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Osteosarcoma is the most common malignant bone tu-
mor in children and young adults (1,2). The corner-

stone of treatment is surgery combined with neoadjuvant 
chemotherapy (NAC), which is currently the standard of 
care (2,3). In addition to age and size, NAC efficacy is a 
main prognostic factor. NAC efficacy is assessed by evalu-
ation of tumoral necrosis in anatomopathologic specimens 
obtained during surgical resection, according to the meth-
od described by Huvos et al (4). Early identification of 
“poor responders” is crucial for the improvement of disease 
management and prognosis. There are currently no reli-
able clinical, biologic, or radiologic criteria that allow early 
evaluation of the response to chemotherapy and modifica-
tion of treatment. Quantitative assessment of the histologic 
response is challenging for radiologists, even with the use 
of diffusion-weighted imaging (5), dynamic MRI (6), or 
fluorine 18 (18F) PET/CT (7).

Computational medical imaging, or radiomics, is a re-
cent discipline (8,9) that consists of transforming the im-
age into a large space of usable characteristics (radiomics) 
(10); it is established on the principle that the image 
contains phenotypic information on a macroscopic scale. 

These data are then used to train classifiers that are predic-
tive of an outcome (eg, histologic findings, survival, thera-
peutic response, genetic mutation) (10,11). Such models 
can provide valuable diagnostic, prognostic, or predictive 
information. Thus, the ultimate objective of radiomics is 
to develop imaging biomarkers that support medical deci-
sions (11). Radiomics has great potential in oncology for 
stratifying patients, predicting tumor response to treat-
ment, estimating patient survival (12,13), and phenotyp-
ing tumors (14). We aimed to develop a radiomics model 
to predict the histologic response to NAC for osteosarcoma 
from pretherapeutic MRI examinations.

Materials and Methods

Patients
Pediatric and adult patients treated for osteoblastic os-
teosarcoma between January 1, 2007, and December 31, 
2018, in three centers in France (Centre Léon Bérard 
in Lyon, Centre Hospitalier Universitaire de Nantes  in 
Nantes, and Hôpital Cochin in Paris) were consecutively 
included in this multicentric, retrospective study. Patient 
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Histologic response to chemotherapy for osteosarcoma is one of the most important prognostic factors for survival, but assessment oc-
curs after surgery. Although tumor imaging is used for surgical planning and follow-up, it lacks predictive value. Therefore, a radiomics 
model was developed to predict the response to neoadjuvant chemotherapy based on pretreatment T1-weighted contrast-enhanced 
MRI. A total of 176 patients (median age, 20 years [range, 5–71 years]; 107 male patients) with osteosarcoma treated with neoadju-
vant chemotherapy and surgery between January 2007 and December 2018 in three different centers in France (Centre Léon Bérard in 
Lyon, Centre Hospitalier Universitaire de Nantes in Nantes, and Hôpital Cochin in Paris) were retrospectively analyzed. Various mod-
els were trained from different configurations of the data sets. Two different methods of feature selection were tested with and without 
ComBat harmonization (ReliefF and t test) to select the most relevant features, and two different classifiers were used to build the mod-
els (an artificial neural network and a support vector machine). Sixteen radiomics models were built using the different combinations 
of feature selection and classifier applied on the various data sets. The most predictive model had an area under the receiver operating 
characteristic curve of 0.95, a sensitivity of 91%, and a specificity 92% in the training set; respective values in the validation set were 
0.97, 91%, and 92%. In conclusion, MRI-based radiomics may be useful to stratify patients receiving neoadjuvant chemotherapy for 
osteosarcomas.

Supplemental material is available for this article.
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(n = 39), and Toshiba (n = 5). Technical details are summa-
rized in Appendix E1 (supplement).

Radiomics Extraction
Images were automatically loaded using in-house software 
developed on Matlab, version R2019a (MathWorks). They 
were  manually segmented, and the 342 radiomics features 
were automatically extracted. The radiomics pipeline is de-
tailed in Appendix E1 (supplement).

Data Harmonization
Because of the diverse MRI systems and imaging protocols 
used, statistical harmonization (ComBat) was performed 
to correct for differences in features caused by the various 
imaging settings. The fat signal suppression technique (fat-
water decomposition [Dixon] vs fat saturation) was chosen 
for batch-effect correction. To avoid bias, z score normaliza-
tion and ComBat harmonization were achieved during the 
training step, and the corresponding hyperparameters were 
computed and used for the validation set.

Feature Selection and Predictive Model Training
After extraction of radiomics features, dimensionality reduc-
tion was performed (Fig 2). Two different approaches were 
tested. In the first approach, feature selection was performed 
using the ReliefF algorithm, with k = 10 nearest neighbors. 
In the second approach, a statistical method accounting for 
relevancy and redundancy was tested. The number of features 
integrated into the model was set at n = 15.

From the reduced learning base, we compared two dif-
ferent classifiers to stratify good responders from poor re-
sponders. For the first, we used an artificial neural network 
with a feedforward multilayer perceptron architecture. For 
the second classifier, we used a support vector machine 
trained with a linear kernel and box constraints set to 1. We 
used different combinations of patient cohorts to build the 
training-base database. Overall, 16 different models were 
built. Figure 2 summarizes the study design.

Data harmonization, feature selection, and predic-
tive model training processes are detailed in Appendix E1 
(supplement).

Results

Patients
In total, 176 patients (median age, 20 years; range, 5–71 
years; 107 male patients) were included. The demographic 
characteristics of the study sample are presented in Table 1. 
Fifty percent (88 of 176) of the patients were classified as good 
responders and 50% (88 of 176) as poor responders. Patient 
sample details are provided in Appendix E1 (supplement).

Relevance of Radiomics Features to Predict Chemotherapy 
Response
Features with their respective weight of predictor importance 
are listed in Appendix E1 (supplement).

data were retrieved from the RESOS database (https://netsarc.
sarcomabcb.org/) for the population of Lyon and Nantes and 
local archives for the Paris cohort. Patient data were collected 
after institutional review board approval. Patients who did not 
consent to the use of their clinical data for an academic study 
were excluded, according to national and European laws.

The diagnosis of osteosarcoma was confirmed according 
to review of pretreatment biopsy specimens. Patients with 
an extra-axial or axial bone osteosarcoma who were treated 
with NAC and resection surgery were included. Patients for 
whom the osteosarcoma was localized to the skull, soft tis-
sue, or viscera were excluded, as were patients who under-
went surgery before chemotherapy and those who did not 
undergo surgery.

All included patients underwent MRI with at least one 
postcontrast T1-weighted acquisition with fat signal sup-
pression at least 1 month before the beginning of chemo-
therapy (median, 13 days; range, 2–27 days) (Fig 1). MRI 
examinations were performed before biopsy.

The study sample consisted of patients treated before 
surgery with high-dose methotrexate or a combination of 
methotrexate, doxorubicin, and cisplatin.

Response to chemotherapy according to the Huvos grad-
ing system (4) was retrospectively collected from histologic 
reports. According to national recommendations, surgery 
was performed 1–2 weeks after the end of chemotherapy 
(median, 11 days; range, 6–21 days). Patients were consid-
ered poor responders if the percentage of viable tumor cells 
was 10% or greater and good responders if the percentage of 
viable tumor cells was less than 10%.

MRI Acquisition
Patients underwent MRI using 1.5-T magnets from various 
systems: Siemens (n = 99), Philips (n = 33), General Electric 

Abbreviations
AUC = area under the receiver operating characteristic curve, NAC 
= neoadjuvant chemotherapy

Summary
The use of radiomics combined with machine learning based on 
common MRI can be easily used to provide a new biomarker to pre-
dict poor response to chemotherapy and to modify the monitoring of 
neoadjuvant chemotherapy.

Key Points
 n Radiomics based on pretreatment MRI helped predict the histo-

logic response to chemotherapy for osteosarcomas; for the training 
and validation sets, areas under the receiver operating characteris-
tic curve were 0.95 and 0.97, sensitivity was 91% and 91%, and 
specificity was 92% and 92%, respectively.

 n The use of ComBat for data harmonization improved performance 
of the predictive models.

 n Radiomics may be used to stratify poor responders and good re-
sponders before neoadjuvant chemotherapy in order to modify the 
treatment of osteosarcomas.
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MRI, Skeletal-Axial, Oncology, Radiomics, Osteosarcoma, Pediatrics
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for the training set, 0.53 to 0.7 for the first 
validation set, and 0.37 to 0.41 for the 
second validation set. When data harmo-
nization using ComBat was included, the 
AUC ranged from 0.93 to 1 for the learn-
ing set, 0.58 to 0.68 for the first validation 
set, and 0.47 to 0.98 for the second vali-
dation set. Classifier performance for each 
dataset is presented in Table 2.

Second experiment: Training using the 
mixed Lyon and Nantes cohort and 
validation on the Paris cohort.— In this 
second step, the models trained using the 
mixed Lyon and Nantes cohort (n = 69 + 
45 = 114) generalized better than in the 
previous step when tested on the Paris 
cohort (n = 62), regardless of the feature 
selection method and classifier, but only 
after data harmonization was performed.

Before use of the data harmonization 
algorithm, the AUC ranged from 0.87 to 
0.96 for the learning set and 0.57 to 0.67 
for the validation set. After data harmo-
nization was performed, the AUC ranged 
from 0.99 to 1 for the training set from 
0.91 to 0.97 for the validation set (Fig 3). 
The most predictive model had an AUC 
of 0.95, a sensitivity of 91%, and a speci-
ficity 92% in the training set; respective 
values in the validation set were 0.97, 
91%, and 92%.

The artificial neural network was set up 
with an input layer, an output layer, and three hidden layers of 
15, 12, and nine neurons, respectively, and outperformed the 
model built with the support vector machine. Classifier perfor-
mance is presented in Table 3.

Discussion
In this study, we demonstrate that radiomics analysis of pretreat-
ment MRI in pediatric and adult patients with osteosarcoma 
may be useful in predicting response to NAC. The study sample 

Diagnostic Performance of the Predictive Models

First experiment: Training using the Lyon cohort and indepen-
dent double validation on the Nantes and Paris cohorts.— 
The model built using the Lyon cohort (n = 69) failed to gen-
eralize when tested on the Nantes (n = 45) and Paris (n = 62) 
cohorts, regardless of the feature selection method and clas-
sifier. Before data harmonization, the area under the receiver 
operating characteristic curve (AUC) ranged from 0.95 to 1 

Figure 1: MR images (postcontrast T1 with fat sup-
pression, coronal plane [patient 1], and sagittal plane 
[patients 2 and 3]) in three different patients treated for 
osteosarcoma with neoadjuvant chemotherapy (NAC) 
and surgery at different timepoints (before surgery; after 
the administration of methotrexate, ifosfamide, and 
etoposide; and at the end of NAC). Patient 1 (male, 
aged 14 years) had a stable tumor volume throughout 
follow-up, with the disappearance of bone edema from 
the first MRI control. After surgery, histologic evalua-
tion showed less than 1% viable cells (Huvos 4). Both 
patients 2 (female, aged 15 years) and 3 (female, 
aged 12 years) showed an increase in tumor volume 
in the first control followed by a decrease. However, 
histologic evaluation showed more than 60% viable 
cells for patient 2 (Huvos 2) and less than 1% (Huvos 
1) for patient 3.

http://radiology-ic.rsna.org
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Table 1: Patient Characteristics for Each Data Set

Patient Characteristic Training Set (n = 69) Validation Set 1 (n = 45) Validation Set 2 (n = 62)

Sex
 Female 35 (51) 16 (36) 18 (29)
 Male 34 (49) 29 (64) 44 (71)
Age
 Median (range) (y) 15 (5–50) 19 (9.8–71) 20 (15–48)
 0–10 y 11 (16) 1 (2) 0 (0)
 10–15 y 21 (30) 10 (22) 8 (13)
 15–25 y 28 (41) 22 (49) 40 (65)
 25–50 y 8 (12) 5 (11) 14 (23)
 .50 y 1 (1) 7 (16) 0 (0)
Localization
 Femur 44 (64) 25 (55) 34 (55)
 Humerus 5 (7) 7 (16) 4 (6)
 Tibia 15 (22) 8 (18) 9 (15)
 Ilium 3 (4) 3 (7) 10 (16)
 Radius 1 (1) 1 (2) 1 (2)
 Fibula 1 (1) 1 (2) 3 (5)
 Scapula 0 (0) 0 (0) 1 (2)
Histologic response
 Good responders (,10% viable cells) 38 (55) 23 (51) 27 (44)
 Poor responders (.10% viable cells) 31 (45) 22 (49) 35 (56)

Note.—Unless otherwise noted, values are numbers of patients, with percentages in parentheses. The training set was built using data for 
patients treated in Lyon, the first validation set using data for patients treated in Nantes, and the second validation set using data for those 
treated in Paris.

Figure 2: Radiomics analysis pipeline. During the segmentation step, the radiologist defined the contours of the tumor, selecting both the intraosseous contingent and 
extension into the soft tissues, excluding areas of intraosseous and perilesional edema. In total, 342 radiomic features were automatically extracted. Each database was 
separately normalized using the z score. An optional step of data harmonization using the ComBat algorithm was then performed. The training set was used to build the 
model. Dimension reduction was performed using one of two feature-selection methods (t test or ReliefF). Then, machine learning was performed from two different classifi-
ers: a support vector machine (SVM) or an artificial neural network with feedforward (FF) multilayer perceptron architecture. Internal validation was systematically performed 
to evaluate overfitting using a hold-out cross-validation technique, with 75% of the database used for training and 25% for validation. Then, model inference was performed 
using the different validation sets and the performance evaluated by receiver operating characteristic (ROC) analysis. Finally, eight models were created with different set-
tings. The variety of the data in the learning set was increased by concatenating the Lyon set and the Nantes set. Then, model inference was performed using the database 
of Paris.

http://radiology-ic.rsna.org
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Macroscopic and genetic tumor heterogeneity are known 
factors in the resistance to treatment (19). Song et al (20) re-
ported that intratumoral heterogeneity of baseline 18F-fluoro-
deoxyglucose uptake measured with PET texture analysis can 
predict tumor response and event-free survival for osteosarcoma 
treated with NAC. Coarseness and neighborhood gray-tone dif-
ference matrix helped predict event-free survival, and nonuni-
formity (dependence nonuniformity, run-length nonuniformity, 
and size zone nonuniformity) helped predict the response to 
chemotherapy.

To obtain the most relevant features, it may be useful to 
extract radiomic features from the results of various imaging 
techniques and multicontrast imaging. For example, diffusion-
weighted imaging with apparent diffusion coefficient mapping 
was used to differentiate between the necrotic and viable por-
tions of an osteosarcoma (17).

Our study had several limitations. First, a retrospective 
study such as ours entails highly varying imaging protocols. 
Osteosarcoma is a rare tumor, and patients were included 
from a period of 10 years for a larger sample size. Further-
more, it was necessary to merge the patients from two cohorts 
to build a consequent training set because the model built 
on the single Lyon cohort did not generalize on the second 
cohort. This operation resulted in sacrifice of one validation 
set but also allowed us to minimize the overfitting on the 
learning set. Our model must be validated in practice using 
prospective data. As previously demonstrated, a batch cor-
rection was inferred on the general population with a high 
variety of protocols (21,22). However, some precautions 

is similar to the known epidemiologic data for osteosarcoma (2). 
This sample may therefore be valid for prototyping a predictive 
model that may be used in the general population. The stratifi-
cation of patients at diagnosis is challenging in the management 
of osteosarcoma because of the lack of relevant biologic, clinical, 
and radiologic biomarkers. The identification of good respond-
ers may improve the management of NAC, particularly because 
some new treatments, such as mifamurtide (15) and regorafenib 
(16), have been reported to increase survival of patient if given in 
the adjuvant setting. Im et al (7) showed that PET data can help 
predict overall survival and event-free survival but not histologic 
response to chemotherapy. Asmar et al (17) showed that diffu-
sion MRI could be useful during monitoring to assess the re-
sponse to ongoing chemotherapy. Dyke et al (18) demonstrated 
similar findings for dynamic perfusion MRI.

Our study showed that among the different radiomics fea-
tures, size (longest equivalent diameter) appeared to be predic-
tive of the histologic response to chemotherapy. In addition, 
good responders to chemotherapy had larger values of high gray-
level zone and gray-level run emphasis, short-run high gray-level 
emphasis, and long-run high gray-level emphasis. Furthermore, 
good responders had a higher autocorrelation and a greater clus-
ter shade than poor responders, showing a coarser texture. Thus, 
the tumors of good responders showed a coarse texture and, 
above all, higher gray-level values.

From a microscopic point of view, high gray-level values were 
associated with higher contrast enhancement and may be due to 
greater angiogenesis, whereas tumors with low gray-level values 
were associated with tumor necrosis.

Table 2: Diagnostic Performance for Training Set and Two Validation Sets for Each Classifier and Feature Selection Meth-
od with and without Data Harmonization

Feature Selection 
and Classifier

Training Set (Cross-Validation) 
(n = 69) Validation Set 1 (n = 45) Validation Set 2 (n = 62)

Misclassification 
Rate (%)

Misclassified 
PatientsAUC

Se
(%)

Sp
(%) AUC

Se
(%)

Sp
(%) AUC

Se
(%)

Sp
(%)

Without harmo-
nization

 ReliefF
  SVM 0.90 83 85 0.69 65 88 0.38 100 7 48 29
  NN 0.91 67 100 0.61 57 71 0.45 97 11 48 29
 t Test
  SVM 0.89 91 78.6 0.68 48 92 0.41 97 4 51 31
  NN 0.84 91 78.6 0.53 17 96 0.41 97 4 51 31
With harmoniza-

tion
 ReliefF
  SVM 0.95 91 100 0.58 61 63 0.95 91 100 4 2
  NN 0.91 83 100 0.64 44 92 0.98 97 93 5 3
 t Test
  SVM 0.86 58 92.3 0.66 65 67 0.54 74 41 43 26
  NN 0.87 73 85.7 0.68 61 79 0.47 97 7 50 30

Note.—AUC = area under the receiver operating characteristic curve, NN = neural network, Se = sensitivity, Sp = specificity, SVM = sup-
port vector machine.

http://radiology-ic.rsna.org
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should be taken about the distribution of data to harmonize. 
Because the ComBat algorithm assumes similar distributions, 
the distribution of data must be similar except for the shift 
or spread. In addition, a covariate (here the good or poor re-
sponder status) and how the batch effect affects this covariate 
should be identified. If this covariate is identically affected 
by the batch effect, the ComBat method can be used by in-
cluding this covariate. In contrast, as is the case in this study, 
the ComBat transformation should be estimated for each 
sample independently. Another limitation of our study per-
tains to manual segmentation of the lesions. Reproducibility 
and repeatability could not be tested in this study because 
the tumors were segmented by a single radiologist. Indeed, 
the segmentation of osteosarcomas is challenging because of 
their varying localization, shape, and margins. In the same 
way, the effect of segmentation could not be studied. How-
ever, although the segmentation may influence some shape 
features, the most important features, such as size, are likely 
to be reproducible. Finally, although the number of patients 
included was modest for a radiomics study, it was relatively 

large given the low prevalence of osteosarcoma. In addition, 
there was a good balance between the classes of patients (good 
vs poor responders). Our database is the largest reported for a 
radiomics study on osteosarcoma.

In this study, chemotherapy response was predicted on the 
basis of an MRI examination performed at a single timepoint. 
Typical approaches for the evaluation of responses to chemo-
therapy evaluate the difference between the pretreatment and 
midcourse MRI examinations. Crombé et al (23) demonstrated 
that the changes in radiomics features on T2-weighted images 
correlate with the NAC response of soft-tissue sarcomas. The 
changes in radiomics features in osteosarcoma should be evalu-
ated in future studies.

In conclusion, this pilot study showed that it is possible to 
use postcontrast T1-weighted MRI radiomics to train prediction 
models for the response of osteosarcomas to NAC. However, 
multicentric data sharing will be required to increase the volume 
of data and more carefully evaluate overfitting and batch effects 
linked to the use of data acquired from nonstandardized acquisi-
tion protocols.

Figure 3: Receiver operating characteristic (ROC) analysis of four different models. (A) The population of Lyon was used as a training set without 
the use of the harmonization data algorithm. The ReliefF algorithm was used to select the most relevant features, and a support vector machine (SVM) 
was used as the classifier. Then, model inference was performed using the two validation sets independently. The area under the ROC curve (AUC) in 
red shows the performance on the training set (green for the cross-validation set), and the curves in blue show the performance on the Nantes and Paris 
validation cohorts. (B) This model was built in the same configuration as the model in A, but a previous step of data harmonization was performed using 
ComBat as explained in Figure 2. (C) The Lyon and Nantes cohorts were merged and used as a training set without the use of the data harmonization al-
gorithm. The ReliefF algorithm was used to select the most relevant features, and an SVM was used as the classifier. Then, model inference was performed 
on the Paris validation cohort. The AUC curve in red shows the performance in the training set and the curve in blue the performance on the Paris valida-
tion cohort. (D) This model was built in the same configuration as the model in C but with the use of ComBat.

http://radiology-ic.rsna.org
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