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Abstract 

Background:  The global burden of hepatocellular carcinoma (HCC) is increasing, negatively impacting social health 
and economies. The discovery of novel and valuable biomarkers for the early diagnosis and therapeutic guidance of 
HCC is urgently needed.

Methods:  Extracellular matrix (ECM)-related gene sets, transcriptome data and mutation profiles were downloaded 
from the Matrisome Project and The Cancer Genome Atlas (TCGA)-LIHC datasets. Coexpression analysis was initially 
performed with the aim of identifying ECM-related lncRNAs (r > 0.4, p < 0.001). The screened lncRNAs were subjected 
to univariate analysis to obtain a series of prognosis-related lncRNA sets, which were incorporated into least absolute 
selection and shrinkage operator (LASSO) regression for signature establishment. Following the grouping of LIHC 
samples according to risk score, the correlations between the signature and clinicopathological, tumour immune infil-
tration, and mutational characteristics as well as therapeutic response were also analysed. lncRNA expression levels 
used for modelling were finally examined at the cellular and tissue levels by real-time PCR. All analyses were based on 
R software.

Results:  AL031985.3 and MKLN1-AS were ultimately identified as signature-related lncRNAs, and both were signifi-
cantly upregulated in HCC tissue samples and cell lines. The prognostic value of the signature reflected by the AUC 
value was superior to that of age, sex, grade and stage. Correlation analysis results demonstrated that high-risk groups 
exhibited significant enrichment of immune cells (DCs, macrophages and Tregs) and increased expression levels of all 
immune checkpoint genes. Prominent differences in clinicopathological profiles, immune functions, tumour mutation 
burden (TMB) and drug sensitivity were noted between the two risk groups.

Conclusions:  Our signature represents a valuable predictive tool in the prognostic management of HCC patients. 
Further validation of the mechanisms involved is needed.

Keywords:  Hepatocellular carcinoma, Extracellular matrix, LncRNA, Immune infiltration, Tumour mutation burden

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
HCC is one of the subtypes of liver cancer, accounting for 
90% of all cases [1, 2]. HCC has typically been associated 
with high mortality over the past decades due to the lack 
of effective approaches for early diagnosis and treatment. 
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Currently, HCC is the sixth most common cancer 
worldwide, and its incidence and mortality continue to 
increase [3]. Generally recognized risk factors attributed 
to the occurrence and progression of HCC include long-
term alcohol consumption, nonalcoholic steatohepatitis, 
and hepatitis virus infection [4]. The prolonged presence 
of these factors makes individuals at high risk of devel-
oping cirrhosis, a state that predisposes them to progress 
to advanced liver cancer with a poor prognosis. There-
fore, the earlier the biomarkers associated with cancer 
progression are identified, the more likely it is that early 
intervention in HCC will be possible.

The ECM is a complex and dynamic scaffold network 
of secreted macromolecular substances. In addition to 
supporting and connecting tissue structures, the ECM 
regulates many crucial cellular physiological activities, 
including growth, migration, differentiation and apop-
tosis [5]. Evidence supports the overview that altera-
tions in the structure and composition of the ECM allow 
cancer cells to achieve numerous hallmarks of cancer 
[6]. Additionally, by interfering with the drug transport 
and delivery process, the ECM may be involved in drug 
resistance mechanisms to some degree [7]. Based on 
improvements in sequencing technology, an increasing 
number of lncRNAs that may affect gene expression at 
the transcriptional and posttranscriptional levels have 
been discovered. The pivotal roles that lncRNAs may 
play in maintaining the cellular microenvironment and 
in the interaction between malignant cells and other cells 
are also widely understood [8]. This interaction involves 
alterations in fibril production to regulate fibroblast via-
bility and apoptosis [9–11]. Given their critical role in 
the ECM, lncRNAs have been identified as key targets 
for HCC research. Therefore, in this study, we developed 
a prediction model based on ECM-related lncRNAs to 
analyse sample information downloaded from TCGA 
database with the aim of predicting the probability of 
survival in HCC patients.

Materials and methods
Data download, preliminary processing, and screening 
of ECM‑related LncRNAs (ECMrlncRNAs)
We downloaded RNA sequencing (RNA-seq) and clini-
cal data of liver cancer from The Cancer Genome Atlas 
(TCGA)-LIHC dataset (https://​gdc.​cancer.​gov/). Then, 
a systematic collation was performed for subsequent 
analysis. LncRNA sets were extracted in bulk from the 
transcriptome profiles using GTF files and then assem-
bled into an expression matrix. GTF files were obtained 
from the Ensembl website (http://​asia.​ensem​bl.​org) for 
annotation to distinguish lncRNAs from the RNA-seq 
data. A list of ECM-related genes was retrieved from 
the Matrisome Project (www.​matri​somep​roject.​mit.​

edu/​other-​resou​rces/​human-​matri​some). Coexpression 
analysis was subsequently applied to screen ECM-related 
lncRNAs (ECMrlncRNAs). Those with correlation coef-
ficients greater than 0.4 and p values less than 0.001 were 
ultimately identified as ECMrlncRNAs. Corresponding 
calculations were primarily based on the “limma” pack-
age in R.

Construction of a prognostic signature using the LASSO 
algorithm
Hazard ratios (HR) of ECMrlncRNAs were calculated 
using univariate Cox hazard regression analysis. ECM-
rlncRNAs were considered eligible and incorporated 
into the LASSO algorithm for modelling if they were 
determined to have prognostic value based on HR val-
ues. LASSO Cox regression involves a penalized linear 
model with a shrinkage penalty that induces sparsity of 
predictors in the model. After completing the cross-
validation, the LASSO results were optimized by mul-
tivariate regression analysis and then integrated into 
the model construction. Notably, the results of the 
cross-validation represent the number of lncRNAs that 
are deemed suitable for modelling by LASSO regres-
sion. The following formula was used for modelling: 

n
i=1

expression level of lncRNA ∗ regression coefficient  . 
The R packages “survival” and “glmnet” were utilized 
for all calculations. The 1-, 3-, and 5-year ROC curves 
were subsequently plotted to show the prognostic per-
formance of the signatures using the “survival”, “sur-
vminer” and “timeROC” packages. When the model was 
determined to exhibit favourable prognostic value, total 
samples included in the analysis were divided into train-
ing and testing groups for the subsequent analyses. Each 
group was divided into a high-risk set and a low-risk set 
based on the median risk score. To further illustrate the 
distribution of the two risk groups, principal component 
analysis (PCA) was applied for visualization. In addition, 
Kaplan–Meier analysis was also performed with the “sur-
vival” package to reflect the difference in overall survival 
(OS). The relationship between the signature and clinico-
pathological characteristics was assessed primarily based 
on chi-square tests. A combined analysis of univariate 
regression and multivariate regression was conducted to 
determine the independent risk factors.

Functional enrichment exploration
To assess the contribution of differentially expressed 
genes (DEGs) to a phenotype, we adopted the “cluster-
Profiler” package for GO term and KEGG pathway analy-
ses [12–14]. The thresholds were set as a P value < 0.05 
and FDR < 0.05. The results are presented as bar plots.

https://gdc.cancer.gov/
http://asia.ensembl.org
http://www.matrisomeproject.mit.edu/other-resources/human-matrisome
http://www.matrisomeproject.mit.edu/other-resources/human-matrisome
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Immune correlation analysis
Using the median risk score as a cut-off, we divided the 
HCC patients into two subgroups: high- and low-risk 
groups. The relationships between the established sig-
nature and tumour immune features were analysed by 
ssGSEA and TIMER. The use of these algorithms in this 
procedure helped to reveal differences in the distribution 
of tumour-infiltrating immune cells and immune-related 
functions between the two risk groups. Moreover, we 
performed a correlation analysis of the risk score with 
cytokines and chemokines based on the gene expression 
level. These included cytokines and chemokines were 
obtained from Ozga et al. and Montanari et al. [15, 16]. 
A P value< 0.05 was considered a statistically significant 
threshold.

The relationship between the signature and TMB
TMB is defined as the total number of substitutions and 
insertions/deletions per megabase (Mut/Mb) in the exon 
coding region of the evaluated gene in one tumour sam-
ple. TMB is implicated in overall survival after immu-
notherapy in multiple cancer types, suggesting the 
importance of TMB as a predictive biomarker for the 
efficacy of immune checkpoint inhibitors (ICIs) [17]. To 
examine the predictive value of TMB in our model, we 
obtained masked somatic mutation (MSM) data from the 
TCGA-SNP category. After processing the data analyti-
cally, the R package “maftools” was used to analyse and 

visualize the mutation frequencies and types of genes 
between both risk groups.

The association between the signature and immune 
checkpoint genes
Linking the signature to the expression level of various 
immune checkpoint genes contributed to the identifica-
tion of appropriate therapeutic options for HCC popula-
tions at different levels of risk. The Wilcoxon signed-rank 
test was applied in the comparison of gene expression 
levels in different risk groups using the R package “ggstat-
splot”, and the corresponding results were presented as 
box plots.

Prediction of therapeutic response
Comparison of drug sensitivity to targeted drugs and 
chemotherapeutic agents in the high- and low-risk 
groups was accomplished by calculating IC50 values 
using the R package “pRRophetic”. The drugs included 
in the comparison are routinely applied in the treatment 
of HCC, such as sorafenib, sunitinib, erlotinib, bleomy-
cin, cisplatin, doxorubicin, gemcitabine, mitomycin C, 
docetaxel, paclitaxel, temsirolimus and vinblastine. To 
establish a link between our signature and the immu-
notherapeutic response, we used the Tumour Immune 
Dysfunction and Exclusion Algorithm (TIDE) to model 
and integrate two key mechanisms of tumour immune 
evasion to provide predictive results for immunotherapy. 

Fig. 1  Study Workflow



Page 4 of 18Wu et al. BMC Cancer         (2022) 22:1036 

Fig. 2  Cross-validation and LASSO Regression. When the curve reaches the lowest point, the error of cross-validation is minimized. At this point, the 
corresponding figure represents the number of significant lncRNAs (A). LASSO regression plot (B)
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Elevated TIDE predicts that patients have suppressive 
cells that inhibit T-cell infiltration and fail to respond to 
immunotherapy [18].

Cell culture and real‑time PCR
The normal cell line (L02) and HCC cell lines (SK-Hep-1, 
Hep-G2, Huh-7 and LM-3) were purchased from the Key 
Laboratory of Biotherapy and Regenerative Medicine, 
Gansu Province (Gansu, China). All cell lines were cul-
tured in Dulbecco’s modified Eagle’s medium (DMEM, 
Solarbio, Beijing, China) with 10% foetal bovine serum 
(FBS, Solarbio) and cyan chain double antibodies (Bey-
otime, Jiangsu, China) in a 37 °C humidified atmos-
phere that contained 5% CO2. When the HCC cell lines 
achieved the indicated conditions, total RNA extraction 
was performed with TransZol (TransGen, Beijing, China) 
following the manufacturer’s instructions. The isolation 
and purification of cytoplasmic and nuclear RNA was 
principally accomplished using an EasyPure RNA kit 
(TransGen). The concentration of purified RNA was then 
determined using a NanoDrop 2000 spectrophotometer 
(Thermo Fisher Scientific, MA, USA). To achieve cDNA 
synthesis, we employed a TransScript One-Step gDNA 
Removal and cDNA Synthesis SuperMix (TransGen) to 
reverse transcribe RNA that was previously extracted. 
HCC and adjacent tissue cDNA microarrays were 
obtained from Shanghai Outdo Biotech Company, 

China. Finally, real-time PCR was performed in Trans-
Start Top Green qPCR SuperMix (TransGen). Quanti-
fication of the RNA expression level was realized using 
the 2-ΔCt method (ΔCt = Ct (Target) - Ct (Reference)). 
The primer sequences are as follows: AL031985.3 for-
ward primer AAA​TCC​CAT​ACC​CCT​TTC​ACC reverse 
primer TTT​ACT​GAG​TCC​CTT​CTG​CGTG; MKLN1-
AS forward primer GTG​TTT​CTC​TCT​GAA​AGC​AGCG, 
reverse primer TTC​AAA​AGT​GAC​CAA​AGC​CAGG; 
GAPDH forward primer GTC​AAG​GCT​GAG​AAC​GGG​
AA, reverse primer AAA​TGA​GCC​CCA​GCC​TTC​TC; 
β-actin (validated and provided by Outdo Biotech) for-
ward primer GAA​GAG​CTA​CGA​GCT​GCC​TGA, reverse 
primer CAG​ACA​GCA​CTG​TGT​TGG​CG. The ethics 
statement for this study was provided by Shanghai Otto 
Biotech.

Statistical analysis
All analyses were implemented based on R software (ver-
sion 3.6.3). A P value < 0.05 was considered statistically 
significant.

Results
ECMrlncRNA screening and prognostic signature 
construction
The study scheme is presented in Fig.  1. We initially 
obtained a total of 1068 ECM-related gene sets from 
the Matrisome Project. Following further coexpression 
analysis between the ECM-related genes and lncRNA 
sets, 1961 lncRNAs were eventually identified as ECMrl-
ncRNAs. Through subsequent univariate Cox regression, 
lncRNAs with prognostic value were formally included 
in the LASSO regression analysis (cross-validation and 
regression plots are shown in Fig. 2A and B, respectively). 
Two ECMrlncRNAs (MKLN1-AS and AL031985.3) that 
demonstrated distinct expression differences between 
tumour and normal tissues were included in the risk 
model. The model formula is described as follows: risk 
score = 0.942362440899263* mRNA expression level of 
MKLN1-AS+ 0.756996665090891* mRNA expression 
level of AL031985.3. LIHC samples were divided into 
training and testing groups in our analysis. However, 
comparative analysis concerning the baseline characteris-
tics of the three groups revealed no significant differences 
(Table  1). Figure  3A represents the expression levels of 
two lncRNAs in the total sample group. Dimensional-
ity degradation via PCA allowed for a clearer view of the 
distribution of patients from the total LIHC sample with 
different risk scores (Fig. 3B) and the corresponding dif-
ferences in patient survival status (alive or dead) (Fig. 3C). 
Immediately afterwards, we performed Kaplan–Meier 
analysis to assess the survival differences, the results of 

Table 1  Demographic and baseline disease characteristics of 
samples in the TCGA-LIHC project

*P value less than 0.05 is considered to be statistically significant

Covariates Total Training set Testing set P value*

Age - no. (%) 1

  <=65 227(62.19%) 114(61.96%) 113(62.43%)

  > 65 138(37.81%) 70(38.04%) 68(37.57%)

Gender - no. (%) 0.9091

  Female 119(32.6%) 61(33.15%) 58(32.04%)

  Male 246(67.4%) 123(66.85%) 123(67.96%)

Grade - no. (%) 0.8485

  G1 55(15.07%) 27(14.67%) 28(15.47%)

  G2 175(47.95%) 92(50%) 83(45.86%)

  G3 118(32.33%) 58(31.52%) 60(33.15%)

  G4 12(3.29%) 5(2.72%) 7(3.87%)

  Unknow 5(1.37%) 2(1.09%) 3(1.66%)

Stage - no. (%) 0.163

  Stage I 170(46.58%) 79(42.93%) 91(50.28%)

  Stage II 84(23.01%) 41(22.28%) 43(23.76%)

  Stage III 83(22.74%) 44(23.91%) 39(21.55%)

  Stage IV 4(1.1%) 4(2.17%) 0(0%)

  Unknow 24(6.58%) 16(8.7%) 8(4.42%)
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Fig. 3  Identification of Prognosis-Related ECMrlncRNAs and Signature Development. Heatmap visualizing the expression levels of MKLN1-AS and 
AL031985.3 in the total LIHC cohort (A). PCA displays the distribution of different-risk patients and differences in survival status (alive or dead) (B and 
C). Survival curves revealed the prognostic differences between the high- and low-risk HCC groups (D)
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which are presented as survival curves (Fig.  3D). The 
findings indicated that patients with higher risk scores 
have lower OS (P < 0.001). Similar lncRNA expression 
(Fig.  S1A and E), patient distribution (Fig.  S1B  and F), 
patient survival status (Fig. S1C and G) and OS (Fig. S1D 
and H) results were observed in the total LIHC group as 
well as the training and testing groups.

Assessment of the predictive value of the signature
The rationale for signature construction based on the risk 
score was derived mainly from the results of univariate 
and multivariate regression analyses, which suggested 
that the risk score could serve as an independent risk 
factor for liver cancer (Fig.  4A and B). To further illus-
trate the use of the risk score as an important reference 
for model construction, we compared it with commonly 
available clinical predictors. The risk score showed a 
comparatively superior diagnostic ability compared with 
age, sex, grade and stage (Fig. 4C and D). The AUC val-
ues representing the prognostic predictions at 1, 3 and 
5 years were 0.746, 0.683 and 0.670, respectively (Fig. 4E).

Application of the signature to TCGA‑LIHC datasets
The constructed model employed a risk score-based cut-
off criterion, namely, the median risk score, to divide 
HCC samples into high- and low-risk groups. Analysis of 
the relationship between the signature and clinicopatho-
logical profiles illustrated significant differences between 
the two risk groups in terms of age, sex, grade and TNM 
stage (Fig. S2A-O). Subsequently, we employed the PCA 
approach to confirm the strength of the risk score in sep-
arating patients with different risks, demonstrating the 
superiority of the risk score in accurately distinguishing 
samples compared with other indicators (all genes, ECM-
related genes and ECMrlncRNAs) (Fig. 5A-D).

Functional enrichment analysis
The biological functions of the 636 DEGs identified 
between the two risk groups were assessed. GO terms are 
classified into three subtypes: BP, CC and MF. BP primar-
ily included antigen binding, cell adhesion molecule bind-
ing, immunoglobulin receptor binding, and extracellular 
matrix structural constituent. CC mainly included colla-
gen-containing extracellular matrix, the external side of 
the plasma membrane, and immunoglobulin complexes. 

MF comprised phagocytosis, humorall immune response, 
and protein activation cascade (Fig.  6A). Using KEGG 
analysis, 17 pathways were ultimately identified, includ-
ing ECM-receptor interaction, focal adhesion, and PI3K-
Akt signalling pathway (Fig. 6B and C).

Relationship between the signature and tumour 
immune‑infiltrating features
Detailed differences in immune-related functions, 
immune cell subtypes and checkpoint genes were ana-
lysed between the two groups. The results suggested 
that MHC class I, APC costimulation, CCR, parain-
flammation and cytolytic activity were more signifi-
cantly correlated with high risk scores (Fig. 7A and B). 
In contrast to NK cells, DCs, macrophages and Treg 
cells were prominently enriched in the high-risk group 
(Fig.  7C). The TIMER algorithm also yielded similar 
results (Fig.  S3A). Furthermore, all of the checkpoint 
genes of interest showed considerable overexpression 
in the high-risk group (Fig. 7D). Correlation analysis of 
the risk score with cytokines and chemokines revealed 
that the risk score was positively correlated with 
CXCL1, CXCL3, CXCL5, CXCL8, CXCL9, CXCL11, 
CCL2, CCL4, CCL20, CCL26, CCL28, IL6, IL10, 
TGFB2, FGF2, VEGFA and HGF and negatively corre-
lated with CCL14 and CCL15 (Fig. S3B).

Correlation of the signature and TMB
Given the crucial role that TMB plays in cancer pro-
gression, we report the mutation frequencies of the 
top 20 driver genes in the high- and low-risk groups, 
separately (Fig.  8A and B). Accordingly, the low-TMB 
group had a comparatively higher survival probability 
when grouped exclusively by TMB, whereas the low-
TMB and low-risk group had a superior prognosis 
when grouped according to a criterion based on TMB 
in combination with the risk score (Fig. 8C and D).

Drug sensitivity and immune response prediction
Sensitivity analysis of several chemotherapeutic and 
targeted therapeutic agents, including bleomycin, cis-
platin, doxorubicin, and mitomycin C, was performed. 
Patients in the high-risk group were more sensitive to 

Fig. 4  Examination of the Predictive Properties of the Signature. Univariate (A) and multivariate (B) regression analyses indicated that the stage and 
risk score were independent risk factors. The predictive value of the signature was illustrated by the concordance index (C) and ROC curves. ROC 
curves comparing the signature with age, sex, grade and stage showed the superiority of the risk score compared with other indicators (D). ROC 
curves at 1, 3 and 5 years were also plotted to reflect the long-term predictive value (E)

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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paclitaxel and gemcitabine based on lower IC50 values, 
whereas patients in the low-risk group were sensitive 
to sorafenib, docetaxel, erlotinib, and temsirolimus 
based on higher IC50 values. No significant differ-
ences in sensitivity to sunitinib and vincristine were 
observed between the two groups (Fig.  S4A-L). To 

compare the difference in response to immunotherapy 
between the high-risk and low-risk groups, we then 
performed an analysis by employing the TIDE algo-
rithm (Fig.  9A). The TIDE score is composed of two 
components: a dysfunction score and exclusion score. 
Here, the high-risk group exhibits a higher dysfunction 

Fig. 5  PCA Analysis for Visualization of Distribution Difference. PCA demonstrated that compared to all genes (A), ECM genes (B) and ECMrlncRNAs 
(C), the risk score (D) was able to significantly distinguish between high-risk and low-risk patients



Page 10 of 18Wu et al. BMC Cancer         (2022) 22:1036 

Fig. 6  Go and KEGG Enrichment Analysis. The GO terms are classified into three categories, BP, CC and MF, as shown in Panel (A). KEGG pathway 
analysis results are presented as a bar plot (B) and bubble plot (C). The horizontal coordinate represents the number of genes enriched in each GO 
term/KEGG pathway. The vertical coordinate denotes the full name of each GO term/KEGG pathway
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score (Fig.  9B), and the low-risk group exhibits a 
higher exclusion score (Fig. 9C). Overall, the high-risk 
group had a higher TIDE score (Fig. 9A), implying that 
it may be associated with poorer immune checkpoint 
inhibition therapeutic efficacy. Next, we compared the 
predictive value of our model with the TIDE score, and 
the results are shown in Fig. 9D.

Exploration and verification of signature‑related LncRNA 
expression profiles
Both overall and pairwise comparisons demonstrated 
significantly higher expression levels of AL031985.3 in 
the tumour group than in the normal group (Fig. 10A 
and C). Validation results at the cellular level also pro-
vided support for this finding (Fig.  11). In addition, 
based on our bioinformatics analysis, MKLN1-AS was 
also predicted to be overexpressed in tumour tissues 
(Fig.  10B and D). Verification results have been pre-
sented in a previous study. To confirm the aforemen-
tioned findings, 20 pairs of HCC samples (containing 
20 tumour tissues and 32 adjacent tissues) were assem-
bled and utilized for quantitative analysis of lncRNAs. 
Validation of these samples showed that AL031985.3 
(Fig. 10E and G) and MKLN1-AS (Fig. 10F and H) were 
significantly upregulated in HCC in both pairwise and 
unpaired analyses.

Discussion
Given the pivotal role that ECM components play in 
tumour onset and progression, a comprehensive under-
standing of their biophysical and biochemical effects and 
remodelling processes seems particularly imperative to 
uncover promising biomarkers for diagnostic and thera-
peutic applications. Database mining using various algo-
rithms and accurate prediction models in the context of 
big data are of great help in the discovery of lncRNAs 
that are relevant to ECM. Therefore, this study identi-
fied ECMrlncRNAs to provide a prognostic prediction 
approach for various risk populations to rationally guide 
clinical decision-making.

Despite the existence of several valuable signatures for 
the prognostic analysis of HCC patients, [19–28], our 
study differs from previous studies based on various fea-
tures, such as the prognostic value of the signature, the 
ability to accurately differentiate samples and the correla-
tion with immune landscape. The principal cause of this 

difference was based on our selection of a lncRNA set 
that was coexpressed with ECM-related genes. Two sig-
natures consisting of ECM-related genes have been pre-
viously reported [24, 25]; however, these signatures were 
not equivalent to our lncRNA signature. Indeed, compre-
hensive studies were performed to evaluate the prognos-
tic value of the models generated using these signatures, 
and these signatures also predicted the immune land-
scape as well as drug sensitivity. In contrast to the study 
by Tang et al., our study focused on assessing the differ-
ences in drug sensitivity to sorafenib in the risk subgroup 
obtained from LIHC samples. Given that sorafenib is cur-
rently the first-line drug for HCC treatment, it would be 
more clinically useful to construct a model that demon-
strates a better association with this drug. More impor-
tantly, following a series of screening processes according 
to the developed criteria, two lncRNAs, AL031985.3 
and MKLN1-AS, were eventually identified and incor-
porated into the signature. We subsequently validated 
these two lncRNAs at the cellular and tissue levels and 
further examined their prognostic value in HCC. Thus, 
our findings are more reliable and valuable. The upregu-
lation of AL031985.3 and MKLN1-AS in HCC was iden-
tified through database mining but was also confirmed in 
a series of in vitro experiments. Few experimental stud-
ies have been performed on AL031985.3, and its func-
tion in HCC requires further exploration. Comparatively, 
several recent studies demonstrated phenotypic altera-
tions mediated by MKLN1-AS. MKLN1-AS is potentially 
involved in the regulation of cell proliferation, angio-
genesis, migration and invasion [26–28] and implicated 
in poor survival [28]. Mechanistically, MKLN1-AS may 
function as a competing endogenous RNA to induce pro-
oncogenic effects during HCC progression [28]. Overall, 
the signature had favourable prognostic performance, as 
evidenced by the ROC and corresponding AUC values 
at 1, 3 and 5 years. Accordingly, we divided HCC popu-
lations into high- and low-risk groups based on the risk 
score cut-off value. Our signature was also applicable to 
HCC patients with specific clinicopathological charac-
teristics. Patients with lower risk scores generally had a 
better prognosis, regardless of stratification by age, sex, 
grade or TNM stage. In addition, the DEGs identified 
between the two risk groups were then entered into the 
GO analysis, and these genes had robust associations 
with ECM and immune functions.

(See figure on next page.)
Fig. 7  Differential Analysis of Immune function, Tumour Infiltrating Immune Cells and Immune Checkpoint Genes. The distinctions in 
immune-related functions between the high- and low-risk groups are presented as a heatmap (A) and box plots (B). The differences in 
tumour-infiltrating immune cells between the two groups are reported as box plots using the ssGSEA algorithm (C). Differences in the expression of 
immune checkpoint genes in the two groups are presented as box plots (D). “*”, “**” and “***” represent P < 0.05, P < 0.01 and P < 0.001, respectively
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Fig. 7  (See legend on previous page.)
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Considering the poorly characterized immune micro-
environment in HCC [29], the risk score determined in 
this study is a valuable marker in the differentiation of 
populations, particularly with respect to tumour-infil-
trating immune cells, immune-related functions and 
immune checkpoint genes. We noted that the high-risk 
group was generally accompanied by a significant enrich-
ment of immune cells associated with more immune 
functions and, more importantly, positively correlated 
with the expression level of immune checkpoint genes. 
Here, we identified DCs, Tregs, macrophages and CAFs 
as four hallmark immune cells given their remarkable 

abundance in the high-risk set. DCs in the tumour micro-
environment (TME) may be associated with T-cell dys-
function through mediator release or checkpoint ligand 
expression, a mechanism by which tumours cooperate 
with their microenvironment to eclipse immune sur-
veillance [30, 31]. Specifically, in HCC, Treg cells can 
be recruited into tumour tissues, and this accumulation 
is mainly mediated by the chemokine CCL22, which is 
secreted by intratumoural DCs [32]. Tumour-infiltrating 
DCs and Tregs promote immunotolerance and immune 
escape by suppressing effector T-cell responses, but 
high intratumoral numbers of these immune cells may 

Fig. 8  Comparison of Gene Mutation Frequencies and Survival Status. Waterfall plots were used to show the mutation frequencies of genes in the 
high-risk (A) and low-risk (B) groups. High risk is indicated in blue, and low risk is indicated in red. Comparison of survival probabilities between 
groups clustered according to TMB (C) or TMB combined with risk score (D)
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be associated with poor prognosis [32, 33]. This notion 
is closely linked to our finding that increased levels of 
DCs and Tregs accumulated in the high-risk group (a 
high risk score was associated with a negative impact on 
clinical outcomes). Moreover, macrophages also showed 
increased enrichment in the high-risk group. The char-
acterized enrichment of macrophages is notably linked 
to the survival inferiority of LIHC [30], indicating that 
this type of tumour-infiltrating macrophage can serve as 

a potential candidate cell for cancer therapies. Cancer-
associated fibroblasts (CAFs) are also key players in the 
pathogenesis of HCC. In the HCC TME, CAF-derived 
CLCF1 enhances the secretion of the chemokines CXCL6 
and TGF-β in HCC cells, which are subsequently capa-
ble of activating the ERK 1/2 signalling pathway in CAFs 
and stimulating the increased production of CLCF1. This 
positive feedback mechanism undoubtedly accelerates 
HCC progression and predicts a poor prognosis [34]. 

Fig. 9  Immunotherapy Response Prediction and Signature Comparison. The comparisons between the two risk groups in terms of TIDE score (A), 
Dysfunction score (B) and Exclusion score (C) are presented as violin plots. ROC is plotted to compare the predictive value of the risk score and the 
TIDE score (D)

Fig. 10  Assessment of Differential Expression of LncRNAs Used for Modelling. Comparison of the differential expression of AL031985.3 (A) and 
MKLN1-AS (B) between tumour and normal samples from the TCGA-LIHC project. Paired comparison of the differential expression of AL031985.3 
(C) and MKLN1-AS (D) between tumour and normal samples from TCGA-LIHC project. Unpaired comparison of the differential expression of 
AL031985.3 (E) and MKLN1-AS (F) between 32 HCC tissues and 20 adjacent tissues. Paired comparison of the differential expression of AL031985.3 
(G) and MKLN1-AS (H) between 20 HCC tissues and 20 adjacent tissues

(See figure on next page.)
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Fig. 10  (See legend on previous page.)
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Additional findings also revealed a positive feedback loop 
between CAFs and the FOXQ1/NDRG1 axis that drives 
the initiation of HCC in tumour cells [35]. Furthermore, 
loss of CAF-derived exosomal miR-320a may partly con-
tribute to HCC tumour proliferation and metastasis [36]. 
These observations objectively confirmed our assumption 
that high-risk HCC patients might have an advanced can-
cer stage with reduced survival probability. NK cells were 
present at significantly decreased levels in high-risk sam-
ples in our analysis, and these cells were also decreased 
in HCC tissues [37]. Of note, the number of intrahepatic 
NK cells is positively associated with poor clinical out-
comes [38]. In addition to the abovementioned immune 
cells, differential expression of all included immune 
checkpoint genes was observed between the two groups. 
On the one hand, our results demonstrated that the accu-
racy and importance of patient clustering based on this 
criterion (risk score) is self-evident. In addition, the dif-
ferential expression levels of these genes in the two risk 
sets revealed insight into the precise management of 
HCC. The most prominent immune checkpoint gene 
is cytotoxic T lymphocyte protein 4 (CTLA-4), which 
mediates immunosuppression and inhibits T-cell prolif-
eration and the release of cytotoxic mediators [39–42]. 

Furthermore, it is also particularly important to perform 
correlation analysis between our models and chemokines 
and cytokines. Chemokines comprise a large family of 
at least 47 structurally related small cytokines, and their 
interaction with the extracellular matrix is specifically 
essential in controlling the directional migration of cells. 
In contrast, cytokines are key mediators of cellular com-
munication in the TME and are closely associated with 
tumour development, progression and metastasis as well 
as the response to tumour therapy [42]. Overall, analysis 
of LIHC samples revealed underlying migration patterns 
of immune cells and regulatory mechanisms of immune 
surveillance. Given their crucial role in the regulation of 
immune responses, infiltrating immune cells, immune 
checkpoint genes, chemokines and cytokines represent 
attractive targets for tumour immunotherapy.

A critical and novel project introduced in this study 
was the evaluation of the correlation between TMB and 
the model. ICIs have revolutionized the field of can-
cer management by providing a new paradigm. Sev-
eral attempts have been made to determine valuable 
predictive biomarkers, the most intriguing of which is 
TMB [17]. In this study, we examined the mutation fre-
quencies of the top genes and focused on the survival 
probability of patients based on various groupings. 
Through our comparative analysis of TMB in different 
risk groups along with exploration of differences in the 
expression levels of immune checkpoint genes, precise 
and effective management of ICIs in HCC treatment 
will be possible. Moreover, the findings of the drug sen-
sitivity analysis of chemotherapeutic agents, targeted 
agents and immunotherapeutic agents also provide 
a reference for the rational choice of HCC treatment. 
More importantly, regarding the evaluation and pre-
diction of immunotherapy efficacy, researchers found 
that the TIDE score was the best predictor of immune 
checkpoint inhibitor therapy compared to all candi-
date biomarkers as well as two single indicators of 
dysfunction and rejection as reported in the literature 
[18]. Based on the scoring results presented here, the 
high TIDE scores in the high-risk group strongly indi-
cated that an increase in risk was also accompanied by 
increased resistance to immunotherapy to the extent 
that it might be associated with lower patient survival 
under ICI treatment.

However, some limitations associated with this study 
should be noted. First, all analyses were performed by 
mining public databases. Although we validated of the 
expression levels of lncRNAs associated with model 
construction, studies on their mechanistic roles and 
associated phenotypes are lacking. Moreover, practical 
application of our model remains an issue that needs to 

Fig. 11  Assessment of Relative AL031985.3 Expression Levels 
in Various Cell Lines via Real-time PCR. L02 is a normal cell line. 
SK-Hep-1, Hep-G2 and Huh-7 are well differentiated, whereas LM3 is 
poorly differentiated. “**” and “****” represent P < 0.01 and P < 0.0001, 
respectively
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be addressed, emphasizing the desperate need for in-
depth work in the real world.

Conclusion
In summary, our series of comprehensive analyses con-
tributed to the development of a valuable signature 
that exhibited promising prognostic performance and 
strongly correlated with immune cell infiltration char-
acteristics and TMB. This signature will provide us with 
in-depth biological insights to facilitate the identifica-
tion of prognostically and therapeutically relevant bio-
markers for HCC.
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