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Abstract

Protein-RNA interactions are integral to the biological functions of RNA. It is well recognized that 

molecular dynamics (MD) simulations of protein-RNA complexes are more challenging than those 

of each component. The difficulty arises from the strong electrostatic interactions and the delicate 

balance between various types of physical forces at the interface. Previously MD simulations 

of protein-RNA complexes have predominantly employed fixed-charge force fields. Although 

force field modifications have been developed to address problems identified in the simulations, 

some protein-RNA structures are still hard to reproduce by simulations. Here we present MD 

simulations of two representative protein-RNA complexes using the AMOEBA polarizable force 

field. The van der Waals parameters were refined to reproduce accurate quantum-mechanical data 

of base-base and base-amino acid interactions. It was found that the refined parameters produced 

a more stable hydrogen-bond network in the interface. One of the complexes remained stable 

during the short simulations, whereas it could quickly break down in previous simulations using 

fixed-charge force fields. There were reversible breaking and formation of hydrogen bonds that 

are observed in the crystal structure, which may indicate the difference in solution and crystal 

structures. While further improvement and validation of the force fields are still needed, this work 

demonstrates that polarizable force fields are promising for the study of protein-RNA complexes.
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1. Introduction

RNA is essential for many biological activities including gene expression and regulation and 

catalysis. RNA also has tremendous therapeutic potential for gene therapy, immunotherapy, 

and vaccines.1–3 Most of biologically active RNAs interact with proteins. The interactions 

with proteins are crucial for the folding, stability, regulation, transport and localization of 

RNAs.4–6 Therefore, understanding of the principles of RNA-protein interactions is useful 

for both fundamental research and practical applications. The mechanisms of protein-RNA 

recognition are highly diverse. Various types of interactions can be found at the protein-RNA 

interface, such as electrostatic interactions, hydrogen-bonding, salt bridge, pi-pi interactions 

and hydrophobic interactions.7, 8 In protein-RNA complexes, proteins either exclusively 

interact with RNA backbone or have specific interactions with nucleobases. In addition, 

protein-RNA interactions often involve large conformation changes of RNAs.

Experimental techniques including X-ray crystallography and nuclear magnetic resonance 

(NMR) have been valuable for the study of protein-RNA complexes. The data generated 

by such experiments have enabled the development of software tools for the prediction of 

protein-RNA binding. Structural analyses have shown van der Waals (vdW) interactions are 

more prevalent than hydrogen bonds,9 and interactions with the RNA backbone are more 

frequent than interactions with nucleobases.10 There are also limitations in experimental 

studies of protein-RNA complexes. The biomolecules in solution may have more than one 

conformation, and they may be different from the crystal structure. NMR experiments 

are usually conducted in solution, but they are more ambiguous to interpret than X-ray 

crystallography.11

Molecular dynamics (MD) simulations have been widely used to study biomolecular 

structures and dynamics as they complement experiments by providing detailed pictures of 

the molecules and connecting microscopic structures with macroscopic observations. Some 

notable examples include protein structure prediction12 and protein-ligand binding.13, 14 

However, MD simulations of protein-RNA complexes are still challenging. The simulation 

results are very sensitive to force field parameters15 because of the conformational flexibility 

of RNAs and the intricate network of interactions in the protein-RNA interface. There have 

been a lot of progress in nucleic acid force fields. Two major families of force fields for 
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proteins and nucleic acids are AMBER and CHARMM.15–17 AMBER force fields were 

first developed in the 1990s18 and have been continuously refined.19–23 A major focus 

has been on torsion parameters because the conformations of nucleic acids are sensitive to 

torsion parameters and the non-bonded parameters were found to be sufficient for describing 

gas-phase interaction energies and hydration free energies.19 Recently, there have been 

more studies on refining non-bonded parameters to improve intramolecular hydrogen bonds, 

base stacking, protein-nucleic acid binding and other thermodynamics properties.24–32 The 

revised non-bonded parameter for phosphate of Steinbrecher et al.33 in combination with 

the OPC water model could alleviate the excessive binding excessive binding between 

2’-hydroxyl groups and phosphate, while it has issues for other systems.25, 34 Šponer and 

coworkers proposed hydrogen-bond terms (HBfix and gHBfix)23–25 to selectively fine-tune 

the non-bonded interactions, which leads to general improvement for RNA simulations. 

Shaw and coworkers developed revised versions of AMBER force fields that include 

new parameters for nucleobase charge and vdW to improve base pairing and stacking 

interactions and the phosphate vdW parameters of Steinbrecher et al.,33 which necessitates 

adjustments of torsion parameters. The parameters were used with the TIP4P-D water model 

developed by the same group.27 Subsequently the phosphate charges and vdW parameters 

were modified to be compatible with the DES-Amber protein force field which includes 

rescaling of ionic charges.35, 36 CHARMM force fields37, 38 have also been improved over 

the years.17 The latest version CHARMM3637 improved the stability of base pairs by tuning 

2’-OH torsion parameters. Common problems for standard fixed-charge force fields such 

as AMBER and CHARMM are the over-stabilization of protein-nucleic acid interactions 

and the difficulty in modeling ion-specific effects.29 These problems have been partially 

addressed by special vdW parameters.29, 30, 39

Polarizable force fields provide more accurate description of electrostatics and balanced 

interactions in heterogenous environments, so they are promising in addressing the problems 

of fixed-charge force field for protein-RNA complexes.40–42 CHARMM-Drude force 

field43–48 and AMOEBA49–52 are two popular polarizable force fields. AMOEBA showed 

good accuracy for various nucleic acid systems, including DNA duplexes in different 

environment, RNA tetranucleotide, RNA tetraloops, RNA duplexes, and HIV-TAR.49 There 

have been very few published studies on MD simulations of protein-RNA interfaces using 

polarizable force fields, which is likely due to the computational cost of polarizable force 

field and the difficulty in conformational sampling.

In this work, the vdW parameters in AMOEBA nucleic acids force field were refined 

by using high-quality quantum-mechanical data. MD simulations for representative protein-

RNA systems were performed with both the original and the refined AMOEBA force field 

parameters.

2. Methods

2.1 Molecular dynamics simulations

Two protein-RNA complex systems were selected for molecular dynamics simulations: U1A 

protein bound to RNA hairpin53 (PDB code: 1urn) and C. elegans Pumilio FBF-2 protein 

bound to gld-1 FBEa RNA54 (PDB code: 3k5y). The PDB structure of 1urn contains three 
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copies of the complex. The complex formed by chain B and chain Q was selected for 

simulations since it is the only one without missing residues. Both systems have been 

studied by Krepl et al,5 and more recently by Tucker et al.36 The crystal structure of U1A 

contains a 21-nucleotide RNA sequence. The FBF protein is responsible for the regulation 

of messenger RNA.5 The FBF interface is composed of interaction between nucleobases and 

protein, while the RNA backbone is exposed to the solvent.5

The systems were prepared by using the tleap program in AmberTools.55 All systems were 

neutralized and solvated in isometric truncated octahedron boxes with a minimum distance 

between solute and box edge of 15 Å. KCl ions were added to give a concentration of 

150 mM. The solvated systems were minimized, gradually heated up from 50 K to 300 

K in 500 ps NVT simulations with harmonic position restraint on protein and RNA, and 

equilibrated at the NPT ensemble with 300 K and 1 bar for 4 ns, and then the force 

constant of the position restraints was gradually reduced from 25 kcal/mol/Å2 to zero 

in 6 ns NVT simulations. The production simulations were NVT simulations at 300 K. 

The RESPA integrator56 was used with an outer time step of 2.0 fs. Temperature and 

pressure were maintained by Bussi thermostat57 and Monte Carlo barostat,58 respectively. 

The electrostatics was treated by PME with a real-space cutoff of 7.0 Å. The van der Waals 

(vdW) was truncated at 12.0 Å. Tinker-OpenMM program59 was used for the simulations. 

Proteins and nucleic acids were modeled by the original amoebabio18 parameter and refined 

parameters as detailed below. Water and ions were modeled by the default parameters as 

described by Ren et al.60 and Wang.61

2.2 Quantum mechanical calculations

Quantum mechanical (QM) calculations were used to generate reference data to refine the 

non-bonded interaction parameters for RNA and torsion parameters for protein. The choice 

of QM methods for force field parametrization significantly affects the performance of 

the resulting force field. Usually more accurate QM methods lead to better force fields 

(e.g. the DESRES RNA force field27), although due to error cancelation, lower-level QM 

methods could be better choices in some cases (e.g. AMBER RNA force fields parmbsc0,22 

OL3,62 OL1521). Since AMOEBA incorporated more physical terms including polarization 

and atomic multipoles, it is less prone to error cancelation than non-polarizable force 

fields, and the parameterization of AMOEBA has relied on high-level QM methods such 

as MP2 with relatively large basis sets. MP2 with cc-pVTZ or aug-cc-pVTZ was used 

in the parameterization of the AMOEBA RNA force field. However, recent benchmark 

studies have found that MP2 suffers from large errors for dispersion interactions,63, 64 

which are prominent in base-base stacking. Various MP2-based method and DFT methods 

have been developed to address this issue. Based on results from previous work,63, 65 

DSD-BLYP-D3BJ, a double-hybrid DFT method with empirical dispersion correction, was 

chosen for QM calculations due to its excellent accuracy and computational efficiency.

2.3 Optimization of vdW parameters

Nucleobase vdW parameters—Model compounds based on ideal geometries were 

generated for fitting nucleobase vdW parameters, and models based on PDB geometries 

were used for testing. The workflow is demonstrated in Scheme 1. The model compounds 
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include model compounds including methylated nucleobases (A, T, U, G and C), N-

methyl amide (NMA), ethanol (EtOH), acetate, methylammonium (MeNH3), imidazole and 

benzene. All interaction energies were calculated at the DSD-BLYP-D3BJ/def2-QZVP level 

of theory. The ideal geometries include canonical and noncanonical base pairing, base-base 

stacking and base-water dimers. The starting structures were taken from our previous work50 

with the addition of A-G cis-Watson-Crick/sugar-edge pair66 from the JSCH benchmark 

database for non-covalent interactions (designated as “G…A 4”).67 The geometries were re-

optimized by using TPSS-D3BJ/def2-TZVP. For each ideal geometry, additional structures 

were generated by translation or rotation, as shown in Figure 1. The x-axis was defined by 

the closest atom pair; the y-axis represents the principal axis of the interface, which was 

chosen manually for base pairing and defined by three atoms in each monomer that are 

closest to the interface; the z-axis is orthogonal to the xy-plane.

The PDB geometries include base-base and base-amino acid interactions. The procedure 

for selecting representative structures is shown in Scheme 1. A hierarchical clustering 

algorithm with average link and a RMSD cutoff distance of 2.5 Å was used in the clustering. 

Spurious bond lengths, as defined by AMOEBA bond energy greater than 10 kcal/mol, 

were relaxed by optimization using AMOEBA with position restraint. Short intermolecular 

distances (< 1.8 Å) were relaxed by rigid-body distance scan with TPSS-D3BJ/def2-TZVP/

PCM. Hydrogen positions were optimized by TPSS-D3BJ/def2-TZVP/PCM or PM6/PCM. 

Starting from 5334 PDB structures of protein-NA complexes, 657 structures for 45 types of 

dimers were generated.

The interaction energies based on the ideal geometries were used to refine the nucleobase 

vdW parameters, while the PDB geometries were used for validation. The data points were 

assigned Boltzmann weights at 1000 K relative to the corresponding lowest energy points. 

The Trust Region Reflective algorithm in SciPy with bounds and quadratic restraint was 

used for the parameter fitting. The bounds were ±5% for vdW diameter and i) ±20% for 

well depth within the initial parameters. The restraint was chosen based on 5-fold cross 

validation. Two sets of optimized vdW parameters were obtained: param1, in which the 

atom types are the same as in amoebabio18, and param2, in which Guanine does not share 

parameters with other nucleobases. The RMSEs of these parameters as well as the original 

amoebabio18 are summarized in Table 1. A breakdown of the mean error and root mean 

squared error (RMSE) to different types of base pairs is shown in Figure 2 and Figure 3. 

For both base-pairing and base-stacking interactions, amoebabio18 has generally positive 

errors. This is in part due to the deficiency of the MP2 method which was used in the 

parameterization of amoebabio18. The mean errors are significantly reduced in the param1 

and param2 results. The improvement in RMSEs can be found in most types of base pairing 

and only a few types of base stacking (namely CU and GG), since the RMSEs of base 

stacking energy were relatively small. For param1, base pairs involving guanine have more 

positive errors than other base pairs, which was a motivation for the additional atom types 

for guanine in param2. Indeed, param2 has overall better accuracy than param1 for the 

training set (Table 1).

The two sets of parameters were evaluated on the interaction energy from the PDB 

geometries (Table 1), which was not used in the parameter fitting. The accuracy for base-
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base interactions were significantly improved in both sets of parameters. The accuracy 

for base-amino acid interactions were also improved, although the training set contains 

no amino acids. Contrary to the performance for the training set, param2 has slightly 

larger errors than param1 for the test set, despite having more adjustable parameters. The 

combination of small training error and large test error is characteristic of overfitting. 

Therefore, param1 was chosen for simulations.

The optimized vdW parameters are listed in Table 2. The changes in parameters are less 

than 5% from amoebabio18. The vdW radii are smaller in all optimized parameters than 

in amoebabio18, since the base-pair interactions in amoebio18 are too weak. In param2, 

the vdW radii of guanine are also smaller than those of the corresponding atoms in other 

nucleobases.

Nucleobase-protein vdW parameters—The hydrogen bonds between Asp/Glu side 

chains and nucleobases are a common motif in protein-nucleic acid interfaces. It was 

found that even with the optimized nucleobase vdW parameters, some of these hydrogen 

bond interactions still have relatively large errors. This may be attributed to the partial 

covalent bonding nature of these interactions. As in our previous work on phosphate-binding 

proteins,68 pairwise vdW parameters between carboxylate O and NH were included to 

improve the accuracy for these interactions. The training set structures were obtained 

by geometry optimization (TPSS-D3BJ/def2-TZVP) of model compounds from the PDB 

geometries (Scheme 1). For each optimized structure, two additional structures were 

generated by rigid-body translation, resulting in intermolecular distances of 0.9 and 1.1 

times the equilibration distance. The performance for the training set and the test set are 

shown in Figure 4.

2.4 Optimization of Asn torsion parameters

During initial MD simulations of the U1A protein-RNA interface using amoebabio18, 

it was found that the rotamer conformation of some Asn residues in the interface was 

different from those in the crystal structures, which disrupted the hydrogen-bond network. 

Therefore, the torsion parameters of Asn were revisited. Conformations were generated 

by (1) one-dimensional torsion scan of Asn χ1 and χ2 torsions at 30 deg interval, with 

backbone torsion fixed at either alpha-helix or beta-sheet conformation, which leads to 48 

conformations in total, and (2) 3-by-3 two-dimensional scan of χ1 and χ2 torsions at −30, 

0 and 30 deg based on each of the 11 rotamers from the backbone dependent rotamer 

library,69 for a total of 99 conformations. All the conformations were optimized at the 

ωB97Xd/6–311++g(2d,2p) level of theory with backbone and side chain torsions frozen, 

and the energies were calculated by DSD-BLYP-D3BJ/def2-QZVP. The Trust Region 

Reflective algorithm was used in the least-square fitting. The RMSE was reduced from 

2.06 kcal/mol for amoebabio18 to 1.60 kcal/mol for the optimized parameters (param1). 

The improvement is more noticeable when tested on the conformations sampled from the 

initial MD simulations of U1A. As shown in Figure 5, amoebabio18 has large errors in 

the relative energies of these conformations; specifically, it predicted similar energies for 

the low-energy and high-energy conformers, while the two conformers differ by about 

4 kcal/mol according to QM (DSD-B3LYP-D3BJ/def2-QZVP). The optimized parameters 
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could correctly rank the low-energy and high-energy conformers. The side chain torsion 

parameters of the original AMOEBA protein force field were fitted to MP2/CBS energy of 

one-dimensional torsion, with backbone fixed at alpha-helix and beta-sheet conformations.70 

Both MP2 and DSD-B3LYP-D3BJ are very accurate for conformation energies.63, 65 The 

main difference between this work and the original parameterization is in the conformers. 

The training set structures were generated by using a general procedure rather than tailored 

to the issue of U1A simulations, so the optimized parameters are expected to be a general 

improvement over the original parameters.

3. Results and Discussions

3.1 U1A simulations

The U1A protein-RNA complex has been well studied by experiments and MD 

simulations.53, 71–73 Its interface consists of two parts, one between the stem region of 

the RNA hairpin (including U7, U8, G9 and G16) and two loops of the protein, and the 

other between the loop region of the RNA (including C10, A11 and C12) and a loop of 

the protein. The stability of the protein-RNA interface during the simulations is measured 

through the distances between several hydrogen-bond donor and acceptors (Figure 7), and 

the hydrogen bond is considered to be maintained if the distance is below 4 Å. During 

the simulations using the amoebabio18 parameters, the hydrogen bond between U8(N3) 

and Asn16(OD1) was quickly lost within 20 ns in four out of five simulations. This is 

accompanied by the rotation of the Asn16 χ1 torsion and the loss of the hydrogen bond 

between U8(O4) and Lys80. This can be clearly seen in Figure 7 where the average distance 

for the two hydrogen bonds in the last 20 ns of 60 ns simulations are around 6 Å. The 

two hydrogen bonds with U8 could reform briefly and then break multiple times during 

extended 100-ns simulations (Figure 8), which indicates that there is only a small free 

energy difference between the native structure and the disrupted structures. Among the 

conformations with disrupted hydrogen bond between U8(O4) and Lys80(NZ), there are 

water-mediated interactions when the distance is between 4 and 5 Å. The other part of the 

protein-RNA interface represented by the hydrogen bond between A11(N1) and Ser91(OG) 

remained relatively stable in the simulations. Preliminary simulations using the optimized 

vdW parameters suffered from similar issues for the hydrogen bonds around Asn16 (see 

Supporting Information). The stability of the interface was significantly improved after 

the introduction of the optimized Asn torsion parameters. The two hydrogen bonds with 

U8 were well maintained in all five simulations (Figure 7). The hydrogen bond between 

A11(N1) and Ser91(OG) was also stable in the majority of simulations, although there was 

a larger variation between simulations compared to the simulations with amoebabio18. The 

variations in the hydrogen bonds with A11 was largely due to the conformations of the 

C-terminal residues. The C-terminal of the U1A protein consists of a short five-residue 

alpha-helix, followed by unstructured residues Met97 and Lys98. Short alpha-helices are 

generally not very stable in aqueous solution. In addition, the last residue Lys98 is missing 

in the crystal structure, and is not included in this work and previous work.74 The C-cap 

residue could affect the electrostatic interactions with RNA.
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Previous simulations had difficulty in keeping all the native hydrogen bonds in the U1A 

interface. Simulations with AMBER ff99bsc0χOL3 for RNA and ff99SB or ff12SB for 

protein led to an altered hydrogen-bond network.5 Simulations with ff99SB did not maintain 

several hydrogen bonds with U7, U8, G9 and G16. Simulations with ff12SB which includes 

a reparameterization of side-chain torsion parameters did not bring significant differences in 

the simulations. It is worth noting that four simulations with ff12SB behaved similarly as 

those with ff99SB; in two other simulations, the disruption of hydrogen bonds with U8, G9 

and G16 were reversible and the A11(N1)-Ser91(OG) bond was disrupted.5 Coincidently, 

the two ff12SB simulations were similar to the AMOEBA param1 simulations (Figure 7), 

except that U7(N3)-Glu19(OE) bond was very stable in AMOEBA simulations. Šponer 

and coworkers identified some deficiencies of the AMBER force fields through QM/MM 

calculations, especially for the solvent-exposed hydrogen bonds G9(N7)-Asn15(ND) and 

U8(O4)-Lys80(NZ).74 A structure-specific force field term for the hydrogen bonds (HBfix) 

could help stabilize the interface.24 This idea was further explored for simulations of 

other RNA systems.23, 25 In the simulations using AMBER ff12SB χOL3 with HBfix, 

the overall interface remained stable during 1000-ns simulations, and there were reversible 

breaking of G9(N7)-Asn15(ND), U7(N3)-Glu19(OE) and U8(O4)-Lys80(NZ), which were 

also observed in some of the AMOEBA simulations.

Tucker et al. reported 50-microsecond simulations of several protein-nucleic acid complexes 

including U1A and FBF, using modified versions of AMBER force field.36 It was found 

that a reparameterization of nonbonded parameters for the nucleic acid backbone (mainly 

2’-hydroxyl and phosphate oxygen) based on experimental data substantially improved the 

simulations of some protein-nucleic acid complexes. However, the re-parameterized force 

field (DES-Amber 3.20) and their previous force field (DES-Amber) have similar results for 

U1A. The overall RMSD went up to 4–5 Å after a few microseconds, indicating that some 

hydrogen bonds were possibly disrupted at a very long timescale.

Electrostatic interactions also play roles in the association and stability of the U1A complex. 

It was shown by mutagenesis experiments that while Lys20, Lys22 and Lys23 all affect the 

association rate, Lys20 has minimal effect on the complex stability.73 In the crystal structure, 

Lys22 has a salt bridge with the backbone phosphate group, and Lys20 and Lys23 have no 

direct contact with the RNA. The interactions of these Lys residues during the AMOEBA 

simulations are generally consistent with the crystal structure: Lys20 had transient salt 

bridges with the phosphate group of U3 or G4, and Lys23 remained away from the RNA. 

In a previous simulation with AMBER ff99 force field, Lys20 and Lys23 formed stable salt 

bridges with phosphate groups.75 So the fixed-charge force field seems to overestimate the 

electrostatic interactions between Lys and phosphate, while AMOEBA has more balanced 

electrostatic interactions.

3.2 FBF simulations

The FBF protein-RNA complex has an elongated interface composed of interactions 

between nucleobases and protein, while the RNA backbone is exposed to the solvent 

(Figure 6). The distances between hydrogen bond donors and acceptors at the two 

ends (U1, G2 and A9) during the simulations are shown in Figure 9. The optimized 
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AMOEBA parameter has a significant improvement over amoebabio18 for the hydrogen 

bonds at the 5’-terminal of the RNA strand, including U1(N3)-Asn500(OD1), U1(O2)-

Asn500(ND2), U1(O4)-Gln504(NE2), U1(O4)-Lys557(NZ) and G2(N2)-Ser453(OG). Even 

with the optimized parameters, there were rapid reversible breaking of the terminal 

hydrogen bonds, particularly U1(O4)-Lys557(NZ) and A9(O2’)-Lys201(NZ) (Figure 10). 

Both hydrogen bonds are solvent-exposed and associated with flexible Lys side-chains, so 

their existence in the crystal structure might be due to the crystal packing effect. Apart 

from the two hydrogen bonds with Lys, other hydrogen bonds were fairly stable during 

simulations with the optimized parameters. For both the original and optimized parameters, 

the 5’-terminal (U1) interface is less stable than the 3’-terminal (A9) interface. An 

explanation is that the A9(O2’)-Lys201(NZ) bond is stronger than the U1(O4)-Lys557(NZ) 

bond due to the electrostatic interaction between Lys201 and the RNA backbone, and the 

stacking between A9 and Tyr245 is also stronger than the stacking between U1 and Tyr501.

Previous simulations with AMBER ff99bsc0χOL3 for RNA and ff99SB or ff12SB for 

protein could not stabilize the interface.5 The terminal hydrogen bonds with U1 and A9 were 

lost within 50 ns, followed by the loss of hydrogen bonds with G2 and U8 after 300 ns. The 

interruption of the interface was mainly caused by the conformational changes of the RNA.5 

Furthermore, the interface could not be stabilized by simulations with distance restraints 

on hydrogen bonds with U1 and U8. Based on these results, Krepl et al.5 concluded that 

crystal packing might play a role in the stabilization of the structure. In the simulations 

with DES-Amber and DES-Amber 3.20 force fields, the FBF complex was stable throughout 

50-microsecond simulations. The backbone RMSDs were between 2–3 Å and there was 

no sign of dissociation. Since the optimized AMOEBA parameters and DES-Amber 3.20 

achieved higher stability of the protein-RNA interface compared to previous versions of 

force fields, the crystal structure of the FBF complex could be either stable or metastable in 

solution.

4. Conclusions

The AMOEBA RNA force field was refined to improve the accuracy for modeling protein-

RNA interfaces. Accurate DFT methods were chosen as a reference for the intermolecular 

interactions between nucleobases, water and small organic molecules. The nucleobase 

parameters were optimized by fitting to a large QM dataset including both optimized 

and non-ideal geometries and validated by cross-validation and separate test sets. Special 

vdW pair parameters were included to better represent hydrogen-bond interactions between 

nucleobases and carboxylate groups. The Asn torsion parameters were optimized based on 

conformations from torsional scan and rotamer library. The optimized AMOEBA parameters 

achieved better accuracy for the problematic protein-RNA interfaces identified in previous 

work. Since the reparameterization was based on a large QM dataset, the optimized 

parameters should represent a general improvement in describing protein-RNA interactions. 

Nevertheless, further tests on more systems are needed. Adjustment in torsion parameters 

might also be necessary to be compatible with the new vdW parameters.

Simulations with the optimized parameters correctly reproduced the important hydrogen 

bonds in the U1A protein-RNA interface, which was recently achieved by using AMBER 
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force field with a structure-specific force field term. The AMOEBA simulations are also 

more realistic for the interactions between Lys side-chains and backbone phosphate groups. 

For the FBF protein-RNA complex, the AMOEBA simulations produced a stable binding 

interface except for reversible disruptions of some solvent-exposed hydrogen bonds between 

terminal nucleotides and Lys side-chains. Overall, the AMOEBA force field is promising for 

modeling the complex hydrogen-bond network and electrostatic interactions in protein-RNA 

interfaces.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Illustration of additional structures for model compounds based on ideal geometry. (a) for 

base pairing, Δx = ±0.20, ±0.10, ±0.05 r0, Δy = ±0.4 Å, and Δθy = ±20°, where r0 is the 

equilibrium distance; (b) for base stacking, Δx = ±0.20, ±0.10 r0, Δy = Δz = ±0.6, ±0.3 Å; 

(c) for base water dimer, Δx = ±0.20, ±0.10, ±0.05 r0, Δy = Δz = ±0.6, ±0.3 Å.
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Figure 2. 
Distribution of errors of AMOEBA force fields for base stacking interaction in each type of 

base-stacking pairs.
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Figure 3. 
Distribution of errors of AMOEBA force fields for base pairing interaction in each type of 

base pairs.
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Figure 4. 
Correlation between QM and MM interaction energies for nucleobase-carboxylate 

interactions.
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Figure 5. 
Correlation between QM and MM relative energies for the Asn conformers sampled from 

MD simulations of U1A.
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Figure 6. 
Crystal structure of the U1A (PDB code: 1urn) and FBF (PDB code: 3k5y) protein-RNA 

complexes.
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Figure 7. 
Average distances between selected hydrogen-bonds donors and acceptors in the U1A 

complex during MD simulations. The average is calculated over the last 20 ns of each 

of the five 60-ns simulations.
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Figure 8. 
Evolution of selected hydrogen-bond distances in two extended simulations of U1A with the 

original AMOEBA parameters.
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Figure 9. 
Average distances between selected hydrogen-bonds donors and acceptors in the protein-

RNA interface during MD simulations of FBF. The average is calculated over the last 40 ns 

of each of the four 120-ns simulations.
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Figure 10. 
Evolution of selected hydrogen-bond distances in two representative simulations of FBF 

with the optimized parameters.
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Scheme 1. 
Workflow for the refinement of nucleobase and nucleobase-carboxylate vdW parameters.
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Table 1:

Weighted RMSE of AMOEBA parameters on base-base and base-amino acids interactions (kcal/mol).

Model Training set Test set

Base stacking Base pairing Base Base-Amino Acid

Amoebabio18 1.466 3.775 1.895 1.309

Param1 0.860 1.317 0.829 1.193

Param2 0.887 1.033 0.856 1.194
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Table 2:

Nucleobase vdW sigma (Å) and epsilon (kcal/mol) in amoebabio18 and optimized parameters.

Vdw type Atom amoebabio18 Param1 Param2

54 (154) U/T N3, C N1 G N1 3.700 0.127 3.600 0.124 3.700 0.127
3.560 0.127

50 (150) A N3/N1, C N3 G N3 3.640 0.127 3.530 0.124 3.560 0.120
3.500 0.125

49 (149) A N7 G N7 3.640 0.127 3.530 0.124 3.560 0.120
3.500 0.125

58 (158) C O2, U/T O2/O4 G O6, 3.350 0.129 3.250 0.124 3.250 0.124
3.200 0.120

53 (153) A H6, C H4 G H2 2.650 0.020 2.620 0.018 2.650 0.020
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