Skip to main content
. 2022 Sep 20;13:983818. doi: 10.3389/fpls.2022.983818

Table 1.

The predictive abilities for the three selection criterion’s; CV2, CV1 and CV0 analyzed to predict grain yields under non-stress conditions with calibration sets viz., non-stress (NS) and Combined [All (stress and non-stress)] (CSN) datasets using seven models.

Mixed models Cross-validation scenarios
CV2 CV1 CV0
Calibration sets CSN NS CSN NS CSN NS S → NS
M1: E + A 0.276 0.286 0.184 0.227 0.200 0.171 0.127
M2: E + A + AE 0.348 0.328 0.292 0.290 0.209 0.176 0.132
M3: E + GCA 0.272 0.304 0.204 0.247 0.159 0.153 0.095
M4: E + GCA + SCA 0.304 0.338 0.225 0.277 0.188 0.193 0.106
M5: E + GCA + SCA + GCA × E + SCA × E 0.352 0.347 0.306 0.305 0.197 0.190 0.112
M6: E + GCA + SCA + GCA × E + A × E 0.352 0.348 0.304 0.309 0.184 0.187 0.086
M7: E + GCA + A + GCA × E + A × E 0.360 0.341 0.298 0.299 0.206 0.182 0.126

Also the extreme right column of the table contains the predicted grain yield under non-stress conditions using the stress (S) dataset in CV0 scenario. The highlighted values represent models harboring highest predictive abilities in each of the cases.