure E1 (supplement).

Figure 2: Structured oncologic assessment in clinical routine and natural language processing (NLP) model building. An exemplary structured oncology report (SOR) for 
a 32-year-old woman with a history of breast cancer (left side) was interpreted as progressive disease (PD). The oncologic data were automatically processed and then fed 
into the NLP development pipeline (right side, A–E). (A) The deep NLP architecture used was based on the bidirectional encoder representations from transformers (BERT) 
language model pretrained on unlabeled general domain data and adapted to the German vocabulary. (B) Automatic extraction of the Response Evaluation Criteria in Solid 
Tumors (RECIST)–related categories PD, stable disease (SD), partial response (PR), and complete response (CR) from the SOR “impression” section by using a rule-based 
pattern-matching command called regular expressions (RegEx). (C) Fine-tuning of BERT and three feature-rich NLP methods (linear support vector classifier [SVC], k-nearest 
neighbors [KNN], multinomial naive Bayes [MNB]) on the extracted SOR oncologic findings section. The output of (B) was used as ground truth classifier for (D) NLP model 
training and validation, followed by (E) performance evaluation on the free-text oncology reports (FTOR) test sets in comparison with human baseline scores. A live demo 
of the SOR template can be accessed for review at http://www.targetedreporting.com/sor/. For demonstration purposes, the presented exemplary SOR and the online 
template have been translated from German to English. TF-IDF = term frequency–inverse document frequency.

http://radiology-ai.rsna.org
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Radiology: Artificial Intelligence Volume 4: Number 5—2022 n radiology-ai.rsna.org 5

Fink and Kades et al

sification performance. We calculated 95% CIs for all metrics 
using a 2000-times bootstrap resampling (24). On the basis of 
BERT’s recorded probabilities in TRC classification, the dis-
criminative performance was further visualized using receiver 
operating characteristic analyses and area under the receiver 
operating characteristic curve (AUC) values, which were com-
puted for each TRC by using a one-versus-rest approach (25).

Results

Patient Characteristics
The final study sample included oncology reports from 10 455 
patients (mean age, 60 years 6 14; 5303 women). Given the 

equal variances between samples was assessed using the Levene 
test. The t test was used for pairwise comparisons. For more 
than two groups, a one-way analysis of variance with Tukey 
honestly significant difference post hoc analysis was performed. 
Agreement in TRC classification among readers was calculated 
using the intraclass correlation coefficients (ICCs) in a two-way 
random-effects model and tested for absolute agreement (23). 
ICCs were evaluated as follows: below 0.50 = poor, 0.51–0.75 
= moderate, 0.76–0.90 = good, above 0.90 = excellent agree-
ment (23). For each FTOR, average scores over the readers 
within each group were used to compare the confidence among 
the annotator groups. Weighted recall, precision, accuracy, and 
F1 scores were used to evaluate human and machine TRC clas-

Table 1: Patient Characteristics, Tumor Response Categories, and Oncologic Diagnoses

Parameter

Dataset P Value (vs SORTRAIN)

All
(n = 10 455)

All SOR
(n = 9653)

SORTRAIN
(n = 8653)

SORTEST
(n = 1000)

FTOR1
(n = 369)

FTOR2
(n = 433) SORTEST FTOR1 FTOR2

Patient
 Age (y)* 61 6 14 60 6 14 60 6 14 60 6 14 65 6 15 65 6 9 .42 ,.001 ,.001
 Sex .63 .66 ,.001
  Women 5303 (51) 4939 (51) 4435 (51) 504 (50) 194 (53) 170 (39)
  Men 5152 (49) 4714 (49) 4218 (49) 496 (50) 175 (47) 263 (61)
Tumor response 

category
..99 ,.001 ,.001

 Progressive disease 2467 (23.6) 2208 (22.9) 1979 (22.9) 229 (22.9) 91 (24.7) 168 (38.8)
 Stable disease 4018 (38.4) 3701 (38.3) 3318 (38.3) 383 (38.3) 188 (50.9) 129 (29.8)
 Partial response 942 (9.0) 791 (8.2) 709 (8.2) 82 (8.2) 21 (5.7) 130 (30.0)
 Complete response 3028 (29.0) 2953 (30.6) 2647 (30.6) 306 (30.6) 69 (18.7) 6 (1.4)
Tumor family† .46 ,.001 ,.001
 Gastrointestinal 2423 (28.6) 2347 (30.8) 2115 (31.0) 232 (29.9) 28 (7.8) 48 (9.5)
 Urogenital 1115 (13.2) 1075 (14.1) 969 (14.2) 106 (13.7) 25 (6.9) 15 (3.0)
 Gynecologic 1868 (22.0) 1800 (23.7) 1625 (23.8) 175 (22.6) 62 (17.2) 6 (1.2)
 Skin 873 (10.3) 781 (10.3) 701 (10.3) 80 (10.3) 92 (25.6) 0 (0)
 Lung 477 (5.6) 41 (0.5) 36 (0.5) 5 (0.6) 10 (2.8) 426 (84.4)
 Soft tissue 415 (4.9) 409 (5.4) 370 (5.4) 39 (5.0) 6 (1.7) 0 (0)
 Head and neck 337 (4.0) 273 (3.6) 245 (3.6) 28 (3.6) 61 (16.9) 3 (0.6)
 Liver 254 (3.0) 253 (3.3) 223 (3.3) 30 (3.9) 1 (0.3) 0 (0)
 Bone 226 (2.7) 225 (3.0) 199 (2.9) 26 (3.4) 1 (0.3) 0 (0)
 Biliary system 192 (2.3) 189 (2.5) 159 (2.3) 30 (3.9) 3 (0.8) 0 (0)
 CUP 177 (2.1) 161 (2.1) 143 (2.1) 18 (2.3) 16 (4.4) 0 (0)
 Lymphatic 45 (0.5) 14 (0.2) 12 (0.2) 2 (0.3) 24 (6.7) 7 (1.4)
 Vascular 30 (0.4) 29 (0.4) 25 (0.4) 4 (0.5) 1 (0.3) 0 (0)
 Hematologic 27 (0.3) 6 (0.1) 6 (0.1) 0 (0) 21 (5.8) 0 (0)
 Brain 14 (0.2) 5 (0.1) 5 (0.1) 0 (0) 9 (2.5) 0 (0)

Note.—Unless otherwise specified, data are frequencies, with percentages in parentheses. Structured oncology reports (SOR) were obtained 
from a tertiary care center and free-text oncology reports (FTOR) from a cancer research center (FTOR1) and a hospital specializing in 
chest diseases (FTOR2). CUP = cancer of unknown primary, SORTEST = test subset of SOR dataset, SORTRAIN = training subset of SOR 
dataset.
* Data are means 6 SDs.
† Values do not sum to 100% on report level because patients may have been diagnosed with tumors from multiple tumor families. Per-
centages in parentheses refer to the sum of all identified tumors within the “tumor family” category and not to the total number of reports 
in each dataset.

http://radiology-ai.rsna.org
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differences in oncologic expertise and patients treated by each 
radiology department, the distribution of patient characteris-
tics, reported TRCs, and tumor families varied across the da-
tasets (Table 1).

Lexical Complexity Analysis of FTOR and SOR
Inhomogeneity of the datasets was also reflected by their lexical 
structure (Table 2). FTOR1 had the highest word count, more 
unique words, and more unique bigrams than both FTOR2 and 
SORTEST (all comparisons, P , .001); these measures were also 
higher for SORTEST than FTOR2 (each, P , .001). In contrast, 
the Yule I and type-to-token ratio, both markers for lexical rich-
ness and reliable for text length independence, were highest for 
FTOR2 (all comparisons, P , .001).

Human Annotator Performance on FTOR
TRC ground truth definition yielded good agreement among 
both unblinded radiologists on FTOR1 (ICC, 0.79) and excel-
lent agreement on FTOR2 (ICC, 0.90). Subsequent consensus 
review was required for 118 of 802 (14.7%) reports, among which 
most discrepant TRC classifications (97 of 118 [82.2%] reports) 
occurred for labeling stable disease and complete remission (Fig 
E2A [supplement]).

Agreement among the seven blinded readers on TRC labeling 
was poor on FTOR1 and moderate on FTOR2 (ICC, 0.49 vs 
0.70), with group-specific agreements for both radiologists (ICC, 
0.56 vs 0.74), both medical students (ICC, 0.54 vs 0.71), and 
all RT students (ICC, 0.42 vs 0.55) (Fig E2B [supplement]). 

Confidence in TRC assessment on all FTOR was highest for both 
radiologists (3.97 6 0.75), lower for both medical students (3.60 
6 0.68), and lowest for all RT students (2.86 6 0.64) (each com-
parison, P , .001), while we found no evidence of a difference 
in confidence between both FTOR datasets for each annotator 
group (P = .26). Table 3 outlines the human performance for TRC 
labeling. On all FTOR, we observed F1 scores of 0.79 (95% CI: 
0.78, 0.81) for both radiologists, 0.73 (95% CI: 0.72, 0.75) for 
both medical students, and 0.65 (95% CI: 0.63, 0.69) for the RT 
students, with a lower performance on FTOR1 compared with 
FTOR2 for each annotator group.

NLP Model Performance on FTOR and SOR
Table 4 summarizes the model performance on SORTEST and 
FTOR. For BERT, we observed F1 scores of 0.67 (95% CI: 0.63, 
0.71) on FTOR1 and 0.73 (95% CI: 0.70, 0.76) on FTOR2. 
The best-performing conventional NLP model, Linear-SVC, 
achieved similar results to BERT (F1, 0.67 [95% CI: 0.63, 0.70]) 
on FTOR1 but had substantially lower performance on FTOR2 
(0.61 [95% CI: 0.58, 0.65]). Evaluation on SORTEST revealed the 
highest performance for all NLP models, again with BERT per-
forming better than the best-performing NLP reference Linear-
SVC (F1, 0.86 vs 0.79). Overall AUCs for BERT were 0.81 (95% 
CI: 0.808, 0.810) on FTOR1, 0.91 (95% CI: 0.912, 0.913) on 
FTOR2, and 0.95 (95% CI: 0.951, 0.952) on SORTEST, with low-
est AUCs for predicting the TRC stable disease in each dataset 
(Fig 3). On the basis of BERT’s TRC predictions on FTOR, we 
generated timelines to provide a longitudinal visual representation 

Table 2: Lexical Complexity Analysis of FTOR and SOR

Parameter

Dataset P Value (vs SORTRAIN) P Value

All
(n = 10 455)

All SOR
(n = 9653)

SORTRAIN
(n = 8653)

SORTEST
(n = 1000)

FTOR1
(n = 369)

FTOR2
(n = 433) SORTEST FTOR1 FTOR2

FTOR1 vs 
FTOR2

Word count 170.4
(168.8, 

172.1)

165.4
(164.0, 

166.9)

165.7
(164.2, 

167.3)

163.0
(158.4, 

167.5)

347.0
(328.7, 

365.2)

131.1
(127.3, 

134.8)

.27 ,.001 ,.001 ,.001

Unique 
words

123.8
(122.8, 

124.8)

121.7
(120.7, 

122.6)

121.9
(120.9, 

122.9)

120.1
(117.2, 

123.0)

205.1
(196.8, 

213.4)

100.8
(98.5, 103.0)

.26 ,.001 ,.001 ,.001

Unique 
bigram

159.7
(158.2, 

161.2)

155.6
(154.3, 

157.0)

155.9
(154.5, 

157.4)

153.2
(149.1, 

157.4)

306.8
(291.7, 

321.9)

125.0
(121.5, 

128.4)

.25 ,.001 ,.001 ,.001

Yule I 153.5
(152.6, 

154.4)

152.3
(151.4, 

153.2)

152.4
(151.4, 

153.4)

151.3
(148.4, 

154.2)

151.6
(146.4, 

156.8)

182.1
(175.2, 

189.1)

.46 .73 ,.001 ,.001

Type-to-
token 
ratio

0.75
(0.75, 0.75)

0.76
(0.76, 0.76)

0.76
(0.75, 0.76)

0.76
(0.75, 0.76)

0.64
(0.63, 0.65)

0.78
(0.78, 0.79)

.55 ,.001 ,.001 ,.001

BERT split 
factor

2.63
(2.62, 2.63)

2.65
(2.65, 2.65)

2.65
(2.65, 2.65)

2.66
(2.65, 2.67)

2.36
(2.34, 2.38)

2.37
(2.35, 2.38)

.07 ,.001 ,.001 .93

Note.—Data are mean values, with 95% CIs in parentheses. Structured oncology reports (SOR) were obtained from a tertiary care center 
and free-text oncology reports (FTOR) from a cancer research center (FTOR1) and a hospital specializing in chest diseases (FTOR2). 
BERT = bidirectional encoder representations from transformers, SORTEST = test subset of SOR dataset, SORTRAIN = training subset of SOR 
dataset.
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of tumor burden change on a per-patient level as an operational 
use case of the NLP system in tumor board assessment (Fig 4).

Determinants of Human and Machine Interpretability on 
FTOR
Figure 5 shows human and machine performances on FTOR 
in classifying TRC on the basis of the complexity parameters. 

On FTOR1, a higher number of unique words and bigrams 
led to lower human and machine performance. We observed 
that long FTOR1 led to poorer performance in all groups, 
though the effect was most noticeable for our RT students. 
In contrast, on FTOR2, the NLP models, radiologists, and 
medical students (but not the RT students) benefited when 
the overall concise, highly disease-specific FTOR2 (426 of 

Table 3: Human Annotator Performance for TRC Prediction on FTOR

Dataset Annotators Confidence Recall (%) Precision (%) Accuracy (%) F1 Score

FTOR1 Radiologists 3.92 6 0.81 73.5 (70.5, 76.3) 74.2 (71.3, 77.0) 73.5 (70.5, 76.3) 0.74 (0.71, 0.76)
Medical students 3.58 6 0.74 68.5 (65.7, 71.3) 68.8 (65.6, 71.9) 68.5 (65.7, 71.3) 0.67 (0.64, 0.70)
RT students 2.86 6 0.64 58.3 (55.8, 60.7) 62.8 (59.4, 66.1) 58.3 (55.8, 60.7) 0.56 (0.53, 0.58)

FTOR2 Radiologists 4.01 6 0.69 84.3 (82.2, 86.3) 85.0 (83.1, 86.8) 84.3 (82.2, 86.3) 0.84 (0.82, 0.86)
Medical students 3.61 6 0.62 79.3 (77.1, 81.4) 81.6 (79.7, 83.4) 79.3 (77.1, 81.4) 0.80 (77.4, 81.5)
RT students 2.85 6 0.64 75.0 (73.0, 77.1) 75.3 (73.1, 77.3) 75.0 (73.0, 77.1) 0.74 (0.72, 0.77)

All FTOR Radiologists 3.97 6 0.75 79.3 (77.5, 81.0) 79.7 (78.0, 81.4) 79.3 (77.5, 81.0) 0.79 (0.78, 0.81)
Medical students 3.60 6 0.68 74.3 (72.6, 76.1) 74.5 (72.5, 76.4) 74.3 (72.6, 76.1) 0.73 (0.72, 0.75)
RT students 2.86 6 0.64 67.3 (65.7, 68.8) 66.9 (64.9, 68.8) 67.3 (65.7, 68.8) 0.65 (0.63, 0.67)

Note.—Unless otherwise noted, data are mean values, with 95% CIs in parentheses. Confidence for assessment of the tumor response cat-
egory (TRC) is a 1–5 Likert scale, reported as means 6 SDs. Performance of TRC classification was evaluated on the basis of the free-text 
oncology reports (FTOR) ground truth definition based on reports from a cancer research center (FTOR1) and a hospital specializing in 
chest diseases (FTOR2). RT = radiology technologist.

Table 4: NLP Model Performance for TRC Prediction on FTOR and SOR

Dataset NLP Model Probability Recall (%) Precision (%) Accuracy (%) F1 Score

FTOR1 BERT 0.79 6 0.16 68.8 (65.3, 72.4) 71.4 (67.2, 75.2) 68.8 (65.3, 72.4) 0.67 (0.63, 0.71)
Linear-SVC 0.65 6 0.14 69.1 (65.6, 72.4) 67.5 (63.1, 71.8) 69.1 (65.6, 72.4) 0.67 (0.63, 0.70)
K-nearest neighbors 0.53 6 0.10 49.7 (45.5, 53.7) 47.0 (43.0, 51.1) 49.7 (45.5, 53.7) 0.47 (0.44, 0.52)
Multinomial naive 

Bayes
0.63 6 0.12 61.2 (57.5, 65.0) 63.2 (58.9, 67.3) 61.2 (57.5, 65.0) 0.59 (0.55, 0.63)

FTOR2 BERT 0.81 6 0.17 73.7 (70.4, 76.9) 75.9 (73.0, 78.7) 73.7 (70.4, 76.9) 0.73 (0.70, 0.76)
Linear-SVC 0.71 6 0.15 63.1 (59.8, 66.5) 73.5 (70.2, 76.6) 63.1 (59.8, 66.5) 0.61 (0.58, 0.65)
K-nearest neighbors 0.56 6 0.11 59.3 (55.3, 63.3) 57.8 (51.1, 63.8) 48.6 (45.5, 52.0) 0.42 (0.39, 0.46)
Multinomial naive 

Bayes
0.59 6 0.12 57.8 (54.7, 61.0) 65.6 (61.5, 69.2) 57.8 (54.7, 61.0) 0.53 (0.50, 0.57)

All FTOR BERT 0.80 6 0.17 71.4 (69.1, 73.9) 73.6 (71.1, 76.2) 71.4 (69.1, 73.9) 0.70 (0.68, 0.73)
Linear-SVC 0.68 6 0.15 65.8 (63.5, 68.2) 68.7 (65.7, 71.5) 65.8 (63.5, 68.2) 0.63 (0.61, 0.66)
K-nearest neighbors 0.55 6 0.11 49.1 (46.5, 51.6) 55.3 (50.9, 59.2) 49.1 (46.5, 51.6) 0.46 (0.43, 0.48)
Multinomial naive 

Bayes
0.60 6 0.12 59.4 (56.9, 61.8) 64.3 (61.3, 67.1) 59.4 (56.9, 61.8) 0.56 (0.54, 0.59)

SORTEST BERT 0.84 6 0.15 85.6 (83.7, 87.3) 85.5 (83.7, 87.2) 85.6 (83.7, 87.3) 0.86 (0.84, 0.87)
Linear-SVC 0.73 6 0.15 78.9 (76.9, 80.9) 79.0 (76.8, 81.0) 78.9 (76.9, 80.9) 0.79 (0.76, 0.81)
K-nearest neighbors 0.61 6 0.12 68.7 (66.5, 70.8) 69.0 (66.4, 71.4) 68.7 (66.5, 70.8) 0.68 (0.65, 0.70)
Multinomial naive 

Bayes
0.71 6 0.14 72.1 (69.9, 74.4) 71.7 (69.5, 74.1) 72.1 (69.9, 74.4) 0.72 (0.70, 0.74)

Note.—Unless otherwise noted, data are mean values, with 95% CIs in parentheses. Probability for prediction of the tumor response cate-
gory (TRC) is a continuous scale between 0 and 1, represented as means 6 SDs. Performance of TRC prediction on the free-text oncology 
reports (FTOR) was evaluated on the basis of the FTOR ground truth definition from reports of a cancer research center (FTOR1) and 
a hospital specializing in chest diseases (FTOR2); evaluation of the performance on the structured oncology reports (SOR) was based on 
the mined SOR ground truth labels. BERT = bidirectional encoder representations from transformers, NLP = natural language processing, 
SORTEST = test subset of SOR dataset, SVC = support vector classifier.
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505 [84.4%] reported lung cancers among all reported can-
cers) had a larger word count and contained more unique 
words and bigrams. However, higher lexical richness (Yule 
I, type-to-token ratio) of FTOR2 led to a decreased perfor-

mance of all annotators and a substantial F1 score drop of 
both NLP models. This effect was not evident in FTOR1, 
but both metrics were lower compared with FTOR2 (P , 
.001, Table 2). When grouping the model performance by 

Figure 3: Receiver operating characteristic curves for the deep natural language processing model bidirectional encoder representations from transformers (BERT) and 
symbols for each annotator group. The data show (A) the performance on free-text oncology reports (FTOR) of the cancer research center (FTOR1) and (B) the hospital spe-
cializing in chest diseases (FTOR2) in predicting the tumor response categories (TRCs) of progressive disease (PD), stable disease (SD), partial response (PR), and complete 
response (CR). (C) Performance of BERT on the held-out test subset of the structured oncology reports from the tertiary care center (SORTEST). AUC = area under the receiver 
operating characteristic curve, RT = radiology technologist.

Figure 4: Exemplary longitudinal representations of the oncologic course of six exemplary patients on the basis of the tumor response category (TRC) predictions by 
the deep natural language processing model bidirectional encoder representations from transformers (BERT) on the free-text oncology reports (FTOR). BERT’s probability of 
choosing the TRC per patient visit is shown below each timeline; light blue bars highlight the probability on FTOR where the model predicted an incorrect TRC. ACC = ac-
curacy, PD = progressive disease, PR = partial response, SD = stable disease.
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human confidence in TRC labeling, we observed a stepwise 
increase in performance for BERT and Linear-SVC from low 
(F1, 0.58 vs 0.50) to medium (F1, 0.67 vs 0.61) to high (F1, 
0.84 vs 0.78) human confidence (Fig 6A).

We further investigated the impact of the described non-
oncologic findings on TRC classification performance (Fig 
6B). Agreement and disagreement of concordance between 
oncologic and nononcologic findings resulted in different 

Figure 5: Lexical complexity analysis of the oncology reports and performance of the natural language processing (NLP) models and human annotators 
on the free-text oncology reports (FTOR). The center radar plot shows the analyzed complexity parameters, for which minimum and maximum values are given 
beneath each parameter. For comparison of the lexical structure of the FTOR corpora, the structured oncology reports of the tertiary care center (SORTEST, n = 
1000) as well as three publicly available datasets (WikiLingua, n = 58 341; 10k German news articles, n = 10 273; Swiss Judgement Prediction, n = 45 183) 
are shown. The radar plots on the left and right side outline the F1 scores (shadows indicate 95% CIs) for the deep NLP bidirectional encoder representations 
from transformers (BERT) model and the best-performing conventional NLP model, linear support vector classifier (Linear-SVC), as well as for the radiologists, 
medical students, and radiology technologist (RT) students on the FTOR of the cancer research center (left, FTOR1, n = 369) and the hospital specializing in 
chest diseases (right, FTOR2, n = 433) for classifying tumor response category as a function of the analyzed complexity parameters; these scores were grouped 
into equal-sized bins of low, medium, and high lexical complexity and denoted with the respective boundary values beneath each parameter.

Figure 6: Machine and human interpretability of the “findings” section in free-text oncology reports (FTOR) with respect to classifying the tumor response category (TRC). 
(A) Performance of the deep natural language processing (NLP) bidirectional encoder representations from transformers (BERT) model and the best-performing conventional 
NLP method, linear support vector classifier (Linear-SVC), on FTOR of the cancer research center (FTOR1) and the hospital specializing in chest diseases (FTOR2), grouped 
by confidence of the human annotators in classifying the TRC. The mean confidence of all annotators on the basis of Likert scores were split into three confidence groups (low, 
medium, high). (B) Performance of both NLP models and the human annotators as a function of the concordance of oncologic and nononcologic findings described in the 
FTOR findings section. For example, the findings “increased pulmonary metastases” and “increased degenerative changes of the spine” were categorized as oncologic to 
nononcologic concordance (agreement) in one FTOR, whereas “decreased pulmonary metastases” and “increased degenerative changes of the spine” were categorized as 
nonconcordance (disagreement) in another FTOR. The right facet of (B) outlines the respective confidences of the human annotators and the probabilities of the NLP models 
in classifying the TRC on the basis of the underlying concordance group (agree, disagree). *** = P < .001, ns = not significant, RT = radiology technologist.
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scores for radiologists (F1, 0.87 vs 0.83), BERT (F1, 0.85 vs 
0.66), medical students (F1, 0.79 vs 0.72), RT students (F1, 
0.72 vs 0.55), and Linear-SVC (F1, 0.72 vs 0.55), whereas 
the performance loss was highest for both models and the 
RT students. There was no evidence of a difference in human 
confidence in TRC classification between both groups (P = 
.38, right facet of Fig 6B), but we observed lower probabili-
ties for BERT and Linear-SVC on FTOR where descriptions 
of oncologic and nononcologic findings disagreed (each, P 
, .001).

Discussion
Our study demonstrates the feasibility of a fully automated 
scalable data mining and curation pipeline using SOR to build 
and train NLP models for ascertaining oncologic outcomes 
in multi-institutional FTOR. The best-performing deep NLP 
model BERT achieved an F1 score of 0.70 (95% CI: 0.68, 
0.73) on FTOR for predicting the TRC on the basis of descrip-
tions in the findings section. On the same task, both radiolo-
gists performed better but not excellent (F1, 0.79; 95% CI: 
0.78, 0.81), whereas our medical students had similar scores as 
BERT (F1, 0.73; 95% CI: 0.72, 0.75), and our RT students 
underperformed the model (F1, 0.65; 95% CI: 0.63, 0.67). 
The best-performing conventional NLP model, Linear-SVC, 
showed the lowest performance (F1, 0.63; 95% CI: 0.61, 0.66) 
on all FTOR.

Because of the standardized oncologic assessment in our 
SOR, we were able to use regular expressions as a rule-based 
NLP technique to accurately extract the four RECIST-related 
TRCs for assigning ground truth labels. According to the SOR 
concept, dedicated TRCs should not be used when equivocal 
findings are present that could complicate standardized catego-
rization of the disease, encouraging radiologists to use narrative 
text in such SOR rather than adhering to the defined termi-
nology for articulating the ambiguities (16,17). This mainly 
explains the dropouts in 24.8% of all FTOR as a known draw-
back of our extraction method but ensures error-free informa-
tion retrieval, a crucial premise at this stage of artificial intel-
ligence development (13,25).

Predicting oncologic outcomes from FTOR with machine 
learning is itself a nontrivial problem in NLP development, as 
detecting disease progression relies on temporal and contextual 
reasoning rather than extracting specific information about a 
particular disease or condition from the radiology report (8,26). 
In our work, we cover the entire oncologic spectrum from three 
independent radiology departments whose reports differ in 
terms of reporting style (SOR vs FTOR), the distribution of on-
cologic diseases (broad [SORTEST, FTOR1] vs specific spectrum 
[FTOR2]), and lexical structure with different levels of complex-
ity. The diseases, symptoms, and procedures vary widely across 
the three participating centers, and the radiologists interpreting 
these different cancer types make a variety of linguistic choices 
when discussing the oncologic findings. The Clinical TempEval 
2017 challenge addressed the question of how well NLP models 
trained on one cancer domain (colon cancer) perform in predict-
ing timelines in another cancer domain (brain cancer), with an 
0.20 F1 score drop in performance across domains, achieving 

maximum F1 scores between 0.51 and 0.59 (27). As expected, 
due to the absence of any domain or distribution shift between 
the SOR training and test set in our study (P . .99), evaluation 
on SORTEST revealed an increase in performance compared with 
FTOR for all NLP models (F1, best-performing models: BERT, 
0.86 vs 0.70; Linear-SVC, 0.79 vs 0.63).

The only moderate interannotator agreement (ICC, range, 
0.56–0.74) and accuracies (range, 73.5%–84.3%) of our radi-
ologists suggest that correct interpretation of the FTOR findings 
section is a challenging task even for domain experts, support-
ing evidence from previous surveys that many referring clinicians 
struggle with the clarity of reported findings in radiology reports 
(28). In our study, both ground truth readers, the three annota-
tor groups, and the deep NLP model BERT had difficulties in 
classifying the TRC class stable disease, with smaller AUCs com-
pared with the overall AUC for BERT on both FTOR datasets 
(FTOR1: AUC, 0.77 vs 0.81; FTOR2: AUC, 0.84 vs 0.91).

One reason for the difficulty in this classification could be the 
ambiguity of the oncologic descriptions and diverging meanings 
between the described findings and the interpreting radiologist’s 
final impression of disease progression. The RECIST category 
stable disease comprises a wide range of subthreshold changes in 
tumor burden between formal disease progression and partial re-
sponse. To articulate the presence of these subthreshold changes, 
radiologists may use terms such as “stable disease with a trend to-
ward increasing tumor burden,” which we found in the impres-
sion section of misclassified FTOR, whereas their findings sec-
tion referred to increasing lesions throughout the text. We also 
made this observation for reported oncologic and nononcologic 
findings: Humans and NLP models performed substantially 
worse when oncologic and nononcologic textual information 
had divergent semantic tendencies (eg, progressive disease and 
improvement, stable disease and worsening, partial response and 
worsening), with the lowest values found in both NLP models 
(F1 score drop: BERT, −0.19; Linear-SVC, −0.17) and RT stu-
dents (F1 score drop, −0.17). Interestingly, we found differences 
in the probability of BERT and Linear-SVC for choosing the 
TRC between both groups of concordant and nonconcordant 
findings in FTOR (each, P , .001) but not in the confidence 
of our human annotators (P = .38). However, these aspects of 
human and machine interpretability in such NLP tasks deserve 
further exploration in future studies and are beyond the scope 
of this study.

Our study had limitations. First, the mined SOR data were 
not reviewed for reporting quality or correct TRC assignments 
according to our RECIST-related SOR concept. However, it can 
be assumed that the extracted TRC labels represent an appro-
priate ground truth, because all radiologic examinations were 
interpreted according to the four-eyes principle and finally ap-
proved by an attending radiologist. Second, our standard of ref-
erence was based solely on information provided in the reports. 
Because of the expected workload, no images from the radiologic 
examinations were used to verify TRC assignments in FTOR. 
Contrary to the standardized assessment in our SOR, none of 
the 802 FTOR included a table containing reference measure-
ments of target lesions. Consequently, the predictions made by 
our annotators and NLP models do not represent quantitative 
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RECIST measurements and classifications. Third, our NLP 
models did not see any FTOR training data. In our experiment, 
we pitted FTOR-naive NLP models against our medical and RT 
students who also had never seen FTOR data before but have 
a basic medical understanding. This approach most likely leads 
to losses in performance of our NLP models but ensures good 
comparison to a human baseline. Key next steps will include 
testing transfer learning on FTOR training sets to boost our 
NLP models for further evaluation of their peak performance. 
Fourth, our models were trained on German SOR, which limits 
their generalizability to FTOR in other languages. However, we 
assume good portability of our algorithms because they are pub-
licly available and would merely require training sets adapted to 
the respective language.

In conclusion, our study encourages the use of structured ra-
diology reports as a “science-ready” data resource for machine 
learning purposes without any prior manual annotation effort by 
domain expert readers. Our results provide evidence that deep 
NLP models trained on mined data from structured reports can 
reach human performance levels in curating oncologic outcomes 
from free-text reports but are likewise prone to the lexical com-
plexity and semantic diversity of the radiologic narrative. Such 
systems may be able to extract clinically relevant oncologic end 
points from large volumes of longitudinal free-text reports and 
offer a potential advantage as an automated clinical decision sup-
port tool for patients referred for multidisciplinary tumor board 
assessment. Our future efforts will include testing the NLP pipe-
line in other clinical contexts and applying it to evaluate associa-
tions among therapeutic exposures, tumor profiles, and onco-
logic outcomes.
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