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Abstract 

Background:  Cortical atrophy is associated with cognitive decline, but the association is not perfect. We aimed to 
identify factors explaining the discrepancy between the degree of cortical atrophy and cognitive decline in cogni-
tively unimpaired elderly.

Methods:  The discrepancy between atrophy and cognitive decline was measured using the residuals from a linear 
regression analysis between change in whole brain cortical thickness over time and change in a cognitive composite 
measure over time in 395 cognitively unimpaired participants from the Swedish BioFINDER study. We tested for bivari-
ate associations of this residual measure with demographic, imaging, and fluid biomarker variables using Pearson cor-
relations and independent-samples t-tests, and for multivariate associations using linear regression models. Mediation 
analyses were performed to explore possible paths between the included variables.

Results:  In bivariate analyses, older age (r = −0.11, p = 0.029), male sex (t = −3.00, p = 0.003), larger intracranial 
volume (r = −0.17, p < 0.001), carrying an APOEe4 allele (t = −2.71, p = 0.007), larger white matter lesion volume 
(r = −0.16, p = 0.002), lower cerebrospinal fluid (CSF) β-amyloid (Aβ) 42/40 ratio (t = −4.05, p < 0.001), and higher 
CSF levels of phosphorylated tau (p-tau) 181 (r = −0.22, p < 0.001), glial fibrillary acidic protein (GFAP; r = −0.15, p = 
0.003), and neurofilament light (NfL; r = −0.34, p < 0.001) were negatively associated with the residual measure, i.e., 
associated with worse than expected cognitive trajectory given the level of atrophy. In a multivariate analysis, only 
lower CSF Aβ42/40 ratio and higher CSF NfL levels explained cognition beyond brain atrophy. Mediation analyses 
showed that associations between the residual measure and APOEe4 allele, CSF Aβ42/40 ratio, and CSF GFAP and 
p-tau181 levels were mediated by levels of CSF NfL, as were the associations with the residual measure for age, sex, 
and WML volume.

Conclusions:  Our results suggest that axonal degeneration and amyloid pathology independently affect the rate of 
cognitive decline beyond the degree of cortical atrophy. Furthermore, axonal degeneration mediated the negative 
effects of old age, male sex, and white matter lesions, and in part also amyloid and tau pathology, on cognition over 
time when accounting for cortical atrophy.
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Background
Grey matter atrophy is associated with cognitive decline in 
chronological ageing [1], mild cognitive impairment (MCI) 
[2], and Alzheimer’s disease (AD) dementia [3, 4]. How-
ever, the association between brain structure and cognitive 
performance is not perfect, and there are great interindi-
vidual differences [5]. This discrepancy between patho-
logical markers and clinical outcome has been described 
within the cognitive resilience and reserve framework 
but can also be discussed from the other perspective, by 
looking at risk factors for cognitive decline beyond what is 
explained by a specific pathological marker.

Cognitive resilience is an umbrella term that refers 
to multiple processes involved in avoiding (brain main-
tenance) and withstanding or coping with (brain and 
cognitive reserve) the effects of brain pathology and 
ageing [6]. Intracranial volume (ICV) is a proxy meas-
ure that has been used to account for brain reserve 
[6, 7], while education, intelligence quotient (IQ), and 
occupational complexity are often used as proxies for 
cognitive reserve [8–11]. Another method for study-
ing reserve is the residual approach [6, 12, 13], where 
reserve is defined as the variance in cognition that can-
not be explained by a defined pathological marker. This 
results in a direct, quantitative, and participant-specific 
measure of reserve.

As mentioned above, the opposite of resilience factors 
are factors that worsen cognitive decline beyond a speci-
fied pathological process. Both β-amyloid (Aβ) [14, 15] 
and tau [3, 16] pathology have been shown to be associ-
ated with cognitive decline, independent of grey matter 
atrophy. Cerebrovascular small vessel pathology is also 
associated with cognitive decline, although not consist-
ently when accounting for brain volume loss [17, 18]. 
Cerebrospinal fluid (CSF) levels of neurofilament light 
(NfL), a marker of axonal integrity [19], correlate with 
cognitive performance [20, 21], but the interplay between 
NfL levels, grey matter atrophy, and cognitive perfor-
mance is unclear. Studies have also shown associations 
between cognitive performance and CSF markers of 
astrocytic activation [22], microglial activation [23], and 
synaptic dysfunction [24], but few studies have investi-
gated whether this is independent of cortical atrophy. 
Also, cardio- and cerebrovascular co-morbidities, such as 
diabetes mellitus [25], congestive heart failure [26], and 
stroke [27, 28], increase the risk of cognitive decline and 
dementia.

Prevention and development of non-pharmaceutical 
interventions to promote healthy brain ageing are of 

great importance, as delaying the onset of dementia or 
slowing cognitive decline improves quality of life and 
reduces public health costs [29, 30]. Through studies 
of resilience and risk factors, novel ways to prevent or 
postpone cognitive decline in the presence of pathol-
ogy and atrophy can be discovered. Factors that impact 
future cognitive decline beyond brain atrophy are to a 
great extent unclear, as there have been few longitudinal 
studies investigating this. In this study, we calculated the 
discrepancy between whole brain cortical atrophy and 
change in global cognition at an individual level and then 
investigated whether resilience and risk factors, such as 
educational attainment, cardiovascular co-morbidities, 
and imaging and fluid biomarkers of amyloid, tau, and 
cerebrovascular pathology, astrocytic and microglial acti-
vation, and axonal and synaptic integrity, may explain 
this discrepancy. The residual approach renders a quan-
titative measure of reserve, allowing us to perform subse-
quent analyses to investigate possible paths between the 
included variables using mediation analysis.

Methods
Participants
Longitudinal data from cognitively unimpaired (CU) 
elderly participants from the Swedish BioFINDER study 
(https://​biofi​nder.​se; NCT01208675) were obtained. Par-
ticipants performing within the normal range on cog-
nitive testing and who did not fulfil criteria for MCI or 
dementia were included. This included both cognitively 
unimpaired participants, recruited as volunteers with-
out subjective cognitive complaints, and people referred 
to the memory clinic at Skåne University Hospital or 
Ängelholm hospital in Sweden due to cognitive symp-
toms experienced by the patient and/or informant but 
performing within the normal range on cognitive test-
ing (hereafter referred to as subjective cognitive decline 
(SCD)). The participants underwent cognitive testing, 
magnetic resonance imaging (MRI), and lumbar puncture 
every 2 years. To be included in the current study, partic-
ipants had to have completed at least two MRI scans and 
two visits with cognitive testing, from which change in 
cortical thickness and change in cognitive performance 
were calculated. Information on demographics (age, sex, 
years of education), APOEe4 status, cardiovascular co-
morbidities, CSF biomarker data, and white matter lesion 
(WML) volume was collected at baseline. Information on 
cardiovascular co-morbidities was obtained from patient 
history and included presence of hypertension, hyperlipi-
daemia, diabetes mellitus, ischemic heart disease, atrial 
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fibrillation, congestive heart failure, and stroke/transient 
ischemic attack (TIA). The study was approved by the 
ethics committee at Lund University and the participants 
gave their written informed consent.

Cognition
Since the population included in the study was cogni-
tively unimpaired, we used a modification of the Preclini-
cal Alzheimer’s Cognitive Composite 5 (mPACC5), which 
has been shown to be sensitive for detecting early cogni-
tive changes [31], to measure cognitive performance over 
time. The mPACC5 was calculated using the Mini-Men-
tal State Examination (MMSE) [32], Alzheimer’s Disease 
Assessment Scale – Cognitive Subscale (ADAS-Cog) 
delayed word recall [33], Trailmaking Test B (TMTB) 
[34], and Animal fluency test [35]. Z scores were calcu-
lated for each cognitive test, using the means and stand-
ard deviations from the same tests in a separate cohort of 
cognitively unimpaired participants from the BioFINDER 
2 study (NCT03174938; n = 128). When appropriate, the 
results of the tests were multiplied by −1 so that higher 
z score always represented better cognition. The means 
from the z scores formed the mPACC5. As in previous 
publications [36], ADAS-Cog delayed word recall was 
weighted double since the original PACC5 includes two 
memory tests.

Imaging biomarkers
The participants underwent 3-T MRI scans. Cortical 
reconstruction and volumetric segmentation were per-
formed with the FreeSurfer image analysis suite, which 
is documented and freely available for download online 
(http://​surfer.​nmr.​mgh.​harva​rd.​edu/). To extract reliable 
volume and thickness estimates, images were automati-
cally processed with a longitudinal pipeline [37] in Free-
Surfer. We performed manual quality assessment on the 
images. We computed a mean whole brain cortical thick-
ness measure by averaging all cortical regions of interest 
(n = 34) from the Desikan-Killiany atlas [38]. Regions 
from both hemispheres were included and adjusted 
for their respective surface area. WML volume, seen as 
hyperintensities in T2-weighted scans, was measured 
using the Lesion Segmentation Tool [39, 40].

Fluid biomarkers
Lumbar CSF samples were collected and stored in −80°C 
pending analyses. Levels of Aβ42, Aβ40, and phospho-
rylated tau 181 (p-tau181) were measured using Elec-
sys immunoassays [41]. The Aβ42/40 ratio was used 
as a measure of brain amyloid deposition [42]. Levels 
of NfL, glial fibrillary acidic protein (GFAP; a marker 
of astrocytic activation [43]), soluble triggering recep-
tor expressed on myeloid cells 2 (sTREM2; a marker of 

microglial activation [44]), and neurogranin (a marker of 
synaptic dysfunction [45]) were measured using the Neu-
roToolKit panel of automated immunoassays [46].

Statistics
We used a two-step approach, where we first calculated 
individual slopes for change in cortical thickness and 
change in cognitive performance by performing lin-
ear regressions between time (independent variable) 
and mean whole brain cortical thickness or mPACC5 
(dependent variables), including all available data points 
for cortical thickness and mPACC5. Second, we per-
formed a linear regression with change in cortical thick-
ness as independent variable and change in mPACC5 as 
dependent variable, from which the standardized residu-
als were used as a measure of the discrepancy between 
brain atrophy and cognitive change over time at an indi-
vidual level. A positive residual reflects a more favour-
able cognitive trajectory than expected given the level 
of atrophy, and a negative residual reflects a worse cog-
nitive trajectory than expected. The residuals were used 
as the dependent variable in further analyses with base-
line demographics as well as CSF and MRI biomarkers as 
predictors.

In bivariate analyses, Pearson correlations (rp) and 
independent-samples t-tests were performed for contin-
uous and dichotomous variables, respectively. To look for 
differing results for participants with only two follow-up 
visits compared to those with three or more, the bivariate 
analyses were also performed separately for these groups. 
To assess independent associations between the residual 
measure and these variables, the variables significantly 
associated with the residual measure in the bivariate 
analyses were entered in a multivariate linear regres-
sion model adjusted for presence/absence of SCD, base-
line mean whole brain cortical thickness, and baseline 
mPACC5. The multivariate analysis was also performed 
with the individual specific intercepts from the initial 
linear regression models for mean whole brain cortical 
thickness and mPACC5 as baseline measures of these 
variables, to account for the fact that the slopes are esti-
mated together with an estimated baseline (intercept). 
We additionally tested for interaction effects between 
demographic variables and biomarkers on the residual 
measure.

To elucidate why a variable was significantly associated 
with the residual measure in the bivariate but not in the 
multivariate analysis, mediation analyses were performed 
using the PROCESS macro [47] in the Statistical Package 
for Social Sciences (SPSS), with models including either a 
single or multiple mediator variables. In short, this macro 
performs sequential linear regression analyses to estab-
lish mediation effects and then uses bootstrapping (5000 
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bootstrap samples) to calculate a 95% confidence inter-
val (CI) for the direct and indirect effects of the media-
tion models. Effects where the bootstrapped 95% CI did 
not include 0 were considered significant. The designs of 
the mediation models were outlined in two steps. First, 
we checked for bivariate associations between all vari-
ables in the multivariate analysis. Second, for each vari-
able that was significantly associated with the residual 
measure in the bivariate but not the multivariate analysis, 
a directed acyclic graph (DAG, a graphical way to display 
the assumptions about the relationship between vari-
ables) was drawn, incorporating the variables that were 
associated in the bivariate analysis. The directions of the 
associations were inferred from previous literature. The 
hypothesized mediation models (visualized as DAGs) 
were then tested statistically using the PROCESS macro 
in SPSS.

Since the Aβ42/40 ratio shows a bimodal distribu-
tion, this was used as a dichotomous variable based on 
a previously established cut-off level [48]. This cut-off 
was defined using mixture modelling, a method that 
has been successfully used to identify cut-offs for bio-
markers of amyloid pathology [49, 50]. The distribu-
tions for WML volume as well as CSF levels of p-tau181, 
NfL, neurogranin, sTREM2, and GFAP were positively 
skewed, and the values for these variables were therefore 
log10-transformed to meet model assumptions of nor-
mal distribution. We corrected the bivariate models for 
multiple comparisons using false discovery rate (FDR). 
Statistical significance was set at α < 0.05. Statistical 
analyses were performed using SPSS Statistics for Mac 
(version 27).

Results
Sample characteristics
The characteristics of the 395 study participants are 
described in Table 1. The mean age was 72.4 (standard 
deviation (SD) 5.3) years at baseline, 59% were women, 
and the mean education level was 12.4 (SD 3.5) years. 
The median number of MRI scans was three scans and 
median number of cognitive test visits was three vis-
its. Spaghetti plots showing individual slopes for whole 
brain cortical thickness and mPACC5 are shown in 
Supplementary Fig. 1.

Residual measure
Across the whole group, the mean change in mean whole 
brain cortical thickness was −0.012 (SD 0.013) mm/year 
and mean change in mPACC5 was −0.087 (SD 0.20) z 
scores/year. Changes in these measures were modestly 
correlated (rp = 0.3, p < 0.001; Supplementary Fig. 2).

Bivariate analyses
In bivariate analyses, older age (r = −0.11, p = 0.029), 
male sex (t = −3.00, p = 0.003), larger ICV (r = −0.17, 
p < 0.001), larger WML volume (r = −0.16, p = 0.002), 
carrying an APOEe4 allele (t = −2.71, p = 0.007), hav-
ing a lower Aβ42/40 ratio (t = −4.05, p < 0.001), and 
higher levels of p-tau181 (r = −0.22, p < 0.001), GFAP 
(r = −0.15, p = 0.003), and NfL (r = −0.34, p < 0.001) 
were significantly associated with the residual measure 
(i.e. worse than expected cognitive trajectory given the 
level of atrophy). Only age did not survive correction for 
multiple comparisons. Years of education (r = 0.04, p = 
0.431), smoking (t = −0.05, p = 0.958), cardiovascular 
co-morbidities (t = −1.4 to 1.08, p = 0.178–0.903), and 
CSF levels of sTREM2 (r = −0.07, p = 0.183) and neu-
rogranin (r = −0.10, p = 0.059) were not associated with 
the residual measure (Table  2). For most variables, the 
general directions of the associations were the same for 
participants with two MRI scans compared to those with 
three or more, as well as for participants with two cogni-
tive test visits compared to those with three or more. The 
direction of association differed between the groups for 
smoking, diabetes mellitus, ischaemic heart disease, and 
stroke/TIA, but none of these results were statistically 
significant (Supplementary Tables 1A and B).

Multivariate analysis
A multivariate linear regression analysis was performed, 
including the residual measure as dependent variable and 
the variables significantly associated with the residual 
measure in bivariate analyses (see above) as independ-
ent variables, controlling for presence/absence of SCD, 
baseline mean whole brain cortical thickness, and base-
line mPACC5. In this analysis, only higher NfL levels (β 
= −0.20 (95% CI −0.34 to (−0.05)), p = 0.009) and hav-
ing a lower Aβ42/40 ratio (β = −0.11 (95% CI −0.23 to 
(−0.004)), p = 0.049) were associated with the residual 
measure (Table  3, Fig.  1A, B). The results were similar 
when using the individual specific intercepts for whole 
brain cortical thickness and mPACC5 from the initial lin-
ear regression models as baseline measures of these vari-
ables (Supplementary Table 2).

There were no significant two-way interactions for 
ICV, WML volume, APOEe4, Aβ42/40 ratio, or levels of 
p-tau181, GFAP, or NfL with age, sex, or education on 
the residual measure (Supplementary Table 3).

Mediation analyses
As a first step, we constructed the directed acyclic graphs 
(DAGs) for variables that were significantly associated 
with the residual measure in bivariate but not multivari-
ate analysis to visualize hypothesized paths of mediation 
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(Supplementary Fig. 3). These were based on associations 
in this sample between the variables significant in bivari-
ate analyses (Supplementary Table  4) and the hypoth-
esized directions of the associations were based on either 
the inherent nature of the variables (i.e. if there is a tem-
poral association between age or sex with any of the bio-
markers, age or sex would come first in the ordering) or 
hypotheses based on existing literature (i.e. the amyloid 
cascade hypothesis [51], GFAP being closely linked to 
amyloid pathology [52], and WMLs preceding brain atro-
phy [53]). ICV could not, based on previous literature, be 
fitted in a hypothesized causal model predicting NfL and 
was therefore included as a covariate instead.

  As a second step, we statistically tested the hypoth-
esized mediation models using the PROCESS macro 
in SPSS. This showed that the associations between the 
residual measure and APOEe4 allele, lower Aβ42/40 ratio 
(partially), GFAP levels, and p-tau181 levels were medi-
ated by levels of NfL, as were the associations with the 
residual measure for age, sex, and WML volume. More 
detailed results from these analyses are shown in Table 4.

Discussion
Using a residual approach to quantify the discrepancy 
between whole brain cortical atrophy (change in corti-
cal thickness) and change in cognitive performance in a 

Table 1  Sample characteristics for the whole sample and divided by negative or positive residual measure (better or worse cognitive 
trajectory than expected given the level of atrophy). Mean (standard deviation (SD)) are presented if not otherwise specified

Abbreviations: MMSE Mini Mental State Examination, ADAS-Cog Alzheimer’s Disease Assessment Scale – Cognitive subscale, TMTB Trailmaking Test B, mPACC5 modified 
Preclinical Alzheimer’s Cognitive Composite 5, ICV intracranial volume, WML white matter lesion, CSF cerebrospinal fluid, Aβ β-amyloid, P-tau phosphorylated tau, NfL 
neurofilament light, sTREM2 soluble triggering receptor expressed on myeloid cells 2, GFAP glial fibrillary acidic protein, TIA transient ischemic attack

Whole sample (n = 395) Negative residual 
measure (n = 160)

Positive residual 
measure (n = 
235)

Age at baseline (years) 72.4 (5.3) 73.2 (5.6) 71.8 (5.1)

Sex (% women) 59% 49% 66%

Years of education 12.4 (3.5) 12.3 (3.6) 12.5 (3.5)

Number of MRI scans (median (range)) 3 (2–5) 3 (2–4) 3 (2–5)

Mean whole brain cortical thickness at baseline (mm) 2.31 (0.11) 2.29 (0.11) 2.33 (0.10)

Change in mean whole brain cortical thickness (mm/year) −0.012 (0.013) −0.011 (0.015) −0.012 (0.011)

Number of cognitive test visits (median (range)) 3 (2–4) 3 (2–4) 3 (2–4)

MMSE score at baseline 28.9 (1.2) 28.8 (1.3) 28.9 (1.1)

ADAS-Cog delayed recall at baseline (incorrect answers) 2.4 (2.0) 2.8 (2.3) 2.1 (1.8)

TMTB at baseline (seconds) 99.1 (41.1) 107 (45.0) 93.9 (37.4)

Animal fluency test at baseline (correct answers) 21.2 (5.9) 20.4 (6.7) 21.8 (5.2)

mPACC5 at baseline (z score) 0.11 (0.71) −0.06 (0.84) 0.22 (0.59)

Change in mPACC5 (z score/year) −0.087 (0.20) −0.25 (0.21) 0.02 (0.09)

ICV (dm3) 1.10 (0.13) 1.11 (0.13) 1.08 (0.12)

WML volume (cm3; median (range); 11 missing) 5.1 (0.01–89.5) 7.0 (0.06–89.5) 4.1 (0.01–71.5)

APOEe4 allele (% carriers; 5 missing) 33% 37% 30%

CSF Aβ42/40 (% abnormal; 1 missing) 28% 38% 22%

CSF P-tau181 (median (range); pg/ml) 18.1 (8.0–72.5) 19.5 (8.0–56.4) 17.5 (8.0–72.5)

CSF NfL (median (range); pg/ml; 9 missing) 125 (41.5–861) 142 (60.9–861) 119 (41.5–463)

CSF sTREM2 (median (range); ng/ml; 9 missing) 9.7 (3.9–21.3) 9.9 (4.6–21.0) 9.5 (3.9–21.3)

CSF neurogranin (median (range); pg/ml; 9 missing) 711 (217–2179) 728 (225–1932) 708 (217–2179)

CSF GFAP (median (range); ng/ml; 9 missing) 11.9 (3.8–44.9) 12.6 (5.1–44.9) 11.5 (3.8–35.9)

Smoking (% current or former; 56 missing) 48% 52% 45%

Hypertension (%; 1 missing) 37% 33% 39%

Hyperlipidaemia (%; 1 missing) 33% 33% 33%

Diabetes mellitus (%; 1 missing) 8.4% 8.8% 8.1%

Ischemic heart disease (&; 1 missing) 7.9% 9.4% 6.8%

Atrial fibrillation (%; 1 missing) 1.8% 1.9% 1.7%

Congestive heart failure (%; 1 missing) 1.3% 1.3% 1.3%

Stroke/TIA (%; 1 missing) 4.8% 6.3% 3.8%
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sample of cognitively unimpaired elderly, we show that 
this discrepancy is partly explained by levels of NfL and 
lower Aβ42/40 ratio in CSF. Also, levels of NfL mediated 
associations between the residual measure and age, sex, 
WML volume, APOEe4 allele, Aβ42/40 ratio, and levels 
of GFAP and p-tau181. Altogether, our results suggest 
that axonal degeneration and amyloid pathology affect 
the rate of cognitive decline beyond the degree of cortical 
atrophy.

NfL levels in CSF correlate with cognitive performance 
[20, 21] and NfL is often considered a possible marker 
of neurodegenerative processes (akin to brain atrophy 
on MRI) [54–56]. Here we show that NfL and corti-
cal atrophy provide complementary information when 
predicting cognitive change, suggesting that they reflect 
overlapping yet distinct processes in the brain. Lev-
els of NfL also mediated the associations between the 
residual measure and several other predictors (age, sex, 
WML volume, and AD and astrocytic biomarkers), which 
could be expected given that NfL is a sensitive, but non-
specific marker of neurological disorders [57], is associ-
ated with older age and male sex in CU [58, 59], and is 
closely associated with global cognitive performance and 

Table 2  Bivariate analyses. Associations between the residual measure and demographic, co-morbidity, and biomarker variables. 
Pearson correlation coefficients with bootstrapped 95% CIs for continuous variables and independent samples t values for binary 
variables with p values before and after FDR correction are presented

Abbreviations: CI confidence interval, FDR false discovery rate, ICV intracranial volume, WML white matter lesion, Aβ β-amyloid, P-tau phosphorylated tau, NfL 
neurofilament light, sTREM2 soluble triggering receptor expressed on myeloid cells 2, GFAP glial fibrillary acidic protein, TIA transient ischemic attack

Pearson correlation coefficient (95% CI) T value P value P value 
after FDR 
correction

Age at baseline −0.11 (−0.21 to −0.02) - 0.029 0.064

Sex - −3.00 0.003 0.009
Years of education 0.04 (−0.06 to 0.14) - 0.431 0.571

ICV −0.17 (−0.27 to −0.07) - < 0.001 0.005
WML volume −0.16 (−0.25 to −0.07) - 0.002 0.008
APOEe4 allele - −2.71 0.007 0.018
Low CSF Aβ42/40 ratio - −4.05 < 0.001 < 0.001
CSF P-tau181 −0.22 (−0.32 to −0.12) - < 0.001 < 0.001
CSF NfL −0.34 (−0.44 to −0.23) - < 0.001 < 0.001
CSF sTREM2 −0.07 (−0.16 to 0.02) - 0.183 0.305

CSF neurogranin −0.10 (−0.19 to 0.00) - 0.059 0.118

CSF GFAP −0.15 (-0.26 to −0.05) - 0.003 0.009
Smoking (current or former) - −0.05 0.958 0.958

Hypertension - 1.08 0.281 0.432

Hyperlipidaemia - 0.88 0.382 0.546

Diabetes mellitus - −0.35 0.726 0.807

Ischemic heart disease - −0.12 0.903 0.951

Atrial fibrillation - −0.74 0.457 0.571

Congestive heart failure - 0.56 0.575 0.676

Stroke/TIA - −1.40 0.178 0.305

Table 3  Multivariate analysis. Multivariate linear regression 
model with the residual measure as dependent variable and the 
variables statistically significant in bivariate analyses (Table  2) 
as independent variables, controlling for presence/absence of 
subjective cognitive decline, baseline mean whole brain cortical 
thickness, and baseline mPACC5. Standardized beta coefficients 
with bootstrapped 95% CIs are presented

Abbreviations: CI confidence interval, ICV intracranial volume, WML white matter 
lesion, Aβ β-amyloid, P-tau phosphorylated tau, NfL neurofilament light, GFAP 
glial fibrillary acidic protein, mPACC5 modified Preclinical Alzheimer’s Cognitive 
Composite 5

Standardized beta coefficient 
(95% CI)

P value

Age at baseline 0.02 (−0.10 to 0.16) 0.768

Male sex 0.01 (−0.13 to 0.11) 0.813

ICV −0.10 (−0.21 to 0.03) 0.108

WML volume 0.003 (−0.10 to 0.11) 0.960

APOEe4 allele −0.04 (−0.15 to 0.06) 0.405

Abnormal CSF Aβ42/40 −0.11 (−0.23 to −0.004) 0.049
CSF P-tau181 −0.03 (−0.19 to 0.12) 0.687

CSF NfL −0.20 (−0.34 to −0.05) 0.009
CSF GFAP −0.01 (−0.11 to 0.12) 0.920
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future cognitive decline [20, 60]. In Fig. 2, we present an 
aggregated, hypothetical model including the significant 
mediation effects of NfL from Table  4. It is, however, 
important to emphasize that the possible associations 
in this model have not been tested statistically as a com-
bined model, and the model is to be seen as a hypotheti-
cal model to be tested in further studies.

The presence of AD pathology was another predic-
tor of worse than expected cognitive decline given the 
degree of brain atrophy, as presence of an APOEe4 allele, 
as well as amyloid and tau pathology were associated 
with the residual measure in bivariate analyses, and amy-
loid pathology also in multivariate analysis. This atrophy 
independent association between amyloid pathology and 
the residual measure indicate amyloid-related effects on 
cognition that are independent of gross cortical atro-
phy or axonal degeneration. Instead, amyloid pathology 
could induce network disruption (i.e. functional rather 
than structural) alterations [61]. Mediation analyses 
showed that the association between the residual meas-
ure and CSF p-tau181 was mediated by CSF levels of 
NfL, and both p-tau181 and NfL levels partially medi-
ated the association between amyloid pathology and the 
residual measure. This is in line with existing evidence 
of especially tau pathology being associated with neuro-
degeneration [15, 62, 63], which also could also explain 
why CSF p-tau181 did not remain significant in the mul-
tivariate model, i.e. when taking atrophy into account, as 
tau pathology did not explain additional cognitive decline 
beyond atrophy.

Older age was associated with a worse than expected 
cognitive trajectory given the level of cortical atrophy 

in univariate, but not multivariate, analyses. Consider-
ing chronological age as a proxy for many different pro-
cesses that occur in the ageing brain, this observation 
is in line with our a priori hypotheses. With higher age, 
changes within and between brain networks have been 
observed [64, 65], which could explain the association 
between age and cognitive performance beyond atro-
phy. The association was mediated by levels of NfL, in 
part via cerebrovascular pathology measured by WML 
volume. NfL has been shown to correlate with white 
matter changes in elderly individuals with and without 
dementia [66, 67]. In contrast, a recent study showed 
no association between WML volume and levels of 
NfL, but this study included individuals at all ages [68].

In bivariate analyses, females showed more favour-
able cognitive trajectories than expected on a group 
level. Previous studies using different definitions and 
measures of reserve and resilience have indicated clear 
sex differences in cognitive resilience. For example, 
women showed relative preservation of cortical thick-
ness when exposed to tau pathology compared to men 
[69] indicating greater brain resilience, and in a cohort 
of cognitively unimpaired elderly, women had higher 
entorhinal cortical tau than men [70], indicating greater 
cognitive resilience. These results indicate that women 
can tolerate more aggregated tau in their brains before 
exhibiting neurodegeneration and cognitive decline. 
The negative association between male sex and cogni-
tion was mediated by levels of NfL. ICV, often used as a 
marker of brain reserve [6, 7], was negatively associated 
with the residual measure in bivariate analysis. To some 
degree, this was due to confounding by sex with men 

Fig. 1  Scatterplot showing the negative association between baseline CSF levels of NfL (log10-transformed) and the residual measure (A), and 
boxplot showing that participants with normal Aβ42/40 ratio have higher residual measure than participants with abnormal Aβ42/40 ratio at 
baseline (B). Abbreviations: CSF, cerebrospinal fluid; NfL, neurofilament light; Aβ, β-amyloid
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having lower residual measure and larger ICV than 
women.

CSF levels of GFAP were associated with the residual 
measure in bivariate but not multivariate analysis. It 
also partially mediated the associations between amy-
loid pathology and subsequent p-tau181 levels, NfL 
levels, and the residual measure. GFAP in CSF is asso-
ciated with cognitive performance [22] and is increased 
in different neurodegenerative diseases compared to 
controls [71] and in CU individuals with AD pathol-
ogy compared to those without [59]. No association 

was seen between the residual measure and CSF lev-
els of sTREM2 or neurogranin. For sTREM2, the asso-
ciation with neurodegeneration and cognition is not 
consistent, with studies showing both increased levels 
in AD patients compared to controls [72] as well as 
an association between higher levels and attenuated 
cognitive decline in individuals with AD [23]. Neuro-
granin is associated with cognitive decline [24], but 
the lack of association with cognitive trajectory in our 
study could be due to its high expression in associa-
tive cortical regions [73], since the association between 

Table 4  Mediation analyses testing hypothesized paths (Supplementary Fig.  3). Variables significantly associated with the residual 
measure in bivariate analyses (Table 2) that were not included as mediators were included as covariates as were the presence/absence 
of subjective cognitive decline, baseline mean whole brain cortical thickness, and baseline mPACC5. Significant mediation paths 
(defined as bootstrapped 95% CI not including 0) are highlighted in bold

Abbreviations: WML white matter lesion, Aβ β-amyloid, P-tau phosphorylated tau, GFAP glial fibrillary acidic protein, NfL neurofilament light, mPACC5 modified 
Preclinical Alzheimer’s Cognitive Composite 5, CI confidence interval
a For dichotomous independent variables (sex, APOEe4 allele, and pathological Aβ42/40), these are partially standardized beta coefficients (original metric for x but 
standardized y)
b Since the macro does not allow dichotomous mediators, continuous Aβ42/40 ratio was used for this mediation analysis

Included potential 
mediators

Path Beta (95% CI) Standardized beta (95% CI)a

Age p-tau181, WML volume, NfL

  Direct effect 0.003 (-0.018 to 0.026)

  Total indirect effects -0.010 (-0.022 to -0.0002) -0.058 (-0.127 to -0.001)
  Indirect effects Age – P-tau181 – NfL –  

residual
-0.0006 (-0.002 to 0.0004) -0.003 (-0.014 to 0.002)

Age – NfL – residual -0.007 (-0.016 to -0.001) -0.043 (-0.094 to -0.009)
Age – WML volume – NfL – 
residual

-0.002 (-0.004 to -0.0003) -0.012 (-0.025 to -0.002)

Male sex WML volume, NfL

  Direct effect 0.029 (-0.209 to 0.267)

  Total indirect effect -0.045 (-0.112 to 0.006) -0.048 (-0.120 to 0.006)

  Indirect effects Sex – NfL – residual -0.050 (-0.116 to -0.006) -0.054 (-0.125 to -0.007)
Sex – WML volume – NfL – 
residual

0.006 (-0.001 to 0.017) 0.006 (-0.002 to 0.018)

WML volume NfL

  Direct effect 0.004 (-0.172 to 0.181)

  Total indirect effect -0.049 (-0.101 to -0.009) -0.034 (-0.070 to -0.006)
  Indirect effects WML volume – NfL – residual -0.049 (-0.101 to -0.009) -0.034 (-0.070 to -0.006)
APOEe4 allele Aβ42/40b, GFAP, P-tau181,  

NfL

  Direct effect -0.067 (-0.285 to 0.152)

  Total indirect effect -0.173 (-0.315 to -0.051) -0.184 (-0.324 to -0.057)
  Indirect effects APOE4 – Aβ42/40 – GFAP – 

P-tau181 – NfL – residual
-0.0038 (-0.0087 to -0.0005) -0.0041 (-0.010 to -0.0006)

APOE4 – Aβ42/40 – GFAP –  
NfL – residual

-0.0069 (-0.0164 to -0.001) -0.0074-(-0.0174 to -0.0011)

APOE4 – Aβ42/40 – P-tau181  
– NfL – residual

-0.0237 (-0.050 to -0.006) -0.025 (-0.054 to -0.006)

APOE4 – Aβ42/40 – NfL – 
residual

0.004 (-0.016 to 0.034) 0.004 (-0.018 to 0.037)

APOE4 – Aβ42/40 – residual -0.129 (-0.315 to -0.051) -0.137 (-0.268 to -0.021)
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cognition and cortical atrophy/function has already 
been accounted for in our analysis.

There was no significant association between the 
residual measure and education, which is often used as a 
proxy for cognitive reserve [9]. However, a recent review 
concluded that education level does not affect the rate 
of cognitive decline; instead, it showed that people with 
higher education start at a higher cognitive level, and 
therefore, they have more to lose before reaching the 
level of dementia [74]. The results from the present study 
are in line with that conclusion, with education not being 
associated with better or worse cognitive trajectory over 
time given the rate of atrophy.

No association was found for any cardiovascular 
comorbidity or smoking with the residual measure. Pre-
vious studies have shown associations for diabetes melli-
tus [25], congestive heart failure [26], and stroke [27, 28], 
with risk of cognitive decline and dementia, but there are 
few studies investigating the association when account-
ing for brain atrophy. The lack of association for diabe-
tes (8.4%) and stroke/TIA (4.8%) could be due to lack of 
power in this sample of 395 participants, but hyperten-
sion (37%), hyperlipidaemia (33%), and smoking (48%) 
were frequently observed in our sample.

Limitations
Strengths of this study include the longitudinal design 
and the well-characterized and relatively large sam-
ple of participants. However, there are limitations. 

First, measuring changes in cortical thickness and 
cognitive performance in parallel, when atrophy is 
hypothesized to precede cognitive decline, may affect 
the estimated association between the two measures. 
Second, even if the longitudinal design is of great 
value to assess changes over time, there is a possibil-
ity of attrition bias, with the inherent risk of selec-
tive drop-out of individuals showing the most rapid 
cognitive deterioration during follow-up. Third, for 
the mediation analysis, the main part of the vari-
ables included are measured at the same time point, 
even though the dependent variable is based on lon-
gitudinal data. When using cross-sectional data in 
mediation, the results must be interpreted with cau-
tion. This issue is addressed by building DAGs based 
on previous knowledge and hypotheses about causal 
associations between the variables, but they are built 
on assumptions on the directions of associations and 
do not guarantee that these directions are true. Fourth, 
the residual approach for studying cognitive resilience 
can be discussed. It is a useful method since it directly 
reflects the concept of interest, i.e. the variance in 
cognition not explained by a specified pathology, and 
renders a quantitative measure of resilience. However, 
one needs to bear in mind that apart from resilience, 
it also reflects random error, and the results are highly 
dependent on the variables chosen for the regression 
analysis and the sample participants. Therefore, results 
must be interpreted with caution.

Fig. 2  Aggregated, hypothetical model of the associations between different predictors and the residual measure based on the results from the 
mediation analyses (Table 4). Plus indicates a positive association and minus a negative association between the variables. Abbreviations: WML, 
white matter lesion; Aβ, β-amyloid; GFAP, glial fibrillary acidic protein; P-tau, phosphorylated tau; NfL, neurofilament light
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Conclusions
In conclusion we show, that in cognitively unimpaired 
elderly individuals, axonal degeneration and amyloid 
pathology predict cognitive decline beyond what can be 
explained by cortical atrophy. This is in line with previous 
findings indicating that amyloid pathology has a small 
but significant association with cognition independent 
of atrophy. It confirms that neurodegeneration is closely 
linked to cognition, but also suggests that different meas-
ures used to assess neurodegeneration, e.g. grey matter 
atrophy and axonal degeneration, provide complemen-
tary information when predicting cognitive performance. 
Additionally, these results suggest that axonal degenera-
tion mediates the negative effects of old age, male sex, 
WML volume, astrocytic activation, tau, and in part 
also amyloid pathology, on cognition over time when 
accounting for cortical atrophy.
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