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Abstract 

Background:  Fatty acid (FA) metabolism is considered the emerging cause of tumor development and metastasis, 
driving poor prognosis. Long non-coding RNAs (lncRNAs) are closely related to cancer progression and play impor-
tant roles in FA metabolism. Thus, the discovery of FA metabolism-related lncRNA signatures to predict outcome and 
immunotherapy response is critical in improving the survival of patients with hepatocellular carcinoma (HCC).

Methods:  FA metabolism scores and a FA metabolism-related lncRNA signature were constructed using a single-
sample gene set enrichment analysis based on The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus 
(GEO) databases. “ConsensusClusterPlus” was used to screen molecular subtypes. Chi-squared test and Fisher’s exact 
test were applied to explore the relationship between clinical, genomic mutation characteristics and subtypes. Tran-
scription factor (TF) activity scores, cellular distributions, immune cell infiltration, and immunotherapy response were 
employed to investigate the functions of FA metabolism-related lncRNA signatures. FA metabolism microarray and 
western blot were performed to detect the biological function of candidate lncRNAs.

Results:  A total of 70 lncRNAs that highly correlated with FA metabolism scores in two cohorts were used to con-
struct two distinct clusters. Patients in cluster 2 had lower FA metabolism scores and worse survival than those in 
cluster 1. Patients in cluster 2 exhibited a high frequency of DNA damage, gene mutations, oncogenic signaling such 
as epithelial-to-mesenchymal transition, and a high degree of immune cell infiltration. Moreover, the lncRNA signature 
could predict the effects of immunotherapy in patients with HCC. Furthermore, three lncRNAs (SNHG1, LINC00261, 
and SNHG7) were identified that were highly correlated with FA metabolism. Additionally, SNHG1 and SNHG7 were 
found to regulate various FA metabolism-related genes and ferroptosis-related genes in vitro experiments. GSEA anal-
ysis revealed that SNHG1 and SNHG7 promote fatty acid beta-oxidation. SNHG1 and SNHG7 silencing dramatically 
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Background
Hepatocellular carcinoma (HCC) ranks sixth in the 
global incidence of all tumors. Moreover, the mortality 
of HCC ranks fourth, accounting for 8.2% of all cancer-
related deaths [1]. Although many therapeutic strategies, 
such as surgical resection, liver transplantation, systemic 
or local radiotherapy, chemotherapy and targeted immu-
notherapy are currently used in the treatment of patients 
with HCC, the median survival time for most advanced 
patients with HCC is poor [2]. Therefore, discovering 
new prognostic biomarkers and elucidating novel molec-
ular mechanisms are crucial to improving the treatment 
modalities of this deadly malignancy.

Metabolic reprogramming, which can promote rapid 
cancer cell proliferation, invasiveness, metastasis and drug 
resistance, has become a hallmark of cancer [3, 4]. Can-
cer cells are also characterized “Warburg effect” [5, 6]. In 
addition to the abnormity of glucose metabolism, the dys-
regulation of fatty acid (FA) metabolism has been increas-
ingly recognized as a feature of metabolic reprogramming 
in cancer [7], especially in HCC [8]. During oncogenesis, 
FAs synthesize cellular membranes, and produce signaling 
molecules. Furthermore, studies have indicated that alter-
ations in FA metabolism are involved in HCC progression 
[9]. Exacerbated de novo lipogenesis is also considered a 
major metabolic phenotype during HCC initiation and 
development [10]. However, the biological mechanism 
underlying FA metabolism in HCC remains unexplored. 
Thus, the development of a FA metabolism-related genes 
model could provide a novel approach to HCC therapy.

Long non-coding RNAs (lncRNAs) are RNAs longer 
than two hundred nucleotides with little ability to 
encode proteins. Many lncRNAs are widespread in 
multiple cancers, mediating tumorigenesis and cancer 
development. They also serve as biomarkers of HCC 
diagnosis and prognosis. Various studies report that 
lncRNAs play a critical role in tumor immune regu-
lation and FA metabolism [11, 12]. Linc-Pint inhib-
ited lipogenesis by targeting SRPK2 in the Hepatitis C 
virus-related liver pathogenesis [13]. LncRNA-NEAT1 
mediated abnormal lipolysis via ATGL, driving HCC 
growth [14]. LncRNA-HR1 inhibited the activity of 
the SREBP1c promoter and subsequently the expres-
sion of FASN, reducing lipid metabolism [15]. However, 
because most studies only focus on the function of a 

single lncRNA in HCC FA metabolism, the complete 
picture of FA metabolism-related lncRNAs in HCC 
remains unclear.

In the present study, FA metabolism-related genes were 
downloaded from the MSigDB database. The single sam-
ple gene set variation analysis (GSVA) enrichment of FA 
metabolism was calculated to obtain the FA score of each 
patient. Pearson correlation coefficient was utilized to 
identify FA metabolism-related lncRNAs. Additionally, 
the “ConsensusClusterPlus” analysis was performed to 
generate FA metabolism-related lncRNA clusters. Sub-
sequently, the clinical characteristics, genomic mutation 
profiles, signal transduction pathways, immune features, 
and immunotherapy response between high and low 
risk groups were compared. A first-order partial correla-
tion analysis revealed Small Nucleolar RNA Host Gene 
1 (SNHG1), Long Intergenic Non-Protein Coding RNA 
261 (LINC00261), and Small Nucleolar RNA Host Gene 
7 (SNHG7) were identified that were highly correlated 
with FA metabolism. Finally, FA metabolism arrays were 
used to explore the downstream targets of SNHG1 and 
SNHG7. The association between SNHG1/7 and ferrop-
tosis was investigated using the the western blot of fer-
roptosis related-biomarkers.

Materials and methods
Data collection
The RNA-sequencing (RNA-seq) data and clinical infor-
mation on liver hepatocellular carcinoma (LIHC) were 
downloaded from The Cancer Genome Atlas (TCGA, 
https://​gdc.​cancer.​gov/). Additionally, the transcriptional 
expression data and clinical information of the GSE76427 
dataset were downloaded from the Gene Expression 
Omnibus (GEO) database (https://​www.​ncbi.​nlm.​nih.​
gov/​geo/). The detailed clinical features are presented in 
Supplementary excel 1.

The source of fatty acid metabolism‑related genes
The list of FA metabolism-related genes (refer to 
the genes included in the FA metabolism pathway) 
was collected from the "HALLMARK FATTY ACID 
METABOLISM" in the publicly available MSigDB 
database [16].

reduced lipid droplets in HCC cells. Many immune-infiltration genes and TFs were overexpressed in HCC tissues with 
SNHG1 and SNHG7 high expression.

Conclusions:  A novel molecular model of FA metabolism-related lncRNAs was developed, which has significantly 
prognostic potential in HCC diagnosis and aids in clinical decision making.

Keywords:  Fatty acid metabolism, LncRNA, Immune infiltrations, Hepatocellular carcinoma, Ferroptosis
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Data pre‑processing
The transcriptional data of TCGA were pre-processed 
as follows: (1) The samples without survival informa-
tion were excluded; (2) The ENSG were converted into 
the Gene Symbol. The GSE76427 dataset was pre-pro-
cessed as follows: (1) The standardized data set was 
downloaded; (2) The survival time and survival state 
of the sample were retained; (3) Only the liver cancer 
samples were obtained; (4) The gene on the chip plat-
form GPL10558 was re-annotated, and the probe was 
converted into the gene symbol.

Acquisition of the lncRNA expression profiles
The V32 version of the GTF file was downloaded from 
the GENCODE website (https://​www.​genco​degen​es.​
org/), and TCGA expression profiles and GSE76427 
datasets were divided into mRNA and lncRNA accord-
ing to the comments in the file.

Identification of the FA metabolism‑related lncRNAs
The lncRNA expression profiles were annotated from 
GENCODE (https://​www.​genco​degen​es.​org/). Then 
FA metabolism score of each HCC sample in the 
TCGA and GSE76427 dataset was calculated using 
the "GSVA" R package. Single-sample gene set enrich-
ment analysis (ssGSEA) was used to generate the Pear-
son correlation coefficient and P value. The cases were 
stratified into two subgroups according to the median 
cut-off of the GSVA enrichment score. A total of 2981 
lncRNAs and 182lncRNAs involved in FA metabolism 
were screened from TCGA LIHC and GSE76427 data-
sets, respectively, according to the following criteria: 
correlation |Cor|> 0.25 and P < 0.05. The correlation 
analysis between FA scores and lncRNAs is detailed in 
Supplementary excel 2 and 3.

Identification of FA‑associated lncRNA subtypes
lncRNAs that were positively or negatively correlated 
with the FA scores in TCGA and GSE76427 datasets 
were used for subsequent analysis. The consistency 
matrix was constructed using consistency clustering 
(ConsensusClusterPlus), and the samples were clus-
tered and typed [17]. Using the selected FA metabo-
lism score-related lncRNAs, the FA metabolism-related 
lncRNA subtypes of the sample were obtained. Kaplan–
Meier algorithm and Euclidean lows were used to meas-
ure distance, and 500 times bootstraps were conducted, 
each bootstrap process included 80% of the training set 
patients. The number of clusters was set from 2 to 10, 
and the best classification was determined according 

to the consistency matrix and consistency cumulative 
distribution.

Gene set enrichment analysis (GSEA) and functional 
annotation
The "GSEA" package was used to analyze the molecular 
pathways of different molecular clusters in various bio-
logical processes. The candidate gene sets in the Hall-
mark database were used for GSEA [18]. “ClusterProfiler” 
package [19] was utilized for functional enrichment 
annotations.

Assessment of the TF activity
The activity of TFs was assessed using the method devel-
oped by Garcia-Alonso [20] and the level of TF activation 
among different clusters was compared using analysis of 
variance (ANOVA).

A first‑order partial correlation analysis
A first-order partial correlation analysis was performed 
to determine correlations among FA metabolism-related 
lncRNAs, FA metabolism scores, and FA metabolism-
related genes. FA score was postulated x and FA metab-
olism-related genes levels as y. The first-order partial 
correlation between x and y under the lncRNA condition 
was follows:

Risk model
The risk score for each patient was calculated as follows: 
Score = (beta i × Exp i), where i refers to the expression 
level of FA metabolism-related lncRNA, and beta refer to 
the coefficient of the gene regressed by the correspond-
ing lncRNA univariate Cox. The patients were divided 
into high-risk and low-risk groups according to the opti-
mal segmentation point. The survival curve was drawn 
using the Kaplan–Meier method for survival analysis, 
and the logarithmic rank test was performed to assess the 
significance of the difference.

Cell lines, cell transfection, RNA isolation, real‑Time 
Quantitative Reverse Transcription‑ Polymerase Chain 
Reaction (qRT‑PCR), western blot, Oil Red O Staining 
and statistical analyses
HepG2, Huh7, PLC/PRF/5 and Hep3B cell lines were 
purchased from the Guangzhou Cellcook Biotech 
Co.,Ltd (Guangdong, China). Human LO2, HCCL97L, 
HCCM97H, and HCCLM3 were gifted from Prof. Zhou 
Zhengjun, Fudan University, Zhongshan Hospital. Small 
interfering RNA of SNHG7, scramble siRNA of SNHG7, 

rxylncRNA=
rxy−rxlncRNA∗rylncRNA

1−r2
x ln cRNA

∗ 1−r2
y ln cRNA
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smart silencer of SNHG1 and scramble of SNHG1 were 
purchased from RiboBio (Guangzhou, China). RNA iso-
lation, qRT-PCR, western blot analysis and statistical 
analyses were performed as previously described [21]. 
The primers, siRNA and smart silencer, and antibodies 
used are listed in Supplementary Table S1, S2 and S3, 
respectively. The results of qRT-PCR and Immuno-blot-
ting were normalized with β-actin. Oil Red O Staining 
were performed according to the instructions. The HCC 
cells were washed twice with PBS, and fixed the cells with 
4% paraformaldehyde for 10  min at room temperature 
and stained the cells with the Oil Red O Kit.

Ethics statement
Our research protocol was approved by the Ethics Com-
mittee of the Peking University Shenzhen Hospital. 
36 HCC tissues for validation were obtained from our 
center. All patients had given permission for their sam-
ples to be used in research and the samples were admin-
istered by the Peking University Shenzhen Hospital.

Results
Construction of a prognostic model based on FA acid 
metabolism‑related lncRNAs
To construct FA metabolism-related lncRNA signa-
tures in HCC, 158 genes were extracted from the Hall-
mark FA metabolism pathway and a single sample GESA 
were performed to generate an FA metabolism score 
for each patient. Totally, 2981 and 182 lncRNAs from 
TCGA LIHC and GSE76427 datasets, respectively, were 
identified to be significantly related to FA metabolism 
scores (|Cor|> 0.25 and P < 0.05). However, only 70 lncR-
NAs from the two datasets overlapped and exhibited a 
co-positve or co-negative correlation with FA metabo-
lism scores (Fig.  1A). Then, “ConsensusClusterPlus”, an 
unsupervised machine learning algorithm, was used to 
explore optimal molecular clusters. Two clusters were 
observed to be the most stable using the Cumulative 
distribution function Delta area curve (Fig.  1B, C). The 
overall survival rate of cluster 1 (C1) was significantly 
longer than that of cluster 2 (C2) (Fig. 1D). Additionally, 
the same phenomenon was observed in the GSE76427 
cohort (Fig. 1E). Furthermore, the FA metabolism scores 

Fig. 1  Identifications of FA metabolism related-lncRNA subtypes and their prognostic value in HCC progression. A Venn diagram shows that 52 and 
18 lncRNAs were negatively and positively correlated, respectively, with FA metabolism in the TCGA and GSE76427 cohorts. B The consensus CDF, 
relative changes in the area under the CDF curves, and tracking plots showed with the index from 2 to 9. C The distribution of different clusters with 
index k = 2. D-E Kaplan–Meier plots indicate that the OS of patients in cluster 1 (C1) was significantly longer that those in cluster 2 (C2) in the TCGA. 
D and GSE76427 (E) cohorts. F-G The FA metabolism scores of C1 were remarkably higher than that of C2 in the TCGA (F) and GSE76427 (G) cohorts. 
Abbreviation: FA, Fatty acid; lncRNA, Long non-coding RNA; HCC, Hepatocellular carcinoma; TCGA, The Cancer Genome Atlas; CDF, Cumulative 
distribution function; OS, Overall survival
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in C1 were significantly higher than those in C2 in the 
two cohorts (Fig. 1F, G).

Relationship between FA metabolism related‑lncRNA 
signatures and clinical characteristics
The different clinical features between the two molecu-
lar subtypes, which were classified using the FA metabo-
lism related-lncRNA signatures, were investigated. No 
significant difference was observed in age between the 
two clusters in the TCGA cohort (Fig. 2A). In line with 
the conventional speculations that males are more likely 
to develop liver cancer, the patients in C1 were observed 
to have a higher percentage of males (Fig. 2B). However, 
other clinical features, including T stage (tumor stage), 
N stage (lymph node stage), M stage (tumor metasta-
sis stage), and Grade stage (pathological grade), were 
showed significant difference between the molecular 
C1 and C2 (Fig. 2C-G). The patients in C2 were associ-
ated with high-grade clinicopathological features, which 
partly explains the poor prognosis of patients in C2.

Genomic DNA damage and mutational characterization 
of high‑ and low‑risk clusters
Malignancy and immune infiltration are associated 
with DNA damage assessment, including aneuploidy, 
homologous recombination deficiency (HRD), frac-
tion of altered and number of segments. Aneuploidy 
is ubiquitously observed in various cancer, reflect-
ing the degree of immune evasion and lower response 

to immunotherapy [22]. The aneuploidy scores of 
C1 were significantly lower than that of C2. Moreo-
ver, a strong negative correlation between aneuploidy 
scores and FA metabolism scores were observed in the 
TCGA cohort  (Fig.  3A, B). Additionally, the degree 
of HRD was negatively correlated with the scores of 
FA metabolism. The patients in C1 had lesser HRD 
compare with those in C2. Previous studies reported 
that apoptosis-resistant tumors are correlated with 
a higher degree of HRDs and fraction altered but not 
with mutation rates [23]. Similarly, the level of fraction 
altered was significantly negatively correlated with the 
FA metabolism score, and the patients in C1 had lesser 
fraction altered than those in C2 (Fig.  3C-F). The 
patients in C1 had a lower number of segments than 
those in C2 (Fig.  3G). The number of segments were 
negatively correlated with the FA metabolism score 
without statistical significance (Fig.  3H). Moreover, 
the difference in the nonsilent mutation rate between 
C1 and C2 was not statistically significant (Fig.  3I, J). 
The mutation burden of C1 was smaller than that of 
C2, especially, in TP53, BAP1, SPEG, and ADRGL3 
(Fig.  3K). The patients in C2 had a higher mutation 
rate of TP53 (42% vs. 24%), BAP1 (11% vs. 4%), SPEG 
(8% vs. 3%), and ADRGL3 (9% vs. 3%), the lower muta-
tion rate of ATP10D, MYO1B, and RNF17 (0% vs. 4%) 
than those in C1 (Supplementary excel 4). Thus, C2 
exhibited a higher degree of malignancy.

Fig. 2  Clinical information distribution of molecular clusters in the TCGA cohort. A Age, B Gender, C T stage, D N stage, E M stage, F Tumor stage, 
G Grade. The table in the upper half represents the chi-square test of the clinical information between different molecular subtypes. Abbreviations: 
TCGA, The Cancer Genome Atlas
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Distinct pathway patterns between FA metabolism‑related 
lncRNA subgroups
To investigate the activated cellular signaling path-
ways underlying FA metabolism-associated lncR-
NAs, a different expressed genes analysis and GSEA 
between the two clusters were performed. As shown 
in Fig. 4A, compared with C1, 18 pathways were acti-
vated in C2, while 20 pathways were activated and 10 
pathways were inhibited in the GSE76427 dataset. In 
total, 14 oncogenic pathways, including G2M check-
point, E2F targets, MYC targets, mitotic spindle, allo-
graft rejection, epithelial mesenchymal transition, 
WNT β-Catenin signaling, unfolded protein response, 
inflammatory response, mTORC1 signaling, apical 

junction, PI3K AKT mTOR signaling, IL2 STAT5 sign-
aling, and TNFA signaling via NFKB overlapped in the 
two datasets (Fig.  4A). Moreover, Radar plots were 
used to describe consistently up-regulated pathways 
between C1 and C2 in the two cohorts. Furthermore, 
GSEA revealed that patients with subtype C2 showed 
up regulation in EMT, indicating that those lncRNAs 
could play an important role in connecting the hair 
surface of EMT, WNT, and tumor necrosis factor 
(Fig. 4B, C). Thus, the patients in C2 were speculated 
to possess high level EMT features and immune regu-
latory-related pathways, indicating that these lncRNAs 
could play important roles in FA metabolism, EMT, 
and the immune microenvironment.

Fig. 3  Genomic mutations of the TCGA cohort molecular subtypes. A, C, E, G, I Comparison of aneuploidy scores, homologous recombination 
defects, fraction altered, number of segments and nonsilent mutation rates in the molecular subtypes of the TCGA cohort. B, D, F, H, J Correlation 
analysis between FA metabolism activity and aneuploidy scores, homologous recombination defects, fraction altered, number of segments and 
nonsilent mutation rates in the TCGA cohort. K Somatic mutation analysis of the two molecular subtypes. Abbreviations: FA, Fatty acid; TCGA, The 
Cancer Genome Atlas
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Calculation of immune cell infiltration scores
The infiltration of immune cells, according to RNA-
sequencing, was determined based on a previous study 
[24]. As shown in Fig.  5A, activated B cell, activated 
CD4 T cell, immature B cell, regulatory T cell, T follic-
ular helper cell, type 2 T helper cell, activated dendritic 
cell, MDSC, and plasmacytoid dendritic cell in C2 were 

more significant than those in C1 in the TCGA LIHC and 
GSE76427 cohorts (Fig.  5). Additionally, CIBERSORT 
was used to assess the degree of immune cell infiltra-
tion in the TCGA LIHC and GSE76427 cohorts. The dif-
ferences between C1 and C2 were mainly concentrated 
in the number of macrophages. The M0 macrophages 
were significantly upregulated in C2 in TCGA LIHC and 

Fig. 4  Pathway analysis of the FA metabolism-related lncRNA subgroups. A A heatmap demonstrating NESs of the Hallmark pathways calculated 
by comparing C2 with C1. B, C Radar plots indicating the NESs of the Hallmark pathways calculated using GSEA of C2 versus C1 in the TCGA cohort 
(B) and GSE76427 cohort (C). Abbreviations: FA, Fatty acid; lncRNA, Long non-coding RNA; NES, Normalized enrichment scores; GSEA, Gene set 
enrichment analysis
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GSE76427, while M1 and M2 macrophage were signifi-
cantly downregulated in C2. Besides macrophages, mast 
cells resting were significantly decreased in C2 com-
pared to C1. The proportion of activated NK cells was 

decreased in the TCGA LIHC cohort. However, acti-
vated NK cells in C2 were higher than that in C1 in the 
GSE76427 cohort (Fig. 5B).

Fig. 5  Immune characteristics of FA metabolism-associated lncRNA subsets. A Differences in 28 immune infiltration scores were assessed using 
ssGSEA in the TCGA and GSE76427 cohorts. B The difference in 22 immune infiltration scores were evaluated using CIBERSORT in the TCGA and 
GSE76427 cohorts. Abbreviations: FA, Fatty acid; lncRNA, Long non-coding RNA; ssGSEA, single sample gene set enrichment analysis; TCGA, The 
Cancer Genome Atlas
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Predictive value of the immunotherapy response of FA 
metabolism‑related lncRNA signatures
Given the importance of immunotherapy in HCC treat-
ment, the immune checkpoint genes in the HisgAt-
las dataset were analysed [25], revealing that many 
immune checkpoint genes were significantly highly 
increased in C2 than that in C1. As shown in Fig.  6A, 
B and Supplementary Fig. 2, the high-risk subgroups of 
C2 had overexpression of several critical immune check-
point genes, such as BTLA, CD160, CD27, CTLA4, 
HAVCR2(TIM-3), ICOS, IDO1, LAG3, TNFSF4, 
PDCD1 (PD-1), and ADORA2A, compared to those of 

C1. Additionally, tumor Immune dysfunction and exclu-
sion (TIDE) software was used to assess the potential 
response to immunotherapy in the two clusters. The 
higher the TIDE predictive score, the higher the chance 
of immune escape, indicating that patients are less likely 
to benefit from immunotherapy (Fig.  6C, D). TIDE 
scores in C2 were higher than that of C1 in the TCGA 
cohort, suggesting that patients in C2 have a higher 
possibility of immune escape and lower benefits from 
immunotherapy (Fig.  6C). However, no significant dif-
ference was observed in the predictive value of immuno-
therapy response in the GSE76427 cohort (Fig. 6D).

Fig. 6  Analysis of the difference in immunotherapy in FA metabolism-related lncRNA subgroups. A, B The boxplots display the immune 
checkpoints that were up-regulated in C1 compared with C2 in the TCGA and GSE76427 cohorts. C Differences in the TIDE score and immune 
response status of the different molecular subtypes in the TCGA cohort. D Differences in the TIDE score and immune response status of the different 
molecular subtypes in the GSE76427 cohort. Abbreviations: FA, Fatty acid; lncRNA, Long non-coding RNA; TCGA, The Cancer Genome Atlas; TIDE, 
Tumor Immune dysfunction and exclusion
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Characterization of FA metabolism‑related lncRNAs
Unlike protein-coding genes (PCG), most FA metabo-
lism-related lncRNAs were negatively correlated with 
FA scores (Fig.  7A). Previous studies have shown that 
the function of lncRNA partly depends on its cellu-
lar localization. Usually, lncRNAs in the nucleus can 
activate or inhibit the transcriptional activities of tar-
get genes by directly binding to them, and regulating 
gene expression by participating in histone modifica-
tion or recruitment of TFs [26]. lncRNAs in the cyto-
plasm usually interact with miRNAs as competitive 

endogenous RNA and mediate target gene expression 
[27]. “Relative concentration index (RCI)”, as defined 
by LncATLAS database [28] was used to describe the 
proportion of lncRNAs in the cytoplasm and nucleus. 
Additionally, 64.94% of the RCI was negative in the 
TCGA cohort, while 68.57% of the RCI was negative in 
the GSE76427 cohort, suggesting that approximately 
70% of FA metabolism-related lncRNAs are localized in 
the nucleus (Fig. 7B).

Furthermore, the relationship between FA metabolism-
related lncRNAs and dysregulated TFs was analyzed. To 

Fig. 7  Integrative Analysis of FA metabolism-related lncRNAs. A Correlation coefficient density curve of FA metabolism-related lncRNAs and PCG. 
B The cellular component of FA metabolism-associated lncRNAs in cell lines. RCI < 0 indicates nuclear localization and RCI > 0 indicates cytoplasmic 
localization. C The distribution of TFs has a significant negative correlation with nuclear lncRNAs in the two cohorts. D Locations of the 12 lncRNAs 
in the signature. E Distribution of the activated and suppressed TFs in C2 compared with C1 in the TCGA and GSE76427 cohorts. F The results of the 
functional enrichment analysis of TFs up-regulated in the C1 subtype. G The dysregulation in TF activity of the up-regulated transcription factors in 
the TCGA subtypes. Abbreviations: FA, Fatty acid; LncRNA, Long non-coding RNA; HCC, Hepatocellular carcinoma; TCGA, The Cancer Genome Atlas; 
PCG, Protein coding gene; RCI, relative concentration index; TF, Transcriptional factor
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compare the TF activity between the two clusters, the TF 
activity score of each sample from TCGA and GSE76427 
was calculated using the method developed by Garcia-
Alonso [20]. A total of 123 and 70 significantly activated 
TFs were identified in C2 in the TCGA and GSE76427 
cohorts, respectively. Additionally, analyzing correla-
tion between nuclear lncRNAs and differential expressed 
TFs revealed a significantly negative correlation between 
a group of FA metabolism-related lncRNAs and a set of 
TFs (Fig. 7C). A total of 18 lncRNAs were positively cor-
related with FA scores, while the remaining 52 lncRNAs 
were negatively correlated with FA metabolism scores. 
Based on the correlation between lncRNAs and TF activ-
ity, as shown in Fig. 7D, most of the 12 lncRNAs in the 
signature were located in the nucleus. Compare with C1, 
nine TFs were significantly decreased and 17 TFs were 
significantly increased in C2 in the TCGA dataset, while 
four TFs were significantly down-regulated and three TFs 
were significantly up-regulated in C2 compared with C1 
in the GSE76427 dataset (Fig.  7E). These 26 TFs were 
speculated to contribute to poor prognosis in C2. To vali-
date this hypothesis, a cellular signaling pathway enrich-
ment analysis of the 26 TFs was performed. The results 
showed that the downstream targets by the TFs were 
significantly enriched in a few critical cancer-related 
pathways, such as PI3K-Akt signaling pathway, cell cycle, 
FoxO signaling pathway, small cell lung cancer, p53 sign-
aling pathway (Fig. 7F, Supplementary excel 5). Further-
more, 17 TFs expression were significantly increased and 
9 TFs expression were significantly decreased in C2 com-
pared with C1 in the TCGA dataset (Fig. 7G). Therefore, 
these FA metabolism-related lncRNAs and TFs could 
together promote HCC development.

Identification of key lncRNAs related to FA metabolism
To investigate the most crucial lncRNA in FA metabo-
lism regulation, a first-order partial correlation analy-
sis between FA metabolism scores and lncRNAs was 
performed. When the contribution of three key lncR-
NAs (SNHG1, LINC00261, and SNHG7) was removed, 
the correlation between FA metabolism scores and 
FA metabolism-related protein-coding genes (PCGs) 
decreased significantly (Fig.  8A), indicting their critical 
roles in linking FA metabolism and related signaling path-
ways. Then, using the FA metabolism-related PCGs and 
three key lncRNAs, consistent FA metabolism-related 
genes were identified, which were significantly enriched 
in FA degradation, drug metabolism-cytochrome P450, 
retinol metabolism, PPAR signaling pathway, and other 
signaling pathways (Fig.  8B). Base on the expression of 
the three key lncRNAs, the samples were divided into 
high- and low-risk groups using the best segmentation 

point. The overall survival of the high-risk groups was 
significantly shorter than the low-risk group in the two 
HCC datasets (Fig.  8C, D). Thus, the three lncRNAs 
occupy the core position in FA metabolism and are asso-
ciated with the prognosis of patients with HCC.

The biological function of SNHG1 and SNHG7 in HCC cells
To further investigate the molecular function of the 
three FA metabolism-related lncRNAs, cox analysis 
was performed, which revealed that the expressions of 
SNHG1 and SNHG7 were significantly correlated with 
prognosis (P < 0.05), while LINC00261 was correlated 
with the prognosis without statistically significance 
(P = 0.092) (Fig.  9A). Thus, SNHG1 and SNHG7 were 
used for subsequent analysis. The results of qRT-PCR 
showed that the expression of SNHG1 was up-regu-
lated in the hepG2 and Huh7 cell lines, while that of 
SNHG7 was upregulated in the most HCC cell lines 
(Fig.  9B). Additionally, lncRNA silencer was used to 
knock down SNHG1 expression, because SNHG1 is in 
the nucleus, while siRNA was used to inhibit SNHG7 
expression, because SNHG7 is located in the cyto-
plasm. Smart silencer-mediated knockdown of SNHG1 
and siRNA-mediated knockdown of SNHG7 were con-
firmed using qRT-PCR (Fig. 9C). FA Metabolism PCR 
Array was applied to explore the potential targets of 
SNHG1 and SNHG7, wherein, many FA metabolism-
related genes were decreased on SNHG1 and SNHG7 
knockdown. Among these potential downstream 
genes, five genes (ECHS1, MCEE, ACOT12, CPT1B, 
and BDH2) were up-regulated and 17 genes (ACSBG1, 
FABP6, ACADVL, ACSM3, ACOX2, CPT2, ECI2, 
ECHS1, DECR, SLC27A6, MUT, SLC27A4, ACAD10, 
FASN, ACSL4, ACADSB, and GK2) were decreased 
after SNHG1 knockdown in the HepG2 cell line (I 
Fold change I > 2) (Fig.  9D). Moreover, GK was up-
regulated, and 14 genes (ACAA1, SLC27A4, ACSBG1, 
PRKAG3, FABP5, ACSL1, CPT1C, MUT, ACAD11, 
GPD2, ECHS1, GK2, CPT2, and CPT1B) were down-
regulated after SNHG7 silencing (I Fold change I > 2) 
(Fig.  9E). Additionally, the signature negatively regu-
lated fatty acid oxidation and fatty acid beta-oxidation 
using CoA oxidase among FA metabolism through 
GSEA analysis (Fig. 9F). ACSBG1 possesses long-chain 
Acyl-CoA synthetase, which activates fatty acids to 
their CoA derivatives, plays a central role in fatty acid 
metabolism. Previous literature revealed that ACSBG1 
promote tumors to be more sensitive to ferroptosis. 
ACSBG1 was identified as a key pro-ferroptotic factor 
in this heat-induced ferroptosis process [29]. Thus, we 
chose ACSGB1 to perform western blot analysis. The 
results of western blot showed that the expression of 



Page 12 of 18Chen et al. BMC Cancer         (2022) 22:1037 

ACSBG1 were significantly increased after SNHG1 
inhibition, while the level of ACSBG1 is slightly 
increased after SNHG7 inhibition (Fig. 9G). Moreover, 
we performed the Oil Red O staining experiments and 
found that the amounts of intracellular lipid droplets 

are significantly decreased after knockdown of SNHG1 
or SNHG7 in HepG2 and Huh 7 cell lines (Fig.  9H). 
Ferroptosis is recognized as a non-traditional form of 
programmed cell death, characterized by iron over-
load and lipid peroxidation. The cross-talk between 

Fig. 8  Identification of core lncRNAs related to FA metabolism. A The CDF of FA metabolism-related genes, with or without adjusting the first-order 
partial correlation of lncRNA. The solid line represents the CDFs of the correlation coefficient between the unadjusted FA metabolism scores and 
gene expression, and the dotted line represents the first-order partial correlation adjustment relationship between FA metabolism scores and gene 
expression. The two distributions were compared using the Kolmogorov–Smirnov test. The x-axis represents the Pearson’s correlation coefficient 
between FA metabolism scores and gene expression, and the y-axis represents the cumulative probability. B Enrichment analysis of genes 
significantly related to lncRNAs. C, D Kaplan–Meier curve of the high- and low- risk clusters in the TCGA and GSE76427 cohorts. Abbreviations: FA, 
Fatty acid; lncRNA, Long non-coding RNA; CDF, Cumulative distribution curve
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Fig. 9  Experimental validation of SNHG1 and SNHG7 in HCC cell lines. A Univariate Cox analysis revealed that SNHG1 and SNHG7 were 
independent prognostic factors for HCC. B qRT-PCR analysis showed that the expression of SNHG1 was increased in the hepG2 and Huh7 cell lines, 
and the expression of SNHG7 was upregulated in most HCC cell lines. C Smart silencer-mediated knockdown of SNHG1 and the siRNA-mediated 
knockdown of SNHG7 were confirmed using qRT-PCR. D The results of the FA metabolism PCR array show that the expression of 5 genes (ECHS1, 
MCEE, ACOT12, CPT1B, and BDH2) were up-regulated and that of 17 genes ACSBG1, FABP6, ACADVL, ACSM3, ACOX2, CPT2, ECI2, ECHS1, DECR, 
SLC27A6, MUT, SLC27A4, ACAD10, FASN, ACSL4, ACADSB, and GK2 were down-regulated after the knockdown of SNHG1 in the HepG2 (I Fold 
change I > 2). E The results of the FA metabolism PCR array show that the expression of GK was up-regulated, while that of 14 genes (ACAA1, 
SLC27A4, ACSBG1, PRKAG3, FABP5, ACSL1, CPT1C, MUT, ACAD11, GPD2, ECHS1, GK2, CPT2, and CPT1B) were down-regulated after silencing SNHG7(I 
Fold change I > 2). F GSEA analysis revealed that the signature was negatively regulate the fatty acid beta-oxidation, and fatty acid beta-oxidation 
using CoA oxidase. G ACSBG1 expression was increased after the knockdown of SNHG1 in the HepG2 and Huh7 cell lines, and ACSBG1 expression 
was increased after the knockdown of SNHG7 in the HepG2 and Huh7 cell lines. H The cells were stained with Oil Red O kit and photographed to 
lipid droplets. I GPX4, NRF2, NCOA4, and CD98 expressions were downregulated and that of KEAP1 was upregulated after the knockdown of SNHG1 
in the HepG2 and Huh7 cell lines. J GPX4, NRF2, NCOA4, and CD98 expressions were downregulated and that of KEAP1 was upregulated after the 
knockdown of SNHG1 in the HepG2 and Huh7 cell lines. *, P < 0.05, ****, P < 0.0001. The original blots/gels are presented in Supplementary Fig. 2
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ferroptosis and FA metabolism plays an important 
role in cancer progression. Hence, several key pro-
teins were investigated by knocking down SNHG1 and 
SNHG7 in the HepG2 and Huh 7 cell lines. Moreover, 
GPX4, NRF2, NCOA4, and CD98 were downregulated 
whereas KEAP1 was upregulated after the knockdown 
of SNHG1 in the HepG2 and Huh7 cell lines (Fig. 9I). 
The levels of GPX4, NRF2, NCOA4, and CD98 were 
downregulated while that of KEAP1 was upregulated 
after the knockdown of SNHG7 in the HepG2 and 
Huh7 cell lines (Fig.  9J). Thus, SNHG1/7 not only 
play important role in FA metabolism, but also in 
ferroptosis.

The validation of SNHG1 and SNHG7 in HCC tissues
To validate our findings, we performed qRT-PCR 
analysis using 36 liver cancer tissue specimens from 
our center. According to the expression levels of 
SNHG1 or SNHG7, we divided 36 HCC tissues into 
high and low expression groups. We observed that the 
immune-infiltration related genes (HAVCR2, ICOS, 
LAG3, and PDCD1) were significantly increased in 
the SNHG1 high expression group (Fig.  10A), how-
ever, the level of HAVCR2, ICOS, LAG3, and PDCD1 
were slightly increased without significance in the 
SNHG7 high expression group (Fig. 10B). On the other 
hand, the transcription factors (FOXO1, HNF1A, 

Fig. 10  The validation of the signature in clinical HCC tissues. A The immune-infiltration related genes (HAVCR2, ICOS, LAG3, and PDCD1) were 
significantly increased in the SNHG1 high expression group. B the level of HAVCR2, ICOS, LAG3, and PDCD1 were slightly increased without 
significance in the SNHG7 high expression group. C The transcription factors (FOXO1, HNF1A, PPARA, PPARG, CEBPA, ONECUT1, CREB1, FOXA1, 
ZBTB7A, CEBPB, E2F4, and SMAD3) were remarkably overexpressed in the SNGH1 high expression group., the expression of FOXO1, HNF1A, PPARA, 
PPARG, CEBPA, ONECUT1, CREB1, FOXA1, ZBTB7A, and SMAD3 were significantly overexpressed in the SNGH7 high expression group. *, P < 0.05, **, 
P < 0.01. ***, P < 0.001, ****, P < 0.0001
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PPARA, PPARG, CEBPA, ONECUT1, CREB1, FOXA1, 
ZBTB7A, CEBPB, E2F4, and SMAD3) were remark-
ably overexpressed in the SNGH1 high expression 
group (Fig.  10C), the expression of FOXO1, HNF1A, 
PPARA, PPARG, CEBPA, ONECUT1, CREB1, FOXA1, 
ZBTB7A, and SMAD3 were significantly overexpressed 
in the SNHG7 high expression group (Fig. 10D).

Discussion
Several studies have shown that FA metabolism, a criti-
cal metabolic pathway that, provides energy, and sign-
aling factors promotes malignancy [30, 31]. Moreover, 
lncRNAs can mediate cancer growth, invasion and 
metastasis. However, clinical association between lncR-
NAs and FA metabolism remains unclear. A systematic 
analysis was performed to identify FA metabolism-
associated lnRNAs in HCC, which revealed that FA 
metabolism-related lncRNA signatures remarkably cor-
related with the prognosis of HCC in both the TCGA 
and GEO datasets. Furthermore, on comprehensively 
analyzing, the C1 and C2 subtypes, significant dif-
ferences in clinical features, gene mutations, onco-
genic pathways, TF activities, and immune status were 
observed. Finally, three key lncRNAs, namely SNHG1, 
LINC00261, and SNHG7, were identified, which 
showed significant correlations with FA metabolism 
according to the first-order partial correlation analysis. 
Notably, SNHG1 and SNHG7 not only regulated many 
FA metabolism related-genes, but also mediated cancer 
cell ferroptosis.

To evaluate the FA metabolism score of each clini-
cal sample, ssGSEA-derived FA metabolism score 
was performed instead of directly correlating of FA 
metabolism-related genes due to the huge number of 
FA metabolism-related genes. The direct association 
of lncRNAs with these genes generates hundreds of P 
values, leading to several false-positive results and hin-
dering the assessment of the significance of the asso-
ciation between each lncRNA and FA metabolism. To 
circumvent this problem, a ssGSEA algorithm was per-
formed to include 158 FA metabolism-related genes 
as a gene set to produce a score for each patient. The 
GSVA enrichment score of FA metabolism for individ-
ual patients was obtained and followed by the degree 
of FA activation. Thus, the score of FA metabolism-
related lncRNA signatures was significantly associ-
ated with the outcome of HCC using two independent 
datasets.

On comparing clinical information, gene mutation, 
and immune-features between the two clusters, the 
patients in C2 had higher possibilities of DNA damage 
features, such as aneuploidy, HRD, fraction altered, and 
the number of segments, and higher degree of genomic 

mutation in C2 with worse prognosis. To a certain 
extent, these results could explain the poor survival of 
C2. Additionally, several gene mutations were associ-
ated with FA metabolism related-lncRNAs. For exam-
ple, the mutations of TP53, BAP1, and DMD were the 
top three gene mutations in C2. Takai et  al. reported 
that patients with HCC patients having the TP53 muta-
tion are associated with worse clinical tumor stage and 
prognosis [32]. Previous studies report that the TP53 
mutation suppresses immune response in HCC, with 
its mechanism associated with higher infiltration of 
immunosuppressive cells [33]. In the tumor microen-
vironment, the differences between C1 and C2 were 
mainly concentrated in the number of macrophages. 
The M0 macrophages was significantly upregulated in 
C2 in TCGA LIHC and GSE76427, while M1 and M2 
macrophage were significantly downregulated in C2, 
suggesting strong heterogeneity between C1 and C2, 
at multiple levels, including clinical, molecular, and 
immunological levels.

Recently, drugs targeting FA metabolism in T cells have 
been reported to improve the efficacy of immunotherapy. 
TVB3664, a FASN inhibitor, combined with PD-L1 anti-
body could improve therapeutic efficacy [34]. Xiao et  al. 
revealed that lipid peroxidation contributed to Tc9 cell 
longevity and enhanced T-cell based immunotherapy [35]. 
The EMT process has also been reported to be associated 
with cancer cell immune evasion. However, molecular 
relationships among FA metabolism, EMT and immu-
noregulation in cancer development remained unex-
plored. In the present work, various types of immune cell 
types, immune checkpoint genes and EMT process were 
enriched in patients in C2, as stratified by FA metabolism-
related lncRNAs. These results indicated that the tumor 
microenvironment of C2 is surrounded by numerous 
immune cells. Additionally, the EMT process was corre-
lated with the cancer cell immune escape [36–39], suggest-
ing that the EMT activation in C2 stimulates HCC cells to 
form an immunosuppressive environment, and protecting 
HCC cells from recognition and attack by immune cells. 
Based on these differences, the TIDE tool was used to fur-
ther assess the potential response to immunotherapy. The 
C2 exhibited higher TIDE scores than C1 in the TCGA 
cohort, implying that C2 has a higher chance of immune 
escape. Thus, the patients in C2 are less likely to benefit 
from immunotherapy. Overall, these findings suggest that 
the FA metabolism-associated lncRNA model can predict 
the prognosis and immunotherapy response of patients 
with HCC.

Finally, in exploring the lncRNAs that strongly reg-
ulate FA metabolism using first-order partial corre-
lation analysis, three key lncRNAs, namely SNHG1, 
LINC00261, and SNHG7, had significant correlations 
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with FA metabolism scores were identified. These 
three key lncRNAs not only reflect the FA metabolism 
pattern, but also can predict the prognosis of patients 
with HCC. Furthermore, SNHG1 and SNHG7 were 
identified as independent factors for HCC prognosis. 
Previous studies report that SNHG1 promotes HCC 
development and metastasis through sponging miR-
195-5p [40], miR-377-3p [41], miR-376a [42], and 
miR-326 [43]. Additionally, SNHG7 contributes to 
HCC growth, invasion and metastasis via miR-122-5p 
[44], miR-9-5p [45], and miR-34a [46]. To the best of 
our knowledge, this is the first to elucidate association 
between SNHG1/7 and FA metabolism. PCR analysis 
revealed that many genes, including ACSBG1, CPT2, 
and GK2, were regulated by SNHG1/7. The level of 
lipid peroxidation-product accumulation, which is 
mediated by the producing and scavenging of lipid 
peroxide, is regarded as determining factors of fer-
roptosis occurrence [47]. Therefore, the changes in 
some ferroptosis-related genes were explored, wherein, 
SNHG1/7 was found to not only regulate many FA 
metabolism related-genes, but also mediate cancer cell 
ferroptosis. GPX4, NRF2, NCOA4, and CD98 expres-
sions were downregulated after SNHG1 knockdown, 
and GPX4, NRF2, NCOA4, and CD98 expressions were 
downregulated after SNHG7 knockdown, indicating 
that SNHG1/7 also are involved in ferroptosis in HCC.

Conclusions
FA metabolism-related lncRNA signatures were devel-
oped from two independent HCC cohorts of TCGA and 
GEO. Furthermore, a cluster of patients with HCC was 
identified using the lncRNA signature, which had poorer 
survival, a higher infiltration of immune-suppressive 
cells, and a lower response to immunotherapy. SNHG1/7 
were also revealed to regulate FA metabolism and ferrop-
tosis. Therefore, this study provides novel insights into 
the clinical aspects of HCC.
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