Skip to main content
. 2022 Sep 20;13:983818. doi: 10.3389/fpls.2022.983818

Table 2.

The predictive abilities for the three selection criterions; CV2, CV1 and CV0 analyzed to predict grain yields under stress (S) conditions using the calibration sets viz., stress dataset alone and Combined [All (stress and non-stress)] (CSN) datasets using seven models.

Mixed models Cross-validation scenarios
CV2 CV1 CV0
Calibration sets CSN S CSN S CSN S NS → S
M1: E + A 0.242 0.254 0.170 0.230 0.185 0.073 0.171
M2: E + A + AE 0.381 0.355 0.340 0.349 0.165 0.047 0.141
M3: E + GCA 0.254 0.281 0.197 0.256 0.157 0.060 0.140
M4: E + GCA + SCA 0.274 0.328 0.209 0.306 0.162 0.125 0.138
M5:E + GCA + SCA + GCA × E + SCA × E 0.374 0.364 0.345 0.359 0.146 0.108 0.122
M6: E + GCA + SCA + GCA × E + A × E 0.371 0.364 0.339 0.355 0.149 0.114 0.118
M7: E + GCA + A + GCA × E + A × E 0.388 0.362 0.344 0.355 0.176 0.073 0.149

Also, the extreme right column of the table contains the predicted grain yield under stress conditions using the non-stress (NS) dataset in CV0 scenario. The highlighted values represent models harboring highest predictive abilities in each of the cases.