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ABSTRACT: Thiols easily react with [1.1.1]propellane to give sulfur-
substituted bicyclo[1.1.1]pentanes in radical reactions, but this reactivity is
not replicated in the case of heterocyclic thiols. Herein, we address this issue by
electrophilically activating [1.1.1]propellane to promote its iodo-sulfenylation
with 10 classes of heterocyclic thiols in two protocols that can be conducted on
a multigram scale without exclusion of air or moisture.

Bicyclo[1.1.1]pentanes (BCPs) often improve the potency,
metabolic stability, and water solubility of bioactive

compounds.1 These valuable properties have spurred the
recent emergence of numerous methods for the synthesis of
BCPs from [1.1.1]propellane.2,3 Although sulfur is the third
most abundant heteroelement in drugs after nitrogen and
oxygen,4 sulfur-substituted BCPs (S-BCPs) are strikingly
scarce in the patent literature.5 The synthesis of S-BCPs has
been reported by radical reactions of [1.1.1]propellane 1 with
thiols,6 disulfides,7 xanthates,8 thiosulfonates,9 or sulfones
(Figure 1a).10 Moreover, BCP sulfones and sulfonamides can
be accessed from BCP sulfinates.11 However, although the
addition of aromatic thiols to 1 has been known for several
decades to be facile at room temperature, their heterocyclic
counterparts 2−4 fail to react with 1 under the same
conditions.12 These limitations restrict the exploration of the
potential benefits of S-BCPs as bioisosteric replacements of
para-substituted benzene rings and tert-butyl group in
bioactive compounds, as for example antifungal 513 and
biocide 6 (Figure 1b).14

The reaction of thiols with 1 has been suggested to proceed
by the reversible addition of a thiyl radical and the transfer of a
hydrogen atom to the resulting bicyclo[1.1.1]pentyl radical.15

The reported rates of addition of thiyl radicals to olefins
suggest that the apparent lack of reactivity of 2−4 with 1 in
radical reactions is unlikely due to a slower addition of those
thiyl radicals to 116 or differences in bond dissociation
energies.16c Instead, it might be imputable to a polarity
mismatch in the hydrogen atom transfer between heterocyclic
thiol and the bicyclo[1.1.1]pentyl radical intermediate,17

because heterocyclic thiols are less hydridic than aryl or alkyl
thiols.18 Alternatively, or in addition to this reasoning, the low
concentration of heterocyclic thiols in solution created by the

predominance of the thione tautomer19 would decrease the
rates of addition of the thiyl radical to 1 and of the transfer of a
hydrogen atom to the bicyclo[1.1.1]pentyl radical.

Previously, we established in collaboration with the Duarte
group that electrophilic activation of 1 in halogen bond
complex A (Figure 1c),20 formed between propellane 1 and
electrophilic reagents such as N-iodosuccinimide (NIS), is a
viable method for promoting reactions of the interbridgehead
bond of 1 with weak nucleophiles. We therefore wondered
whether a similar strategy, which does not rely on a radical
mechanism, could be applicable to heterocyclic thiols and thus
overturn their lack of reactivity with 1 in radical reactions.
Herein, we describe the successful deployment of this strategy
for the iodo-sulfenylation of 1 with 10 classes of heterocyclic
thiols under conditions that do not require dry reagents and
solvents or an inert atmosphere (Figure 1c).

Following our previous report on the reaction of anilines
with propellane 1 and NIS in acetone,20 we examined these
conditions with 2 (Table 1, entry 1). The desired adduct 7a, a
direct bioisosteric analogue of antifungal 5,13 was obtained as a
bench-stable solid, and its structure was also confirmed by X-
ray crystallography. However, we were surprised to observe the
formation of 1,3-bis-iodo-BCP 8 in large amounts. Among the
solvents examined (entries 1−6), ethers (entries 5 and 6) were
best for keeping the 7a/8 ratio at an optimal level. Decreasing
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the stoichiometry of propellane 1 and NIS further decreased
the amount of unwanted 8 (entries 8 and 9). Conversely, the
extent of formation of 8 was increased when molecular iodine
was used instead of NIS (entry 10). Similarly, the conditions
previously reported by Zarate and co-workers for the attack of
1 by 4-iodo-pyrazole in the presence of I2 and Cs2CO3 in
MeCN21 led to unfavorable 7a/8 ratios when applied to 2
(Table S1). Finally, attempts to extend this electrophilic

activation with N-bromo- and N-chlorosuccinimide did not
afford the expected BCP products.

With the optimized conditions in hands, we examined the
generality of the reaction with a set of diverse mercapto
reagents and were delighted to obtain 7a−n in 11−94% yields
as air-stable compounds (Figure 2).22 Hence, mercapto

reagents 2−4, which previously failed to react with propellane
1 without an electrophilic activating reagent,12 gave 7a, 7j, and
7k, respectively, readily in the presence of NIS. It is
noteworthy that the reaction does not require any dry reagents
or solvents. In the case of 7g, it was necessary to use 1,3-
diiodo-hydantoin (DIH) instead of NIS for ease of
purification, and the reaction was conducted at room
temperature after adding the reagents at −10 °C because of
the poor solubility of the starting material at −78 °C. These
conditions and the conditions optimized in entry 9 of Table 1
were compatible with reactions conducted on a multigram
scale, as shown by the excellent yields of 7g (94%) and 7k
(85%) thus obtained. It is also noteworthy that the clean
conversion of the starting materials to these compounds
allowed for purification by simple filtration of the crude
material over a short pad of silica gel. The stoichiometry of the
mercapto reagent in the reaction leading to 7j was slightly
increased compared to that under the optimized conditions
due to the poor solubility of this starting material.

Figure 1. Sulfur-substituted bicyclo[1.1.1]pentanes (S-BCPs). (a)
Previous syntheses of S-BCPs and failure of 2-mercapto-azoles and
thiazoline. (b) Potential S-BCP analogues of bioactive compounds.
(c) Iodo-sulfenylation of [1.1.1]propellane (this work).

Table 1. Optimization of the Reaction Conditionsa,b

run xc
iodination
reagent solvent

yield of 7a
(%)

yield of 8
(%)

1 1.5 NIS (1.5 equiv) acetone 80 28
2 1.5 NIS (1.5 equiv) CH2Cl2 77 11
3 1.5 NIS (1.5 equiv) EtOAc 80 18
4 1.5 NIS (1.5 equiv) toluene 0 0
5 1.5 NIS (1.5 equiv) Et2O 98 10
6 1.5 NIS (1.5 equiv) MTBE 99 12
7 1.5 NIS (1.1 equiv) MTBE 99 7
8 1.1 NIS (1.1 equiv) MTBE 99 2
9 1.1 NIS (1.0 equiv) MTBE 99 2
10 1.5 I2 (0.75 equiv) MTBE 36 42

aReactions conducted with 0.2 mmol of 2 (0.2 M) and using a 0.85−
1.10 M solution of 1 in Et2O. bYields determined by 1H NMR with
CH2Cl2 as the internal standard. MTBE denotes methyl tert-butyl
ether. cNumber of equivalents of 1.

Figure 2. Iodo-sulfenylation of propellane 1. Yields of pure isolated
products. aSame reaction conditions as in entry 9 of Table 1, except as
otherwise noted. bIn acetone. cDIH (0.50 equiv) instead of NIS. dAt
−10 °C for 10 min and then room temperature for 1 h. eOn 11.4
mmol of mercapto reagent. fMercapto reagent (1.5 equiv), NIS (1.1
equiv), and 1 (1.0 equiv). gOn 11.2 mmol of mercapto reagent.
hMercapto reagent (1.0 equiv), NIS (1.0 equiv), and 1 (2.0 equiv).
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In contrast to the 10 classes of heterocyclic thiols that
showed the desired reactivity to give 7a, 7b, and 7e−m,
electronic variation of the benzo[d]oxazole ring led to
decreased yields in the case of 7c and 7d (Scheme 1). In

these two cases, the solubility of the starting thiols was low in
MTBE and we switched the solvent to acetone. However, the
solubility remained problematic, which led to incomplete
conversion and the isolation of 1,3-bisiodo-BCP 8 as a side
product in 27% and 29% yields. Moreover, 2-mercaptopyridine
gave 7n in only low yield, whereas 2-mercaptopyrimidine,
thiophenol, and an alkyl thiol failed to give 7o−q entirely. The
disulfides resulting from the oxidation of the thiols were the
major components of the crude mixtures in these four cases.

The functional group tolerance of the reaction was evaluated
with 2-mercaptobenzothiazole 2 in the presence of nucleo-
philic additives 9−16 (Scheme 2). The expected BCP 7a was
obtained in all cases, albeit in varied yields. Importantly, no
BCP adduct was formed from 9−16 in those reactions, even in
cases in which the yield of isolated 7a was lower than in the
absence of those additives. Thus, whereas electron-poor aniline
9 reacted smoothly with propellane 1 and NIS at −78 °C to
give a stable iodinated BCP when no other nucleophile was
present,20 treating an equimolar mixture of 2 and 9 under
similar conditions left 9 intact and gave 7a exclusively. Other
nucleophiles, i.e., indole 11, alcohol 14, sulfonamide 15, and
phenol 16, were also perfectly well tolerated to give good to
high yields of 7a. In contrast, adding electron-neutral aniline
10, amine 12, and pyrazole 13 led to a decreased yield of 7a
and a sizable amount of 1,3-bisiodo-BCP 8.

To gain insight into the mechanism of this reaction, we
treated 2-mercaptobenzothiazole 2 with NIS in the absence of
propellane 1, which led to a mixture of disulfide 17 and
molecular iodine (Scheme 2a). Importantly, when this crude
mixture was treated with 1, only 1,3-bis-iodo-BCP 8 (45%)
and 17 (50%) were obtained, whereas S-BCP 7a was not
observed. In addition, treating 8 with 2 did not lead to the
formation of 7a (see the Supporting Information). These
results suggest that a hypoiodothioite intermediate, or a S···I

bond complex23 formed between NIS and the thione tautomer
of the mercapto reagent, is not involved in the formation of S-
BCPs 7a−m. Moreover, the reactions of 1 with 2 and NIS
under the optimized conditions but in the presence of radical
inhibitors BHT and TEMPO led to the formation of the
expected S-BCP 7a in excellent to quantitative yields (Scheme
2b). Taken together, these results make a radical mechanism
for the iodo-sulfenylation of 1 with 2-mercapto-azoles and NIS
less likely.

Accordingly, we propose that the formation of S-BCPs 7a−
m proceeds by the electrophilic activation of propellane 1 in
halogen bond complex A formed with the electrophilic N-iodo
reagent (Scheme 3). As previously established,20 the analysis of

Fukui’s dual descriptor24 indicates that the nucleophilic
interbridgehead bond of propellane 1 is rendered electrophilic
in A, which is a true minimum with a binding energy of −4.5
kcal mol−1. The high yields of formation of 7a−m contrast
with the absence of S-BCPs 7o and 7p when model aryl and
alkyl thiols were used. These opposite results might be
explained by the predominance of the thione tautomer of the
2-mercapto-azoles in solution.19 Thus, the low concentration
of the thiol tautomer of the 2-mercapto-azoles would
contribute to the high yields of 7a−m as it would favor the
selective reaction of NIS with 1 to give A over the reaction of
NIS with the thiol. The latter pathway leads to the formation
of disulfides and molecular iodine, and eventually 1,3-bis-iodo-
BCP 8, and is therefore detrimental to the formation of 7a−m.
This unproductive pathway was followed by aryl and alkyl

Scheme 1. Functional Group Tolerancea

aYields of isolated products. bAdditive recovered in >80% yield (see
the Supporting Information). cWith 8 (31%). dAt a 4/1 7a/8 ratio
(crude 1H NMR). eWith 8 (23%). fRecovery of 15 not attempted.

Scheme 2. Control Reactionsa

a(a) Reaction of 2-mercaptobenzothiazole with NIS and treatment of
the crude thus obtained with [1.1.1]propellane and (b) reactions in
the presence of radical inhibitors. All yields determined by 1H NMR
with an internal standard. BHT denotes 2,6-bis(tert-butyl)-4-
methylphenol, and TEMPO 2,2,5,5-tetramethyl-4-piperidin-1-oxyl.

Scheme 3. Plausible Mechanism
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thiols that failed to give 7p and 7q because a tautomeric
equilibrium toward a thione is not possible. In agreement with
this interpretation, treating an equimolar mixture of 2-
mercapto-benzothiazole 2 and thiophenol under the optimized
conditions led to the quantitative formation of phenyl disulfide
and the recovery of 2 in 68% yield, whereas S-BCP 7a was not
formed. Once A is formed selectively, it is not certain which of
the thione or thiol tautomers of the 2-mercapto-azoles reacts
with this intermediate to give 7a−m. In the case of 2-
mercaptopyridine and 2-mercaptopyrimidine, we assume that
the efficient formation of 7n and 7o could be hampered by
either (i) lower oxidation potentials compared to those of the
other 2-mercapto-azoles,25 (ii) greater aromatic character in
both of its tautomeric forms that would decrease nucleophil-
icity,26 or (iii) a combination of the two.

Finally, the conversion of the C−I bond of the S-BCP into
other bonds under radical conditions proved to be challenging.
Thus, for model substrates 7a, 7e, and 7g, attempts to reduce
the C−I bond or to engage these compounds into a Giese
reaction led to decomposition by cleavage of the C(sp3)−S
bond of the starting material. However, thiazoline derivative 7k
was more stable under the same reaction conditions (Scheme
4), and we could obtain the reduced S-BCP 18 in excellent

yield. It is noteworthy that 18 is a direct bioisosteric analogue
of biocide 6. Similarly, compound 19 was obtained after Giese
reaction under the conditions recently described by Anderson
and co-workers.3n The moderate yield of 19 is due to the need
to perform a purification by preparative TLC of the material
obtained after a first purification by flash chromatography.

In conclusion, we have demonstrated that the electrophilic
activation of [1.1.1]propellane with NIS or DIH can address
the lack of reactivity of heterocyclic thiols for the synthesis of
sulfur-substituted bicyclo[1.1.1]pentanes. The procedure can
be conducted on a multigram scale and does not require
exclusion of air or moisture. We anticipate that this method
could benefit the future exploration of the potential benefits of
S-BCPs in the optimization of the bioactivity of drugs and
agrochemicals.
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