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Abstract

Lung cancer is by far the leading cause of cancer death in the US. Recent studies have 

demonstrated the effectiveness of screening using low dose CT (LDCT) in reducing lung cancer 

related mortality. While lung nodules are detected with a high rate of sensitivity, this exam has 

a low specificity rate and it is still difficult to separate benign and malignant lesions. The ISBI 

2018 Lung Nodule Malignancy Prediction Challenge, developed by a team from the Quantitative 

Imaging Network of the National Cancer Institute, was focused on the prediction of lung 

nodule malignancy from two sequential LDCT screening exams using automated (non-manual) 

algorithms. We curated a cohort of 100 subjects who participated in the National Lung Screening 

Trial and had established pathological diagnoses. Data from 30 subjects were randomly selected 

for training and the remaining was used for testing. Participants were evaluated based on the 

area under the receiver operating characteristic curve (AUC) of nodule-wise malignancy scores 

generated by their algorithms on the test set. The challenge had 17 participants, with 11 teams 

submitting reports with method description, mandated by the challenge rules. Participants used 

quantitative methods, resulting in a reporting test AUC ranging from 0.698 to 0.913. The top 

five contestants used deep learning approaches, reporting an AUC between 0.87 - 0.91. The 

team’s predictor did not achieve significant differences from each other nor from a volume change 

estimate (p=.05 with Bonferroni-Holm’s correction).
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I. INTRODUCTION

Lung cancer is the leading cause of cancer related deaths in the US [1]. Despite the 

advancements in lung cancer treatment strategies, including the use of targeted therapies 

coupled with improved treatment regimens, the disease shows poor prognosis [2, 3]. Recent 

studies [4–6] demonstrated that screening high risk subjects with low dose computed 

tomography (LDCT) results in a reduction in lung cancer specific mortality. Specifically, the 

National Lung Screening Trial (NLST) reported a higher cancer detection rate for the LDCT 

arm of the trial (24.2%) compared to the conventional chest X-ray arm (6.9%). Recently, the 

United States Preventive Task Force (USPSTF) recommended use of LDCT for screening 

high risk individuals between 55 to 80 years with a smoking history of at least 30 pack years 
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[7]. While lung nodules are detected with a high rate of sensitivity, lung cancer screening 

with CT has a low specificity rate and it is still difficult to separate benign lesions from 

malignant ones. False positive screening rates in a recent study were reported to be high in 

both LDCT and chest X-ray(96.4% and 94.5% respectively) [8]. Radiological determination 

of malignant nodules is challenging due to a wide variety of appearances coupled with 

varied solidity of these nodules. Nodule size metrics have been the only clinically-accepted 

metric to quantify and characterize abnormalities in lung cancer screening [9–11]. Even so, 

there has been well-documented literature outlining the limitations in the use of size based 

dimensions [12, 13]. A significant effort has been made to study the usefulness of nodule 

characteristics, including the relationship of volume/doubling time and life style/tobacco 

use to identification of a malignant nodule [14–19]. A number of methods have been 

proposed in the literature to relate malignancy status to nodule size measurements [20, 21], 

radiological or physiological aspects [19, 22, 23], quantitative characteristics (radiomics) 

[24–29] including deeper sub-voxel level nodules characterization (deep learning) [30–33], 

all with a goal to find surrogate digital markers to identify malignancy. The promise 

of longitudinal nodule assessment established in these multi-institutional studies, paired 

with the uncertainty around the reproducibility of nodule segmentations, motivated the 

creation of a common data set with an open international challenge that fosters novel 

imaging biomarker development. A few previous community efforts attempted to create 

consensus-based community data sets. Most notably, these include the Lung Image Database 

Consortium (LIDC) study, single time point, with radiologists opinions as truth; the LUNGx, 

single time point diagnostic scans (diagnostic CT), with pathological assessment; and the 

Data Science Bowl (DSB 2017), single time point with pathological assessment [34–36] 

challenges. A few other community challenges that have been focused on lung physiology 

(like nodules location, attachment status) with implication to the disease progression, such 

as nodule detection, vessel segmentation and vessel tree extraction [37–39]. This challenge, 

however, goes beyond size-based metrics and is the first challenge to provide two time 

points matched patient scans with nodule segmentations that are pathologically verified 

to the competition participants with a goal to assess nodule malignancy using both time 

point scans. This moves the field beyond segmentation related constraints and with a 

desire to redirects the focus towards finding clinically actionable decisions. This challenge 

explicitly encouraged the use of two sequential time point scans. This challenge was 

organized by members of the National Cancer Institute’s Quantitative Imaging Network 

(QIN) (co-authors: YB, AB, SN, MMG, LH, DG, JKC, KF and support from PP) through 

the 2018 Institute of Electrical and Electronics Engineers’ (IEEE) multi-society (EMBS and 

SPS) organized medical imaging conference, the International Symposium on Biomedical 

Imaging (ISBI), April 4-8, 2018 in Washington, DC, USA, and was conducted with no 

restriction on the participant’s affiliation or group size. The final team ranking and top 

winners were announced at the society’s annual conference, which had wide national and 

international participation. The teams could use any available datasets for training but 

were required to fully disclose the data sources with detailed description of the methods 

used in a report submitted to complete their participation. In this summary report, we 

present the design, implementation, and results of the challenge, and discuss commonalities 

between different participant methods, strength of ranking, methodological preferences 
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in the community, and lessons learned in organizing this challenge, including problem 

mitigation.

II. MATERIALS AND METHODS

Dataset:

We curated data from 100 NLST subjects with an equal number of malignant and benign 

cases. Each subject had two LDCT scans, a baseline (T0) scan and a follow-up (T1) scan 

taken within a year. Nodule of interest (one per case) was located by a radiologist based 

on NLST’s clinical information. Table 1 shows the patient demographics and nodule size 

distribution for the study cohort used in this challenge. For each case, the organizers released 

image data in DICOM (Digital Imaging and Communications in Medicine) format, as well 

as the three-dimensional nodule segmentations in DICOM-RT (radiation therapy) and NIfTI 

(neuroimaging informatics technology initiative) formats. A nodule location file was also 

provided by the organizing team that showed a screen capture of the nodule for a selected 

slice with the slice number at sequential scan intervals. Teams could use the scans in any 

fashion (whole or partial) and with or without anatomical structures, but in a quantitative, 

non-manual methods needed to build their models. Due to the limited public access to 

NLST data, the organizers removed the identifying DICOM tag information, which was 

embedded in the DICOM images, that carried reference to the original NLST distribution. 

The image data was released to the participants through the challenge web portal maintained 

specifically for the challenge (http://isbichallenges.cloudapp.net/competitions/15). The data 

was open to the challenge participants for a period of ten weeks, eight of which were 

allocated for algorithms training and two of which were intended for algorithm evaluation. 

The NLST DTA agreement restricted open access to data beyond the challenge period. Fig. 

1 shows a sample subject chest LDCT scan (2D slice) with a lung nodule across two time 

points.

We randomly selected 30 cases with sequential time point scans, with an equal number 

of malignant and benign nodules that were released as a training (or calibration) dataset. 

Pathological diagnosis for the training dataset was provided to the competition participants. 

The participants were encouraged to calibrate their algorithms with the training cases. The 

test dataset contained the remaining 70 subjects with blinded clinical outcome, upon which 

competition participants were evaluated. Teams could use any external datasets to train their 

methods, but participants were asked to disclose the methods with details of such datasets 

in their summary report. The ‘Participant Methods’ section summarizes the methods used by 

the participants and additional detail is presented in the supplemental section.

The patient’s cancer status along with nodule pathology results were obtained from the 

NLST’s clinical diagnosis tables. The locations for malignant nodules were obtained 

from the NLST’s radiology report and verified in the sequential CT scans by a resident 

radiologist. The locations for benign nodules were selected based on a radiological 

consensus read using subject sequential LDCT scans, as patients were classified as non-

cancerous by the NLST. Detail on nodule identification is described in prior publications 

[23, 40].
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A. Evaluation Criteria—The challenge organizers used subjects’ nodule malignancy 

information along with investigated nodule location, obtained from the NLST abstracted 

clinical tables [4, 41] (as described earlier), that was used as ground truth. The organizing 

team used area under the receiver operating characteristic curve (AUC) [42, 43] based 

on participants’ submitted nodule malignancy scores to assess participant predictor 

performance. Participants were asked to submit an estimated malignancy score (ranging 

from [0,1]) for each case, one nodule per case). There was no limitation placed on 

participating teams’ methodology or algorithms, except that the proposed methods be non-

manual (ideally, fully automated). Some extent of manual intervention, or correction was 

allowed, such as re-segmenting with additional (manual) seed points or altering the regions 

of interest. We placed no restriction on the teams during the training phase; they could 

adjust any functional (kernel) parameters or re-configure their networks. Participants were 

ranked based on their best AUC evaluated from the three allowed test phase submissions 

(during the initial days of the challenge the system allowed six entries, which was rectified 

to the stated limit). Full consideration upon challenge completion was limited to those teams 

that submitted their malignancy scores for each case in the test set, a mandatory abstract 

describing their proposed methodologies at the end of the eight-week training phase, and a 

final report describing details of their method with best performing model setting, by the end 

of the testing phase.

B. Challenge Execution—The Lung Nodule Malignancy Prediction challenge was 

implemented on a customized version of the CodaLab open source platform [44]. The 

challenge platform allowed prospective participants to register for the challenge and learn 

about the goals and the rules of the challenge. Once registered, participants had to download 

the training set (30 subjects) which had CT scans from two consecutive visits as well as 

diagnosis data. At the testing phase, participants could download a 70-case test set, which 

had CT scans from two consecutive visits without any diagnostic data. Using their respective 

trained models, participants submitted estimated malignancy scores (ranging between [0,1]) 

for the test cases. There were instances of participants creating duplicate user accounts 

and initiating additional submissions over the maximum allowed number of entries. The 

challenge organizers took additional effort to manually authenticate the users and compiled 

their submissions. This process resulted in removing or consolidating some of the user 

accounts. Teams without final report submissions were not considered for final validated 

teams results.

The competition participants were requested to submit their results via the challenge’s 

web-portal. Teams could submit their model predictions as many times as necessary during 

the training phase and a leader board displayed evaluation metrics for all team submissions. 

The teams were required to disclose the specific methodology behind their best performing 

submission in the final report. Individual submissions were manually verified and linked to 

the teams and the final leaderboard was updated accordingly. Top-performing teams were 

initially invited to present their findings, but the invitation was later extended to all willing 

participants to present their methods in a special challenge session convened during the 2018 
ISBI Conference.
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C. Nodule Segmentation and Prior Volume Estimate—It is widely believed that 

the lack of growth or slow growth over time is indicative of benign nodules. There have been 

a number of studies that showed that the nodule growth rate pattern had the ability to predict 

malignancy [21, 45, 46]. Lack of consensus in nodule segmentations as well as discrepancies 

in nodule size measurement practices (3D) are possible reasons that have impeded the use of 

these metrics in regular clinical practice. The effect of different segmentations on radiomic 

features derived using different software packages was studied and it was found that 68% of 

the 830 computed features showed a Concordance correlation coefficient (CCC) above 0.75 

across different segmentations on the same set of nodules [47].

In a recent effort, several institutions from the National Cancer Institute (NCI) funded 

Quantitative Imaging Network (QIN) evaluated the variability of pulmonary nodule volume 

change estimated in a sequential scan using semi-automated methods. The study assessed 

each participating institutions’ volume change estimates for their ability to predict individual 

nodule malignancy and reported an AUC range of 0.65 to 0.89 [48] (see Suppl. S.F. 1). 

Notably, methods for calculating volume change between institutions had a range of CCC 

of [0.56 to 0.95], indicating that nodule segmentations and volumes varied considerably 

between participating institutions’ segmentation methods. This result bolstered findings that 

the group had previously found in a study to evaluate the differences in single time-point 

semi-automatic segmentation methods across institutions on a diverse set of lung lesions 

(including phantoms). They reported significant differences (p<0.05) in spatial overlap of 

segmented regions between different institutions, and even within the same institution but 

across different initializations within a given software package [20].

D. Volume Change as Baseline Predictor—We developed a predictive model using 

change in lesion volume to serve as a baseline comparator. We obtained volume estimates 

based on organizers delineation masks provided for the challenge. The nodules were semi-

automatically delineated using a segmentation region growing method and the resulting 

boundary overread, corrected by a trained radiologist (Moffitt Team), reported in earlier 

work [48]. In the post challenge analysis, we compared the performance of nodule volume 

estimated by the participating teams to the organizer’s measurement (see Suppl. Table ST1, 

Suppl. Fig. SF2 & Table ST2). It is to be noted that participating teams were free to alter the 

segmentation boundaries as appropriate for their planned methods. Additionally, the volume 

estimate was used to predict the nodules malignancy status and form a baseline predictor.

E. Participant Methods—In this section, we summarize approaches used by 

participating teams of the ISBI 2018 Lung Nodule Malignancy Prediction challenge. There 

was no restriction on the participant team size, participant place of origin, or institutional 

affiliation. This section contains a summary of the methods used by the 11 participating 

teams that provided a complete description of their approaches; a supplemental document 

contains methodological details, model description, figures and supporting tables. Four other 

participating teams (T4, T7, T11, T15) had an incomplete method description and did not 

respond to our request for details. In addition, two teams (T13 and T17) decided to withdraw 

post-challenge. Following the challenge rules, abstracts for participants with missing reports 

have not been included.
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Team 1:  The team used a deep learning network architecture that consisted of a nodule 

detector trained on the LIDC-IDRI dataset followed by a cancer predictor trained on the 

DSB 2017 dataset [34], totaling about 1593 LDCTs. The final evaluation was conducted 

on the ISBI 2018 Lung Nodule Malignancy Prediction test set. The team trained a 

multi-path network of five paths combined in a fully convolutional layer (each with 3D 

CNN architecture). After initial network training using DSB 2017, challenge data sets 

with segmentation were used to fine tune the network. To obtain change information, a 

subtraction was done between the nodules across the sequential scans. A linear combination 

of the probabilities of these network values provided the final malignancy score. A more 

detailed description is provided in the Suppl. Sub.T1.

Team 2:  This team used an ensemble of deep and machine learning methods and trained 

their system using two public external datasets LIDC-IDIR and DSB 2017 [34, 36], 

reporting to have used a total of 2481 patients with over 5149 nodules. The proposed method 

is composed of two deep convolutional neural networks, inspired by the VGG [36] and 

RESNET [49] architectures. The first network was trained to predict nodule characteristics 

including subtlety, internal structure, sphericity, calcification, lobulation, spiculation, texture, 

and malignancy likelihood based on radiologists’ annotations of the LIDC-IDRI cohort. 

The second network was trained on the DSB 2017 dataset to predict the patient cancer 

probability using the risk dominant nodule in a single scan. The features from the first 

system with addition of diameter and location of nodule were combined with the image 

representations of the nodule to predict the cancer likelihood in the second system. Finally, a 

logistic regression model was trained on the ISBI challenge dataset that included the growth 

of nodules in the provided time points. In the three submissions, the Ensemble method that 

used a geometric mean of deep network and growth model achieved the highest AUC on the 

test set. Further details are provided in the suppl. Sub.T2.

Team 3:  This team used a 3D convolutional neural network (CNN) model along with 

volume change information to estimate the malignancy scores (pseudo probability) of lung 

nodules. This team’s 3D CNN model consists of two networks, the feature extraction 

network and the malignancy prediction network. The first network is designed to extract 

image features from a nodule in an image. The malignancy prediction network is designed to 

reduce the number of the concatenated image features. The team used tumor doubling time 

(DT) and percentage volume change (PVC) to incorporate volume change information. An 

additional 40 patient image scans with two time points (80 LDCTs) obtained independently 

by the team from the NLST were used for training. Further details are provided in 

supplemental section Sub.T3.

Team 5:  This team used deep learning (DL) with clinically relevant hand-crafted features 

to assess the malignancy status of the nodule. The approach used by the team was designed 

to fuse global patient information with spatiotemporal evolution of the main nodule like 

changes in shape, position. They used two additional datasets, namely the Lung Nodule 

Analysis 2016 (LUNA16) [50] and DSW2017 [34], with a total of 3499 LDCTs. The 

radiomic features were extracted from nodule regions and combined with the normalized 

axial position that was fed into a deep network (ResNet) to obtain a malignancy score. 
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The temporal information was encoded in this model through a linear combination of the 

malignancy scores of each CT scan. Further details are provided in Supplemental section 

Sub.T5.

Team 6:  This team’s method combines three independent methodologies to predict the 

degree of lung nodule malignancy that uses information from two sequential CT scans. Each 

model individually predicts the malignancy using the information provided in a single scan 

or from two sequential scans. The Borda Count algorithm [51] fuses the predictions obtained 

by each model and provides the final malignancy score from the three independent methods. 

The team used a mixed source of external data (Lung Nodule Analysis 2016 or LUNA16, 

Lung Image Database Consortium or LIDC and local), with about 1260 CT’s used for model 

training. The algorithm and modeling approaches are described in more details in Suppl. 

Sub.T6.

Team 8:  This team combined the latent features extracted from a stacked auto-encoder 

with quantitative features including nodule size, shape, intensity, and a few others. These 

metrics came both from a single scan and the changes between the two sequential scans. 

These features were used to train a logistic regression model to obtain nodule malignancy 

prediction. The team reported to have used challenges data set for their training, Further 

details are provided in Suppl. Sub.T8.

Team 9:  This team presented a fusion system based on deep learning and radiomics to 

analyze longitudinal CT scans that used growth of lung nodules between the time points to 

assess the risk of malignancy. The deep learning system was used to transform 3D patches 

around the nodules into high-dimensional feature vectors. These high-dimensional features 

were then concatenated with radiomic features that were extracted in the vicinity of nodules. 

A 436-length feature vector was extracted for each patient scan and these metrics were used 

to train a logistic regression model to assess the pathological malignancy status. A 3-fold 

cross validation was used on the training set. They used a mixed source of external data set 

(DSB2017, LUNA16), totaling 2481 LDCT’s for their model training. Further details are 

provided in Suppl. Sub.T9.

Team 10:  This team’s method was based on combining visual and temporal features 

extracted from the pulmonary nodules of interest. The patient malignancy score (pseudo 

probability) was computed by a simple averaging of these scores. The visual features were 

extracted by a 3D CNN that was first pre-trained for a separate task and then fine-tuned 

for malignancy classification. In this approach, a combination of three datasets was used 

for training: LIDC, challenge’s training data, and team’s institutional data. The change 

in volume and longest diameter of each nodule across time points were determined for a 

nodule using the segmentation masks. The first set of visual features was extracted by a 

deep 3D neural network similar to the VGG-16 [52], but contained six convolutional layers 

with 3D filters. The initial model was created by pre-training on the LUNA16 challenge 

[50]. A simple fusion method was performed by averaging the two percent differences 

based on volume and diameter change along with the neural network confidence score. The 

combination of these features boosted the accuracy of the overall malignancy score. They 
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used data from LIDC and LUNA16 for model training, totaling to 1936 LDCTs. Further 

details are provided in suppl. Sub.T10.

Team 12:  This team used a feature-based approach, specifically focused on computed 3D-

Grey Level Co-Occurrence Matrix (GLCM) features on the nodules, independently across 

the time points. The final malignancy status was obtained by averaging the score obtained by 

linear discriminant functions at these two time points. The team used the LIDC16 data set 

(524 LDCTs) along with challenge’s training data to build the model. The data was divided 

into training and testing with k-fold cross validation and a linear discriminant classifier 

model. The best-trained model was applied on the test data provided in the test phase of the 

challenge. Further details are provided in Suppl. section Sub.T12.

Team 14:  The team followed a radiomics approach to extract features from the nodules 

of interest and proposed an ensemble learning model based on a selected subset of features 

to obtain a malignancy score. The team used the training/calibration data provided and 

extracted radiomic features using the pyra diomics package[53] applied to the segmentation 

masks. The team used an ensemble of two step algorithms to select features of interest. The 

first step involved a gradient tree boosting and XGBoost as a feature selection approach [54]. 

Based on this step ten features were automatically selected from the pool of 297 available 

features. The choice of keeping ten features was converged based on a cross-validation 

approach on the training set. The second step was to use classification on the selected 

features. This step involved an ensemble of a bagging classifier, XGBoost, random forest 

[4], and multi-layer perceptron. The final prediction was made using a soft majority voting 

of predictions from all the models. Further details are provided in Supplemental section 

Sub.T14.

Team 16:  The team used a deep learning model to predict the malignancy score of lung 

nodules in CT. The CT images were first interpolated to a common resolution (0.72x0.72x2 

mm) and used a network model motivated by a prior study [55]. They used external data sets 

from mixed sources (LIDC, DSB2017), totaling 1593 LDCT for their model training The 

team designed a model that combines ResNeXt [56] with the DenseNet [57] deep network 

architecture. The implemented architecture implemented consists of two identical parallel 

paths each with four general denseNext blocks (B) with five ResNext layers each, with a 

cardinality (K) of four and an increasing growth rate (G) within the blocks. The network 

model provided three probability maps (background, benign nodule, and malignant nodule) 

that were reported as nodules’ malignancy score. Further details are provided in Suppl. 

Sub.T13.

III. RESULTS

The challenge attracted wide international participation with over 120 registered 

participants, grouped into 17 teams that submitted the abstract, of those, 11 teams provided 

complete reports and were part of this challenge paper. Broadly the participant affiliation 

could be categorized into universities (6), clinical research laboratories (2), and industry (3). 

Authors were represented from four continents: Asia (2), Europe (1), North America (6) and 

South America (2). The participating teams reported the malignancy score for the annotated 
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nodules in patients with two sequential time scans, following the approaches stated in their 

individual reports. Several teams used external datasets for training their methods. Most 

common datasets the participants used were the LIDC database, LUNA16, and DSB 2017 

(see Table 2).

Participating teams’ predictive performance was measured by the AUC values. The 

Challenge participants with complete reports achieved AUCs ranging between 0.913 and 

0.698, with nine out of the eleven participating teams achieving AUCs above 0.8. These 

measures are broadly grouped into quartiles for comparison purposes. The top quartile was 

composed of three teams (T1, T2, T3), reporting an AUC of 0.913 to 0.879. The second 

quartile group comprised three teams (T5, T6, T8) that reported an AUC of 0.868 to 0.855. 

The third quartile group consisted of two teams (T9, T10) that reported an AUC of 0.854 to 

0.848. The last quartile group comprised three teams (T12, T14, T16) that reported an AUC 

of 0.809 to 0.698.

Notably, the difference in AUC was not statistically significant after multiple testing 

corrections (p≤0.05) between the first-ranked team and the last quartile group, which 

included teams greater than index-twelfth (T12, T14, T16). Furthermore, there was no 

statistical difference between the volume change for any other team. Based on the statistical 

difference based on their AUC comparisons (Delong’s test, un-corrected p-values), we 

could group the participant results into two broad groups. The first group was comprised 

of eight teams (T1, T2, T3, T5, T6, T8, T9, T10) and the second group comprised of 

three teams (T12, T14, T16) and six additional teams were removed due to incomplete 

report or withdrawal post-challenge. Figure. 2 illustrates the AUC values achieved by the 

participating teams (the best of each team’s three submitted algorithms). We find nine teams 

(T1,T2,T3,T5,T6,T8,T9,T10) using deep learning methods with an AUC range of [0.698, 

0.913]. Two teams (T12, T14) reported to have used radiomic based methods with an AUC 

range of [0.789, 0.809]. It is interesting to see the distribution of the malignancy score as 

reported by the teams on a limited set of test patient data for benign and malignant cases 

(see Suppl. Figure SF4). To have a baseline comparison to the team’s estimate, we trained 

the volume change predictor on the training cohort (30 patients) using a logistic regression 

model and applied it on the test patients to estimate malignancy score; we obtained an AUC 

of 0.866 [0.773, 0.96]. Using volume at baseline and follow up time point, individually, we 

had an AUC of 0.672 and 0.839, respectively. In comparison, using the nodule’s size change 

(longest diameter change) as a predictor, it had an AUC of 0.76. Using nodules diameter/

size information at baseline and follow-up, each gave an AUC of 0.694, 0.824 respectively 

(see Suppl. Table ST1). We also find that volume change shows better performance (AUC) 

compared to size (diameter) based measurement; a similar observation has been reported 

by other studies [58]. We believe the baseline comparator is useful to assess the ability of 

non-size-volumetric based predictors.

We compared the participating team’s predictor performance to assess their statistical 

significance (see Suppl. Table ST3 C) using De-long’s test [59]. We find no significant 

difference between any of the participant predictors nor with the volume change estimate, 

after applying multiple test corrections using the Bonferroni-Holm method to control family 

wise error rate [60]. To have an unbiased comparison True Positive Rate (TPR or sensitivity) 
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and False Positive Rate (FPR or 1-specificity) were computed at different ranges, by fixing 

one metric and computing the other across the teams (see Table 3). It is interesting to note 

that the teams T2, T5, T6 showed best sensitivity (TPR) of 71.4% (all three) for an FPR 

of 3 to 5%. While teams T2, T1 show lowest FPR of 51.4%, 54.3% respectively, for a 

sensitivity (TPR) of 95 to 97%. Similar comparisons can be derived using partial AUCs. 

Teams T6, T9, T5 show the highest pAUC of 2.04%, 1.63%, 1.55% respectively for an FPR 

(1-specificity) interval of 0-5%. Teams T1, T2, T10 show highest pAUC of 1.19%, 1.5%, 

1.18% respectively for a TPR (sensitivity) interval of 95-100% (see Suppl. Table ST4).

IV. DISCUSSION

Challenges offer the opportunity to bring out the collective talents of scientific communities 

that would not normally subject their algorithms for performance comparison using a 

blinded-independent reference dataset. For this to occur, the challenge needs to be accessible 

and open. Ideally, it fosters research towards a common goal to address the most critical 

needs, which in our case is to improve clinical diagnosis in lung cancer using sequential 

screening LDCT. The ISBI 2018 Lung Malignancy Prediction Challenge provided the 

platform to organize this community wide challenge that was made possible by the 

availability of NLST patient data. The underlying mandate of this exercise was to encourage 

method development and to bring the best worldwide talents in the scientific community to 

propose new approaches, particularly, in the early diagnosis of lung cancer and to evaluate 

the validity of these methods on a common set of test cases.

There have been few prior pulmonary nodule challenges in the past. One example is the 

LUNGx challenge, whose goal was to identify malignant nodules in single time point 

diagnostic scans. This was organized by a team led by Armato et.al through a joint effort of 

International Society for Optics and Photonics (SPIE), along with the American Association 

of Physicists in Medicine (AAPM) and Quantitative Imaging Network (QIN) of the National 

Cancer Institute (NCI) [35, 61]. The imaging data for the challenge came from a single 

institution with 15 samples used for model calibration, and 73 (37 benign, 36 malignant, 

diagnostic scans) used for model evaluation. Participating teams achieved an AUC for this 

task in the range of 0.55 to 0.71, with only three out of 11 participant methods performing 

better than random guesses. Competition organizers also sought malignancy assessments for 

the evaluation datasets from six thoracic radiologists from two different institutions. The 

AUC performance of clinical opinion on the test data was in the range of 0.70 to 0.85, 

outperforming almost every method submitted by challenge participants. Recently, the NCI 

partnered with industry to conduct a prized challenge (Booz Allen Hamilton’s sponsored 

Data Science Bowl challenge or DSB 2017) [34], which used a larger cohort with over 

1593 cases for the training phase and 200 patient scans used for testing. The challenge 

had a prize of $1 million USD provided by Laura and John Arnold Foundation[62], 

which attracted over 400 international participants. They used a log-loss metric to score 

participant methods, and the top ten teams had a score ranging from 0.399 to 0.444. In 

a recent review of past international challenges [63], several recommendations have been 

made, which include a needed focus on reproducibility and interpretability of results for 

proposed methods and robustness of ranking. The report documents factors that could affect 

the result, which could be due to choices of data sets or ensemble methods used. In our 
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post challenge analysis, we reanalyzed participant-reported malignancy probabilities and 

evaluated the strength of their predictors, by computing TPR (True Positive Rate) and FPR 

(False Positive Rate) at different cut points, by fixing one and computing the other across 

the participants (see Table 3). One could choose an operating interval based on required 

sensitivity (TPR)/specificity (1-FPR). At a range of 3 to 5% FPR we find teams T2, T5 

and T6’s predictor performs the best with a TPR of 71.4%. At a 95% TPR, Team T2 

and T1’s predictor shows best results with an FPR of 51.4% and 54.3%, respectively. In 

comparison, volume change has a TPR (sensitivity) of 51.4% for an FPR of 3% or 5%, 

certainly lower compared to the two best-performing teams. For a TPR (sensitivity) of 95% 

to 97%, the volume change estimate has an FPR of 77.1%, higher than the top four (T1, T2, 

T3, T5) performing teams. Based on choices of the cut points (TPR, FPR), one can observe 

a possible shift in the participant ranking order. Our current comparative analysis provides 

unbiased means to compare participants’ predictors. It should be noted that small test sample 

size limits generalizability of these findings; nevertheless, it provides the possibility for a 

new discovery or to contrast and improve approaches. There needs to be some caution while 

cross comparing methods (see supplemental tables, figures for additional information). As 

reported in the prior study [63], the authors have shown that a change in summary statistics 

could alter the ranking of participants in a challenge. In our re-analysis of the participants’ 

predictors with finer threshold levels based on TPR/FPR, we could derive similar inference 

(see section B. ‘Strength of participant Ranking’ and supplemental Table SF4).

The current clinical convention in lung cancer screening is to use univariate maximal 

diameter to screen for detecting abnormal (possibly malignant) nodules; the NLST used 

a fixed diameter of 4mm as a cutoff for positive findings. Most oncologists follow consensus 

criteria derived either from the National Comprehensive Cancer Network (NCCN), the 

Fleischner Society recommendations, or American College of Radiology’s Lung RADS. The 

NCCN and Lung RADS criteria provide a range of 6 to 8mm for nodule diameter (size), 

and allow for additional consideration of nodule densities before malignancy classification 

[9, 64, 65]. The Lung RADS score is particularly relevant to our challenges, as it allows 

for the consideration of the patient’s previous scans in the malignancy classification, when 

available. In a prior study [66], authors used Lung RADS to predict the malignancy status of 

NLST data at initial screening and with a one-year follow-up and two-year follow-up. They 

reported a test AUC in the range of [0.4 to 0.72] at baseline and a range of [0.76, 0.973] 

at follow-up diagnostic time points. In the current challenge, participating team methods 

yielded an AUC range of 0.698 to 0.913 (based on the 11 teams with complete reports). The 

deep neural network methods report an AUC of 0.698 to 0.913, while the radiomic methods 

report an AUC of 0.789 to 0.809. The participants’ reported AUC values were higher 

than those reported in prior single time-point LUNGx challenge [35], and a controlled 

case-control Lung Rads study [66], while the former study used a single institutional data set 

with diagnostic scans and later used a subset of NLST scans (high resolution, low dose CTs) 

for their evaluation.

The challenge results provide a means to contrast different quantitative/AI methods against 

a common dataset and contrast it to a clinical variable (volume change) performance. 

The deep neural networks and fusion type approaches used by some participants (T2, 

T5, T6) showed improvement in sensitivity (TPR) compared to the current clinical metric 
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(volume change) for a lower level of false positives (FPR of 3-5%). At a higher sensitivity 

(TPR) range of 95 to 97%, six participant methods (T2,T1,T5,T9,T3,T10) show lower FPR 

compared to volume change predictor. A conventional clinical support system is expected to 

perform in a variety of patients operating on a fixed (locked) model. The nature of adaptive 

learning in deep learning approaches is recognized by the Food and Drug Administration 

(FDA) [67] with no clear directions for clinical use. A survey of recently approved AI 

devices in medicine does not show extensive prospective trials, nor standardized metrics 

for detection or diagnosis [68, 69]. We acknowledge the variety of training datasets used 

by the participants, limited test data set with sequential time scans, where the organizers 

provided volumetric nodule segmentations carried out by a single institutional radiologist. 

Nevertheless, the segmentation mask provides a ‘common’ reference boundary for radiomic, 

size/volume-based approaches. We believe they provide accurate locational information for 

deep learning methods. The segmentation mask allows teams to compare (or build on) a 

clinically useful measurement, Suppl. Table T2 and Suppl. Figure F2 shows the performance 

of volume estimates across teams. Clinically, malignant nodules are often characterized as 

nodules that grow over multiple scanning visits, while benign nodules are considered to 

show no growth or a reduction, typically measured by its diameter/size [12]. The ability to 

use multiple time scans of the patient nodule from two sequential visits, instead of single 

time observation of the nodule may be responsible for the increased biomarker success in 

this challenge relative to past efforts.

The past decade has seen enormous growth in the development of quantitative imaging 

methods for radiological images, which has been fueled by availability of publicly available 

data (like the NLST, LIDC). In this challenge, the use of external training datasets played 

a role in training the network-based models. Eight out of the 11 participating teams used 

external datasets. Four teams used the DSB 2017 dataset, three used the LIDC dataset, 

three teams used data from the LUNA16 challenge and one team used scans obtained from 

the NLST study. There have been a number of malignancy prediction models [19, 70, 71] 

that use clinical characteristics, nodule size and subtle nodule characteristics. Notably, the 

study by McWilliams [19] reported an impressive AUC for the clinical model with nodule 

diameter which was in the range of 0.894 to 0.907 for Pan-Canadian Early Detection of 

Lung Cancer Study (PanCan) and British Columbia Cancer Agency (BCCA) data sets. In 

our challenge the clinical characteristics for the patients selected in our cohort (broadly age, 

smoking pack-years) were controlled, reported earlier [72]. Patient level information was 

not released to the participants as the focus of the challenge was to develop imaging-based 

biomarkers. A recent study that used over 6,716 LDCT’s from the NLST and a large 

validation cohort of 1,139 cases reported an AUC of 0.944 [33].

The challenge participants’ predictors are broadly illustrated by a bar plot in Fig. 3. Which 

broadly shows cases that were most often classified incorrectly by participant algorithms. 

Nodules, whose malignancy status is seemingly unrelated to changes in nodule volume, 

as defined by the provided segmentations, are not classified correctly; benign nodules that 

appear to grow are classified as malignant, while malignant nodules that shrink or stay the 

same are classified as benign. Sub-solid nodules are also found difficult to correctly classify 

by all participants. It has been well documented that clinical diagnosis of smaller size or 

ground glass opacity type nodules are difficult and still remains a challenge [73, 74], and 
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automatic methods seem to offer no clear discrimination advantage on these nodules. It is 

expected that non-size based texture or deep learning methods would provide additional 

information to bolster size/volume-based predictors.

A. Organizing Teams Challenges:

The availability of open source data from the larger lung cancer clinical trials such as the 

NLST, LIDC and others has been a tremendous resource for the research community [4, 

36], but poses a challenge to challenge organizers. In this case, some portions of the NLST 

dataset in an anonymized form have been used by other challenges and have been open to 

the public for a certain time period, similar to other challenges in the field, while the NLST 

data set can be obtained by anyone with a project proposal made through the Cancer Data 

Access System [64]. In this challenge, the organizers took an extra level of de-identification 

steps to re-anonymize the data set and removed identifiers that may indicate the specific 

patient details or origin of the data, especially any NLST reference tags.

Nevertheless, after the challenge’s completion, one of the competition participants reported 

an overlap between the evaluation dataset in this challenge and the dataset released in the 

DSB 2017. Four of the five top-performing teams made use of the DSB 2017 dataset, 

which used single time scans, but it is difficult to discern whether their methods performed 

better due to approach or due to the supplemental training data sets. Further analysis 

showed that post-hoc removal of the overlapping cases (20/70 of the cases) in the evaluation 

dataset would not create significant differences in participant AUCs, would result in similar 

performance changes for both teams that used the DSB 2017 dataset and teams that did not, 

and would maintain the high ranking of the top-performing teams. While unlikely to have 

affected the outcome of the challenge, this event displays the importance of knowing the 

exact provenance of a chosen dataset when organizing a challenge.

The open use of external datasets themselves can be a difficulty for any challenge 

organizer. In this challenge, participants could use external datasets and were required to 

disclose details on the data used. This led to two teams supplementing their algorithm 

training with private institutional datasets not available to other teams. While most teams 

performed very similarly in this challenge, the allowance of such datasets could in future 

challenges provide an advantage to larger institutions or hospitals with sole access to large, 

private datasets. Most daunting difficulty in organizing challenges in machine learning 

competitions is the problem of data leakage. There may be a factor independent of any 

relevant variable that can help competition participants correctly classify datasets. In this 

challenge, it was noticed by a participant early in the training stage that patients with 

benign nodules often had multiple nodules, identified using provided segmentation masks, 

while patients with malignant nodules always (most often) had a single nodule segmented. 

This discrepancy was an unintentional artifact of the clinical annotation process. Challenge 

organizers took care to fix these unexpected errors in the training and evaluation datasets 

and re-released the cohort after randomly re-ordering the patient identifiers with no effect 

on the results of the competition. Many participants had needed assistance interacting with 

data provided in the competition, as they were often not familiar with the software packages 

necessary to manipulate the data in its originally released file format. Others, particularly 
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international participants, had difficulty downloading the large LDCT imaging datasets 

without connection interruptions. This was remedied by organizers splitting the data into 

smaller downloadable packets. Future challenge organizers should take care to provide clear 

tutorials on downloading, converting, and manipulating data provided in their challenges, 

and provide guidance towards software that correctly processes such data.

B. Strength of Participant Ranking:

We contrasted the team’s predictor by computing True Positive Rate (TPR or sensitivity) and 

false positive rate (FPR or 1-specificity) for a range of values, by fixing a level for one of the 

metrics and computing the other across the teams (see Table 3). The first part of the Table 

3A, shows participant’s predictors sensitivity or TPR performance for a set level of FPR 

varied over a range, while Table 3B shows the predictors specificity (1-FPR) for a set level 

of TPR varied over a range. Based on these values, we re-ranked the team’s performance for 

a range of sensitivity (or TPR) and 1- specificity (or FPR) (see Suppl. Table ST4).

At 1% False positive rate (1-specificity), we find the mid-ranked team (T6) is placed at 

the top, yielding the highest TPR (sensitivity of 71.4%) and continues to remain at the 

top with same TPR, along with two other contenders (T6, T5, T2) for a FPR of 3-5%. 

Looking at their approaches, these two teams (T6, T2) used volume change along with 

deep learning models and T5 used radiomics along with deep learning models to predict 

malignancy, which seems to have aided their performance. On the contrary, at a fixed 

sensitivity (TPR) of 99%, teams T1 followed by T6 and T10 showed lowest FPR (at 68.6, 

77.1, 80% respectively). For a sensitivity (TPR) of 95-97%, the top two team’s (T2, T1) 

along with T5’s predictors show lowest FPR of 51.4%, 54.3% and 65.7% respectively. 

But at a sensitivity (TPR) range of 85-90%, top ranked team’s (T1, T2, T3) predictors 

showed the lowest FPR(1-specificity). At sensitivity (TPR) of 80%, volume change is placed 

second with an FPR of 20%. It is evident that deep learning models along with volume or 

handcrafted features seem to help the performances of the predictors (especially T2, T3, 

T5, T6). Pure deep learning models (as used by T1) are ranked as the top contenders using 

sensitivity (TPR) as an evaluation criterion but does not hold up its place for lower levels of 

FPR (1-specificity). These additional analyses reveal improved predictor performance using 

deep learning methods with conventional volume or radiomics features to achieve lower 

FPR. Deep learning models seem to be the top contenders for high sensitivity (TPR).

It is apparent that using AUC as a metric to contrast the team’s performances may not have 

the ability to discern specific details of the predictors. We also compute the partial area 

under the receiver operating characteristic curve (pAUC) for different intervals of TPR and 

FPR (see Supplemental Table ST5). In a clinical setting, most often a practitioner finds an 

acceptable operating cutoff point based on required detection rate (sensitivity/specificity). 

Additional inferences could be derived to assess participants’ performances and shift in 

ranking at different levels of cut-points.

C. Need for Better Models:

It is well recognized that advancement in artificial intelligence applications is fast evolving 

with the prolific use of deep neural architectures in medicine and many other fields. These 
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technologies poses many challenges that include models’ accuracy in prediction tasks, utility 

compared to current standard of care, reliability, and ethical use [75–78]. In this challenge, 

over 80% of the teams (9 of 11) proposed deep models to estimate malignancy status. 

Though the participant model’s performance was not statistically significant compared to the 

volume estimate. They may have several usages in subtasks such as segmentation and region 

of interest identification. This may hold promise to improve the current clinical workflow 

and reduce inter reader human expert (radiologist) variability[79–83].

V. LESSONS LEARNED AND LIMITATIONS

We would like to summarize lessons learned through this community wide challenge 

and provide recommendations to future events. We acknowledge the need for improved 

infrastructure for better international data distribution, and software support for users 

interacting with unfamiliar data formats. The provenance of datasets provided in challenges 

should be thoroughly investigated, to make sure that they have not been published in a 

previous venue. Rules regarding external dataset usage should be explicit for competition 

organizers. Users can be asked to submit source code for their algorithms in addition to 

their results on the evaluation set, which may lead to better clarity in participant methods. 

This will encourage third party validation (team that is not related to the developers) 

and error identification. This will also improve reproducibility and interpretability of the 

proposed methods. Otherwise, researchers must rely on method descriptions submitted by 

competition entrants, which may be cursory or lacking significant implementation details. In 

this challenge it was voluntary for the teams to release their code.

Organizers should limit the number of submissions and timing of the submission during the 

final testing period. This process will avoid undue guess work and reduce the possibility of 

overfitting to the evaluation set. In this challenge, submissions were limited to the best three 

for each team and participant reports were required to identify the submission differences.

Organizers are entrusted to validate participant affiliation and registered duplicate user 

accounts, both of which can be challenging. Due to the presence of multiple registrations 

or incomplete affiliation information, validation can become time consuming. Explicit rules 

regarding the minimum user information required should be determined before challenge 

operation, to reduce this work load on the organizers.

A. Limitations.

It is recognized that challenge evaluation datasets may not be large enough to show 

significant differences between challenge participants. Relatively small training datasets 

also limit the generalizability for methods development. We understand that required time 

between follow up scans was subjected to clinical decisions and most often did not fully 

adhere to the prescribed one-year period. We mitigated the training part of the challenge by 

encouraging the teams to use any available datasets. Nevertheless, the time series curated 

data cohort with accompanying 3D segmentation mask was the first of its kind that provided 

a basis for teams to compare their methods. It is acknowledged that nodule size and clinical 

staging distribution between the train/calibration and test sets were not consistent, which is 

due to random patient selection based on epidemiological cohort match.
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Ideally, challenges should be evaluated on a diverse cohort when possible. A recent article 

reports several practices to follow and provides comparison of prior competitions [63].

B. Post challenge methods development.

There have been few large population studies published post ISBI 2018 challenge. One 

notable commercially lead study claims to have trained their deep learning model on 6,716 

NLST trial CT scans (single time point) and validated their findings on a set of 1,139 

cases, reporting an AUC of 0.944 [33]. The study claims to have reduced false positives 

by 11% and false negatives by 5% compared to a group of clinical radiologists. Another 

study that used public data sets (DSB 2017 and LUNA16) to train a deep network (CNN), 

reports a sensitivity of 84.4% and specificity of 83% in detecting malignant nodules [84]. 

In a radiomics-based study using curated NLST CT scans of 479 patients and a randomized 

case-control cohort based approach, the best models averaged an AUC of 0.85[76]. In an 

interesting use of fusion based methods, a recent study claims to use deep networks with 

radiomics on baseline CT scans of 498 NLST patients to detect cancer occurrences in 

following time points (years 1 or 2), and reports an accuracy of 90.29% with an AUC of 0.96 

[85]. Other studies used a different set of curated NLST scans from 857 patients [86, 87]. In 

[87], a 2-D convolutional attention based network that allows for use of pre-trained feature 

extractors using 1,2 or 3 time points in a Siamese structure achieved AUCs in the range of 

0.858-0.882. In a deep learning-based model [88], claims a recall rate of 99.6% using DSB 

2017 cohort.

VI. CONCLUSION

The ISBI 2018 Lung Malignancy Prediction Challenge was the first lung nodule-based 

malignancy prediction challenge that used a longitudinal dataset. It was a successful, 

community-wide effort that highlighted challenges in diagnosing malignant lung nodules 

with sequential LDCT scans. The effort helped to improve a wareness and fostered methods 

development that attracted over 120 registered participants, with 11 teams that submitted 

evaluation results and detailed method descriptions. Despite a relatively small evaluation 

dataset, the challenge offered an avenue to benchmark some of the proposed innovative 

approaches to analyze LDCT lung screening data. Participating teams proposed a suite of 

quantitative methods including radiomics, deep learning, and fusions between the two. The 

participants presented promising approaches to improve malignancy prediction, little over 

the change in volume method. But none of the methods showed statistical significance 

compared to the volume change estimate. Most methods still struggled to perform well 

across a variety of nodule densities.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Representative patient cases showing 2D CT slice across two time points (t1 & t2) with a) 

Benign and b) Malignant diagnosis.
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Fig. 2. 
Challenge participant’s predictor performance. A) Receiver operator characteristic curve for 

participant predictors (11 teams). B) Bar graph showing the highest AUC values with 95% 

confidence limits computed by bootstrap resampling. Volume change predictor is shown for 

baseline comparison.
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Fig. 3. 
Boxplot show distribution of scores for cases and control (x-axis is the patient index, y-axis 

is the malignancy score) that helps to identify cases where most participants incorrectly 
reported the diagnostic status, a) Benign (see higher scores), b) Malignant (see lower scores) 

diagnosis. Representative patient cases showing 2D CT slice across two time points with 

most teams reporting incorrect malignancy scores. c) Benign diagnosis (average reported 

score 0.67) and d) Malignant diagnosis. (average reported score 0.26).
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TABLE I.

PATIENT CLINICAL AND DEMOGRAPHICS AT BASELINE (T0) AND FOLLOW-UP SCAN (T1).

  A) Demographics

Training (N=30) Testing (N=70)

Cancer (N=15) Benign (N=15) Cancer (N=35) Benign (N=35)

Age (median/mean/st.dev) 62/64.3/5.1 66/64.2/5.3 66/65.6/4.92 66/65.6/5.22

Gender (M/F) 8/7 14/1 18/17 15/15

Race (White/African-American/Latino/Mixed) 15/0/0/0 15/0/0/0 34/1 34/1

Clinical Stage & Grade (# in: Well/Moderate/Poor/Undifferentiated/Unspecified)

1A 10 (2/4/3/0/1) 0 17 (3/9/3/1/1) 0

1B 0 0 7 (1/3/2/1/0) 0

IIA 2 (0/1/1/0/0) 0 2 (0/2/0/0/0) 0

IIB 0 0 2 (0/1/1/0/0) 0

IIIA 1 (0/0/0/0/1) 0 0 0

IIIB 1 (0/0/0/0/1) 0 3 (0/0/0/0/3) 0

IV 1 (0/0/0/0/1) 0 4 (0/0/0/1/2) 0

N/A 0 15 0 35
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TABLE 2.

OVERVIEW OF CHALLENGE PARTICIPANT METHODS AND THEIR BEST AUC ESTIMATE OBTAINED ON THE TEST DATA. VOLUME 

CHANGE ESTIMATE WAS USED AS A COMPARATOR (POST CHALLENGE), SEE Supplemental Tables S1, S2 FOR DETAILS.

Teams Reported Method Training Data Source Training Data-
CT**

Sensitivity/
Specificity

AUC, CI

T1 Deep learning (3D CNN) LIDC-IDRI, DSB 2017 2394 0.867/0.886 0.913 [0.844, 0.982]

T2 Deep learning, ensemble-
approach (volume change)

Selected-LIDC, DSB 2017
2481

0.714/0.971 0.897 [0.822, 0.972]

T3 Deep learning, volume change NLST cohort 80 0.714/0.943 0.879 [0.797, 0.962]

T5 Deep learning and hand crafted 
radiomics.

LIDC, DSB 2017, LUNA16.
3499

0.714/0.971 0.868 [0.778, 0.958]

T6 Deep learning and nodule growth LUNA16, LIDC, Local data 1078 0.714/1 0.867 [0.778, 0.956]

T8 Fusion approach. Deep learning 
– Stacked auto-encoder (6features 
including size).

Training data (ISBI 2018)

60 (2*30)

0.686/0.943
0.855 [0.761, 0.949]

T9 Deep learning (CNN) and 
Radiomics

DSB 2017, LUNA16.
2481

0.571/1 0.854 [0.764, 0.943]

T10 Deep Learning (CNN) LIDC, 30 CT from local 
institution. LUNA16 pre-
trained. 1936

0.686/0.914

0.848 [0.756, 0.941]

T12 GLCM with varying ROI and 
discriminant functions

Selected LIDC 524 0.743/0.0886 0.809 [0.697, 0.92]

T14 Radiomics Not reported. Training CTs 0.629/0.914 0.789 [0.678, 0.901]

T16 Deep learning LIDC-IDRI and DSB 2017. 1593 0.57/0.486 0.698 [0.572, 0.823]

Volume Change Training data 60 (2*30) 0.743/0.943 0.866 [0.773, 0.96]

**
Unless stated by the authors, the number of CT scans reported in the table was obtained from the respected studies, namely: DSB 2017 (Data 

Science Bowl 2017) had 1593 CTs, LUNA 16(Lung Image Analysis 2016) had 888 CTs, and LIDC (Lung Image Database Consortium) had1018 
CT scans. ISBI 2018-challenge provided 30 sequential CTs: as training (or calibration set).

#: Teams’ method description was removed from assessment due to incomplete reports (T4, T7, T11, T15) or voluntary withdrawal (T13 and T17).
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