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Abstract

Quantitative mass spectrometry measurements of peptides necessarily incorporate sequence-

specific biases that reflect the behavior of the peptide during enzymatic digestion, liquid 

chromatography, and in the mass spectrometer. These sequence-specific effects impair 

quantification accuracy, yielding peptide quantities that are systematically under- or over-

estimated. We provide empirical evidence for the existence of such biases, and we use a deep 

neural network, called Pepper, to automatically identify and reduce these biases. The model 

generalizes to new proteins and new runs within a related set of MS/MS experiments, and the 

learned coefficients themselves reflect expected physicochemical properties of the corresponding 

peptide sequences. The resulting adjusted abundance measurements are more correlated with 

mRNA-based gene expression measurements than the unadjusted measurements. Pepper is 

suitable for data generated on a variety of mass spectrometry instruments, and can be used with 

labeled or label-free approaches, and with data-independent or data-dependent acquisition.
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1 Introduction

Tandem mass spectrometry (MS/MS) can be used to quantify thousands of peptides in a 

complex biological mixture. Regardless of how the quantitative values are extracted from the 

data—using labeling strategies such as iTRAQ or TMT, peak areas from precursor scans, 

or spectral counts—all such quantitative measurements exhibit biases. In general, “bias” in 

our context means that quantitative measurements from a mass spectrometry experiment 

are systematically skewed, either positively or negatively, relative to the true abundance 

of the measured molecular species. Some of these biases depend in part on properties 

of the peptide sequence, such as how susceptible the peptide is to enzymatic cleavage, 

how efficiently the peptide traverses the liquid chromatography column, how easily the 

peptide ionizes in electrospray, and how easily and uniformly the peptide fragments in the 

dissociation phase of the MS/MS.

Numerous efforts have been made to identify and quantify these sequence-specific 

effects.1-7 For example, a protein’s “proteotypic peptides”—peptides that are repeatedly 

and consistently identified for a given protein—can be identified using machine learning 

methods that take into account a wide range of physicochemical properties of amino 

acids, including charge, secondary structure propensity and hydrophobicity. Peptide 

hydrophobicity, in particular, strongly affects ionization in electrospray settings.8, 9

In this work, we focus on biases that arise directly from the amino acid sequence itself. 

Many biases exist that our approach is not designed to address. This includes, for example, 

the effect of secondary or tertiary protein structure, which could inhibit cleavage by trypsin, 

as well as competitive effects due to chromatographic coelution of other peptides. We 

focus on sequence-induced biases because our machine learning framework depends on 

peptide-level labels, as described below.

Our goal is to train a machine learning model to quantify these peptide-specific properties, 

with the aim of adjusting the observed quantities to remove these effects. Our approach 

rests on two primary assumptions. First, we assume that each peptide is measured in its 

linear dynamic range and that the observed measurement qik of peptide i in run k can be 

decomposed into a peptide coefficient ci and an adjusted peptide abundance αik such that 

qik = Ciαik. Second, we assume that unique sibling peptides, i.e., peptides that occur exactly 

once in the protein database and that co-occur on a given protein sequence, should have 

equal abundances within a single MS/MS run. We use these assumptions to train a deep 

neural network, Pepper, that takes as input a peptide sequence pi and charge state zi and 

produces as output the corresponding peptide coefficient ci, thereby revealing the adjusted 

peptide abundance αik.
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We demonstrate that, by removing peptide-specific effects from the observed MS/MS 

quantities, the adjusted abundance values αik provide more accurate abundance 

measurements than the observed values. First, we provide empirical evidence for the 

consistency of peptide coefficients inferred from disjoint sets of runs, and we show that 

a Pepper model trained to predict these coefficients can generalize to new peptides in new 

runs. We demonstrate the robustness of the approach to the type of noise that one would 

expect to arise from the presence of proteoforms in the sample that are not represented in 

the reference proteome database that was used during the original processing of the data. 

We show that the learned coefficients exhibit significant correlation with several key peptide 

properties, in agreement with previous research.1-7 We also show that the adjusted peptide 

abundances yield a small but highly significant improvement in the degree of correlation 

between MS/MS and mRNA-based gene expression measurements. We provide open source 

code for training models from MS/MS data, which can be used to de-bias any given matrix 

of peptide-level abundances (http://github.com/Noble-Lab/Pepper).

1.1 Related work

The measurements produced by a mass spectrometry experiment invariably exhibit biases. 

In particular, among the many thousands of distinct tryptic peptides in a complex biological 

mixture, only a small fraction are typically observed,10 and some peptides are preferentially 

identified regardless of whether they occur on the most abundant proteins.1 These commonly 

observed peptides are called proteotypic peptides, and automatically identifying them 

can be important for accurate protein detection and quantification.1 In particular, better 

understanding of the biases underlying proteotypicity can lead to changes in experimental 

design, and knowing the potentially observable peptides for a protein beforehand might 

increase our confidence in the identification of missing proteins in a sample.2 Accordingly, 

numerous methods have been developed to predict proteotypic peptides using machine 

learning.

The first such method used physicochemical properties of amino acids summarized at 

the peptide level and selected properties that can most successfully differentiate observed 

versus unobserved peptides using Kolmogorov-Smirnov and Kullback-Leibler distances.1 

Using these most discriminative features, Mallick et al. fitted a Gaussian mixture likelihood 

function to predict the probability of detection for each peptide, thereby achieving a test 

accuracy above 85%. The trained model showed robust performance across various datasets 

and organisms.

Thereafter, a series of machine learning methods were developed to improve the accuracy of 

proteotypic peptide prediction and to target the predictions to particular applications (Table 

1). Sanders et al.2 developed a neural network-based predictor, which can encode non-linear 

relations among the input features. Similarly, Webb-Robertson et al.3 developed a non-linear 

support vector machine classifier to predict proteotypic peptides, after first applying the 

Fisher Criterion Score to select a subset of peptide features to train on. Unlike previous 

approaches, they jointly predict proteotypicity (i.e., detection probability) and the elution 

time of a peptide. Several methods focused on predicting which peptides will be most useful 

in a targeted MS setting. In one such study, Fusaro et al. used a random forest classifier for 
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the prediction of high-responding peptides to be used as targets,4 and Searle et al.’s PREGO 

model6 adopted a similar approach, using data independent acquisition (DIA) fragment 

intensities to define their training set. The Peptide Prediction with Abundance (PPA) method 

also uses a neural network and predicts not only the probability of detection for the peptide 

but also the corresponding protein abundance that would enable detecting that peptide.7 

Finally, CONSeQuence uses a consensus machine learning approach—an ensemble of 

support vector machine, random forest, genetic programming, and neural network models

—to select peptides for absolute quantification experiments.5

All of the studies cited above have focused on identifying proteotypic or high-responding 

peptides. In contrast, our goal is to quantify the peptide biases in quantitative MS 

experiments. Thus, rather than classifying the peptides as low-responding versus high-

responding, we aim to learn peptide coefficients that can allow us to reduce bias in our 

measurements. To our knowledge, ours is the first machine learning approach to quantifying 

sequence-induced bias for mass spectrometry.

Another key point that differentiates our work from the previous studies is that instead of 

using the physicochemical properties of the amino acids, we take the peptide sequence itself 

as input. Using the physicochemical properties of peptides has many intrinsic limitations. 

Most importantly, all previous studies used the amino acid properties summarized at the 

peptide level (e.g., using the mean or sum) which results in losing sequence-specific 

information. In practice, small changes in the order of amino acids within a peptide 

sequence might significantly affect how the peptide behaves in a mass spectrometer. 

Therefore, our model can potentially explain biases that a model trained solely on summary-

level peptide properties might fail to capture. Our sequence-based approach has the added 

advantage that we do not need to worry about pre-processing large tables of peptide features 

in order to reduce redundancy, as was done in many previous studies.1-3, 5, 6

2 Methods

2.1 A neural network model for predicting peptide coefficients

We designed a neural network architecture, Pepper, that aims to learn peptide coefficients 

from quantitative mass spectrometry measurements (Figure 1). The inputs to Pepper are 

a matrix of measured peptide abundances and corresponding databases of peptides and 

proteins. Say that we are given a matrix Q of peptide measurements, where qik is the 

observed abundance of peptide i in run k. We column normalize Q so that the sum of 

all abundances within a given run is constant across runs. We are also given a peptide 

database P and corresponding protein database . For the purposes of training our model, 

we preprocess P to eliminate all peptides that appear in more than one protein. In addition, 

to reduce issues related to unexpected proteoforms, we identify any peptide that contains 

a variable modification, such as phosphorylation or oxidation of methionine, and we 

eliminate both the modified and unmodified form of the peptide from P. Similarly, we 

eliminate all peptides that overlap one another, due to missed or non-enzymatic cleavages. 

Finally, we retain in  only proteins that contain at least two unique peptides. The column 

normalization was applied to the raw abundances without applying any other transformation 

and after the filtering of the peptides.
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Pepper takes as input one-hot encoded peptide sequence (i.e., a binary representation in 

which each amino acid is represented using 20 bits, exactly one of which is set to 1), pi, 

along with the charge state, and produces as output the corresponding coefficient ci (i.e., 

f(pi)). The network is then trained using a loss function that captures our assumption that the 

adjusted abundances of all sibling peptides should be equal to one another and, thus, should 

be equal to the adjusted abundance of the corresponding protein, ρ:

L(Q, P , f( ⋅ )) = ∑
k = 1

κ
∑

ρ ∈ P
∑

pi ∈ ρ
(qik − f(pi)αρ, k)2

(1)

where αρ,k is the adjusted abundance of protein ρ in run k and κ is the number of runs in 

Q. The model is trained subject to the constraints ∀i ci > 0 and ∀ρ,k αρ,k > 0. Note that the 

resulting coefficients can be used to adjust the measured abundances of all peptides, not just 

unique peptides, via αik =
qik
ci

.

We note that the elements of the α matrix are parameters of our model which we optimize 

along with the network weights while training the model. When calculating the loss function 

in Equation 1, we initialize the α matrix to the median observed peptide abundance per 

protein. To obtain the final adjusted protein abundance matrix α for a test set, we optimize 

over the fixed set of Q matrix and predicted ci values, and we use the resulting α to calculate 

the final loss for the test set.

The Apache licensed Pepper source code is available at http://github.com/Noble-Lab/Pepper.

2.2 Data sets

To train and validate Pepper, we downloaded a collection of quantitative proteomics data 

from a variety of previous studies (Table 2). In most cases, we directly downloaded a 

matrix of peptide-level quantities. For the CPTAC datasets, we downloaded matrices of 

PSM-level quantities, for which we followed the steps described below to map to the peptide 

level. These studies employed a variety of instrument types, acquisition strategies, and 

processing pipelines, but Pepper is designed to be agnostic to the specifics of the underlying 

quantitation strategy.

The primary dataset was obtained from Guo et al.11 The data was generated from NCI-60 

cancer cell lines using the PCT-SWATH workflow. Two replicates were obtained for each 

cell line, resulting in a total of 120 runs. SWATH-MS acquisition was used in a Sciex 

TripleTOF 5600 mass spectrometer with 32 windows of isolation width of 25. Peptides were 

detected at a peptide-level FDR threshold of 1% with OpenSWATH, using a human cancer 

cell line spectral library containing 86,209 proteotypic peptide precursors.

The other datasets were selected to reflect a range of instrument types, experimental 

protocols, and quantification methods (Table 2). The Slevlek et al. and Thomas et al. 
datasets provided peptide-level matrices of intensities. The CPTAC datasets were processed 

to obtain peptide quantities from the PSM files by repeating the preprocessing pipeline 

implemented by the CPTAC consortium, which starts with selecting the highest observed 
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intensity for each sample and peptide across all fractions. Each sample was analyzed in 24 

or 25 fractions, depending on the dataset. For each peptide, we selected the PSM with the 

highest “TotalAb” (i.e., total intensity across all TMT channels) among all fractions. The 

result is a peptide-by-sample matrix of measured intensities.

For each data set, we normalize the peptide measurements so that the sum of peptide 

abundances is equal across all runs. This normalization is carried out after filtering peptides, 

as described next.

2.3 Filtering peptides

For a given quantitative matrix, we construct a filtered set of unique peptides by reducing 

the number of rows (peptides) in the matrix in four steps. First, we identify all peptides that 

occur in more than one protein, and we eliminate these from the matrix. Second, we identify 

all peptides that occur in both modified and unmodified forms, and we eliminate these from 

the matrix. Third, we eliminate all pairs of peptides that overlap one another due to missed 

cleavages. Fourth, among the remaining peptides, we identify and remove singletons, i.e., 

peptides with no siblings. The remaining peptides comprise the set of “filtered” peptides 

(Table 2). Note that if a peptide occurs in more than one charge state, these are treated as 

distinct peptides.

For input to the model, each peptide is encoded in a 1206-dimensional vector. The first six 

dimensions represent a one-hot encoding of the charge state (from +1 to +6). The remaining 

1200 dimensions represent the peptide sequence, where each position is encoded with a 

20-dimensional vector corresponding to different amino acids, up to a maximum length of 

60.

2.4 Training and test set construction

To construct the train/test split, we split the data along two axes. First, we randomly 

segregate the runs in a ratio of 80%/20%. In this step, if a dataset contains replicate sets of 

runs, we make sure to keep the replicate runs within the same set. Second, we collect the set 

of all proteins that contain at least one pair of sibling peptides, and we randomly split that 

set into training and test sets in the same ratio.

The training set is comprised of all peptides that occur in training proteins, using 

measurements drawn from the training set runs. Conversely, the test set contains 

measurements of peptides within test proteins and measured in test runs. We also defined a 

validation set with the same process by splitting the training set into training and validation 

runs with a ratio of 90%/10%. We used this validation set for optimizing our deep learning 

model, such as hyperparameter tuning and early stopping.

2.5 Neural network architecture and training

The Pepper network takes as input the one-hot encoded peptide sequence and charge states 

and outputs a peptide coefficient. The neural network consists of a 2D convolutional layer 

containing 20 × k filters, each of which effectively extracts k-mers from the sequence. The 

output is flattened and concatenated with the charge state, which is then passed to the dense 
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layers. ReLu activaton is used in each layer, and dropout layers are included after every 

layer. Pepper is trained using the Adam optimizer with an initial learning rate of 0.001 with 

gradient normalization. Early stopping on the validation set is used with a patience of 100 

epochs and a threshold of 0.01 improvement in the loss. The best model, as measured by the 

loss function (Equation 1) on the validation set, is recovered when the training is done.

When calculating the loss function to update the model, we also take into account the 

protein labels P and the peptide-level measurements Q; however, these are not inputs to the 

model and thus are not used once the model has been trained. Note that missing values or 

zeros in the Q matrix are excluded from the loss calculation. The calculated loss values are 

normalized by dividing them by the total number of peptides and runs, which enables direct 

comparison between training, validation, and test sets.

Along with the dense and convolutional layers, we also define the α matrix as one of the 

parameters of our model, which we update while optimizing our loss function. We initialize 

the α matrix as the median abundance per protein.

For hyperparameter tuning, we used a random search over a grid of hyperparameters. 

Specifically, we sampled from a grid of filter size (3, 4, 5, 6, 7), number of filters (5, 10, 

20, 40), number of layers (1, 2, 3, 4, 5), number of hidden nodes (10, 20, 40, 80), dropout 

rate (0.0, 0.25, 0.5, 0.75), learning rate (5e-4, 1e-3), and batch size (500, 1000), selecting the 

hyperparameters that yield the lowest loss (Equation 1) on the validation set. The selected 

hyperparameters were 10 filters each with a size of 3, a total of 4 hidden layers with 40 

nodes in each dense layer, trained with a learning rate of 0.001, batch size of 1000, and a 

dropout rate of 0.25.

We repeated the hyperparameter selection procedure for each dataset separately, extending 

the grid when necessary, and selected the optimal hyperparameters. We used the same model 

architecture for all the CPTAC TMT11 datasets. We implemented our model using Keras 

with a Tensorflow backend.

3 Results

3.1 Empirical investigation of peptide coefficients

Prior to training a machine learning model to predict peptide coefficients from sequence, 

we investigated whether we observe consistency of quantities between pairs of sibling 

peptides across multiple MS runs. For this and most of the remaining experiments, we used 

SWATH-MS data obtained from the NCI-60 cancer cell lines.11 The data consist of a total 

of 14,472 peptides and 120 runs, where two replicate runs were carried out for each of 

the 60 cancer cell lines. We made a list of all peptides identified in any one of the runs, 

and we eliminated shared peptides (i.e., peptides that appear in more than one protein) 

from the list. We then randomly selected a pair of unique peptides (pi, pj) and a random 

pair of runs (rk, rℓ). If both peptides were observed in both runs, then we recorded the 

corresponding observed quantities (qik, qiℓ, qjk, qjℓ). We assume that each of these quantities 

can be decomposed into a peptide coefficient and an adjusted abundance; e.g., qik = ciαik. 

Furthermore, we hypothesize that the adjusted abundances for a sibling peptide pair should 
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be approximately equal to one another; i.e., if pi and pj are siblings, then αik ≈ αjk and 

αiℓ ≈ αjℓ. It follows, therefore, that the ratio of the abundances for the two sibling peptides 

between the two runs should be approximately equal:

qik
qiℓ

=
ciαik
ciαiℓ

=
αik
αiℓ

≈
αjk
αjℓ

=
cjαjk
cjαjℓ

=
qjk
qjℓ

By contrast, we do not expect to observe any correspondence between ratios of pairs of 

non-sibling peptides.

To test our hypothesis, we repeated this sampling procedure many times and segregated the 

observed cross-run ratios into sibling and non-sibling pairs. The results of these analysis 

show evidence for consistency of peptide coefficients across runs (Figure 2): the Pearson 

correlation between intensity ratios of peptides are 0.39 and 0.03 for sibling and non-sibling 

peptides, respectively. This high correlation between ratios of sibling peptides demonstrates 

that sibling peptide measurements can be used as anchors for quantifying the peptide biases.

3.2 The model successfully generalizes to new peptides in new runs

Directly computing ratios of sibling peptide abundances is not a suitable strategy for 

inferring sequence-induced bias because the empirical ratios potentially reflect additional 

bias and noise. Accordingly, we turned to our neural network model, which learns to predict 

the peptide coefficient directly from the peptide sequence and charge state. We hypothesized 

that, if a Pepper model is truly learning sequence-specific biases, then the model should be 

able to generalize to new runs and new peptides. Accordingly, we segregated the Guo et al. 
dataset into a collection of training and test runs, and we similarly segregated proteins into 

training and test sets. We then trained a model using only training proteins drawn from the 

training runs, and we used the trained model to adjust the quantities associated with test 

proteins in the test runs.

The results of this experiment show that the model successfully generalizes (Figure 3). In 

particular, we find that the model reduces the loss—i.e., it succeeds in pushing the sibling 

peptide abundance differences closer to zero—in the test set. The kurtosis of the distribution 

of sibling peptide abundance differences is also reduced to from 6.01 to 5.18, highlighting 

the peak at 0 after adjusting with Pepper coefficients.

We repeated the training of the model 10 times with different random initializations and 

obtained an average loss reduction (i.e., Equation 1) of 28.71% in the test set. We also 

computed the coefficient of variation (CV) per protein (i.e., the standard deviation divided 

by the mean across all peptides in the protein), before and after adjusting with Pepper 

coefficients, and observed that CV decreases for the majority (71.3%) of the test proteins 

(Figure 3B-C), highlighting the ability of the model to reduce the within-protein variance in 

test set abundances. To further examine the proteins which lead to an increase in the CV, 

we recorded the CV change in proteins with >5 peptides and observed that an even higher 

percentage of proteins had a decreased CV (80.8%).
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To further visualize this result, we selected the 10 proteins from the test set with the highest 

number of quantified peptides and plotted the abundance of all peptides occurring on each 

protein before and after adjusting with the coefficients (Figure 4). In each case, we observe 

that the adjusted peptide abundances fall closer to the mean, indicating that our coefficients 

can minimize the bias in sibling peptide measurements for an unseen protein. We also report 

the per-protein change in loss values, alongside the change in CV for each protein. For all 

but one of the proteins, an improvement in the loss function corresponds to a decrease in 

CV. The only exception is protein O75533, where the increasing CV corresponds to one 

of the lowest loss changes. We further examined the results for this protein and found that 

a peptide with charge +6 is responsible for the high standard deviation; after excluding 

this peptide, the CV decreased by 25.4%. This observation matches with our expectation 

that the Pepper predictions are less reliable for high charge peptides, because our training 

set has only a small number of examples for higher charge states. These results support 

our two central hypotheses—that measured peptide quantities can be decomposed into a 

sequence-specific bias term and that the adjusted peptide quantities for sibling peptides 

should be approximately equal—and suggest that Pepper is able to learn to predict the 

sequence-induced bias terms. Note that, a priori, we do not expect the model to be capable 

of reducing the loss to zero, even on the training set, because the observed data presumably 

contains many biases that are not predictable from the amino acid sequence alone.

We next tested whether this approach generalizes to other instrument types, acquisition 

strategies, and quantification schemes by training and testing the model using a variety of 

datasets (Table 3). In each case, we segregated the runs and proteins into training and tests 

sets in a ratio of 80% to 20%, and we used a fixed model architecture for training and 

testing. We observed that our model can successfully predict coefficients for datasets with 

different characteristics, in each case substantially reducing the test set loss relative to the 

baseline.

3.3 Pepper learns successfully in the presence of mislabeled proteoforms

One potential challenge faced by our model arises from the necessarily incomplete and 

inaccurate collection of proteoforms in our database. Even if we train Pepper using data that 

was processed using a reference proteome containing many known isoforms, the database 

cannot possibly account for the huge number of proteoforms that exist in a complex mixture, 

including unexpected isoforms, post-translational amino acid modifications, and truncation 

events. In practice, the incompleteness of our database will most often give rise to false 

positive labels in our training set, i.e., pairs of peptides that we believe to be siblings 

but which actually lie on different proteoforms (Figure 5A). To the extent that such false 

positives occur in real data, our model will be harder to train.

To investigate the robustness of our approach to proteoform noise, we artificially injected 

false positives into our training procedure and examined the behavior of the trained model. 

Specifically, we created a training set consisting of 14,472 peptides, and then we randomly 

permuted the protein labels for a fixed percentage of the training peptides. Effectively, we 

are introducing falsely labeled proteoforms by modifying the protein labels of the peptides. 

For a noise level of 0, this corresponds to making no change in the dataset. A noise level 
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of 100 corresponds to randomly shuffling the protein labels, i.e., randomly assigning each 

peptide to another protein that exists in the database. Similarly, for a noise level of 50, 

we keep the labels of 50% of the peptides as is and randomly shuffle the labels for the 

remaining 50%, resulting in half of the peptides being assigned to a protein other than the 

original protein they were mapped to. This procedure has the effect of creating false positive 

pairs, mimicking pairs of peptides that occur on a single proteoform in our database but 

occur on distinct proteoforms in the sample.

This experiment shows that the Pepper model is robust to such noise. We observe a smooth 

degradation of performance as the percentage of false positive pairs increases, with the 

improvement on the test set remaining above 10% even up to 70% false positives (Figure 

5B). This result shows that even if our training set contained label noise, we are able to 

successfully learn to identify sequence-induced bias.

While we demonstrate the generalizability of our model in the presence of mislabeled 

sibling peptides, the test set performance is highly dependent on the number of noisy 

samples in the training set. Thus, we aimed to adapt our model to better handle label noise. 

Borrowing from a popular machine learning technique, Robust PCA,12 we extended our 

coefficient predictor to model the corrupted labels as parameters to be inferred. Specifically, 

we trained the same network using a modified loss function that is more robust to label 

noise:

L(Q, P , f( ⋅ )) = ∑
k = 1

κ
∑

ρ ∈ P
∑

pi ∈ ρ
(qik − f(pi)αρ, k − sik)2 + λ ∑

i = 1

n
∑

k = 1

κ
sik2 (2)

where si,k is the noise term associated with peptide i and run k. The model is trained subject 

to the same constraints as the loss function in Equation 1. The second term in Equation 2 

corresponds to the regularizer for the S matrix. The lambda value determines the strength of 

regularization, which we tuned using a validation set for each different noise ratio value.

We hypothesized that, by properly accounting for the label noise that we know exists 

in our data, this method will improve our ability to accurately infer peptide coefficients. 

Accordingly, we trained the robust model and compared the percent improvement across 

all noise ratios (Figure 5B). We observe that the robust model outperforms the regular 

model, indicating that the robust model is useful for eliminating label noise. We expect this 

extension of the model to be especially useful for datasets with high ratios of proteoform 

noise. On the other hand, this extension to the model significantly increases the number of 

parameters (by roughly a factor of 5 on average), making the training procedure significantly 

slower.

3.4 The coefficients reflect physicochemical properties of the peptide sequences

Previous machine learning models that aim to characterize peptide-specific biases in the 

context of identifying, rather than quantifying, peptides from mass spectrometry data have 

shown that the predictions from the models correlate strongly with several key peptide 

features, including hydrophobicity and peptide length.1-7 Accordingly, we segregated 

Pepper’s coefficient predictions from our model according to these two features. In both 
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cases, we observe a strong trend (Figure 6A-B), with coefficients taking smaller values 

for longer peptides or peptides with extreme values (high or low) of hydrophobicity, in 

agreement with previous work. These results indicate that the instruments are yielding 

under-estimates of the quantities of long or highly hydrophobic/hydrophylic peptides. By 

learning small coefficients for such peptides, our model aims to correct the associated biases.

We further calculated the correlation between the learned coefficients and 494 different 

physicochemical properties obtained from the AAIndex database.13 Table 4 lists the highly 

correlated features, including polarity, hydration, and structural features. Polarity and 

hydrophobicity of a peptide determine its behavior in the solvent.2 Structural features are 

also highly relevant because the structure can affect tryptic digestion.1 It is promising to see 

our model capturing these properties of the peptides affecting how they behave in the mass 

spectrometer and adjusting their abundances to provide more accurate quantification.

While the previous methods relied on amino acid features summarized at the peptide level, 

they highlighted that amino acid composition is a potentially important feature affecting 

tryptic digestion.1, 2, 5 Accordingly, we wanted to investigate the effect of amino acid 

substitutions on the peptide bias. To do so, we randomly sampled real peptide sequences 

from the NCI-60 dataset and generated simulated peptide sequences by substituting each 

amino acid at every position with every other amino acid. We then used our trained model 

to predict coefficients for all pairs of sequences and calculated the differences between the 

predicted coefficients.

The resulting clustered heat map (Figure 6C) suggests that the learned clusters align 

with physicochemical features of the amino acids. We observe that the two prominent 

clusters consist of mostly polar versus non-polar amino acids. Polarity was among the most 

discriminative features for some previous approaches.1, 3, 5 The polar cluster particularly 

consists of charged amino acids (D, E, H, K). The hydrophilicity and the charge of the 

residues affect fragmentation, ionization, and detection processes and thus are critical for 

determining the behavior of a peptide in mass spectrometer.1 Similarly, the non-polar cluster 

contains a group of small amino acids (S, T, G, P, A) where the size of the side chain is 

known to be related to the flexibility of the amino acid.2 The cluster map also highlights 

that the learned coefficients become larger, in general, when a hydrophobic amino acid 

is substituted with a polar one, indicating that more polar peptides are favored by the 

instrument. This finding agrees with studies that detected a negative correlation between 

hydrophobicity of the peptide and the probability of detection.6

We also investigated the effect of the substitution position on the peptide coefficient. We 

grouped the scores by position with respect to the N- and C-terminus and plotted the 

distribution of the coefficients (Figure 6D-E). We find that amino acids at either end of 

the sequence are strongly related to sequence-induced bias. This might be because these 

residues play an important role in susceptibility of the peptide to enzymatic cleavage or 

absorption to solid phase extraction matrices. Recapitulating the features that were shown to 

be important for determining the detectability of a peptide in the context of quantification 

highlights the biological relevance of the learned coefficients.
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3.5 Pepper outperforms a simple linear model

The observed correlation between our predicted coefficients and amino acid composition 

suggests that perhaps a simple linear regressor trained using compositional features might 

be sufficient to accurately model peptide bias. To test this hypothesis, we trained a linear 

regression model from amino acid counts vector (i.e., vector of length 20 containing the 

number of occurences of each amino acid) trained using the same loss function as our neural 

network (Equation 1). We further trained linear regression models trained using 2-mer or 

3-mer counts (i.e., vectors of length 400 or 8000 containing the number of occurrences of 

each k-mer).

The comparison of the models (Table 5) shows that Pepper clearly outperforms the 

alternative approaches, highlighting that the neural network architecture, which allows for 

nonlinearities and for dependencies between input features, is essential for the accurate 

prediction of the coefficients.

3.6 Factoring out sequence-specific bias improves correlation with gene expression

One of the criteria for evaluating the success of our approach is whether the adjusted 

abundances can provide more accurate quantification. We hypothesized that improving 

the accuracy of protein quantification would lead to higher correlation with the mRNA 

measurements. As has been discussed extensively in the literature, we do not expect a very 

strong correlation between these two data modalities, due to effects such as post-translation 

modifications and variations in protein degradation rates.14, 15 Nonetheless, we reasoned 

that a small proportion of the discordance between protein and mRNA expression might 

be explained by sequence-specific biases in the quantitative proteomics data. Accordingly, 

we used a paired set of RNA-seq and mass spectrometry measurements to calculate the 

correlation between the gene and protein-level abundances for each sample before and after 

adjustment using Pepper. Specifically, NCI-60 protein-level abundances were available for 

60 cancer cell lines, and corresponding gene-level abundances were also available for 59 

of these cell lines. We first preprocessed the gene-level abundances to select the proteins 

that are also available in the mass spectrometry dataset as well, and then we calculated 

the Pearson correlation per sample, i.e., the correlation between all gene abundances and 

all protein abundances in one cell line. As expected, we observe that Pepper increases 

the correlation between protein and mRNA-based measurements (Figure 7A). Strikingly, 

the correlation improves in 59 out of 59 runs that we tested on (p < 1.2 × 10−11, signed-

rank test) highlighting the ability of the learned coefficients to improve the accuracy of 

downstream analysis.

As a control, we further generated a random set of coefficients by sampling from the range 

of the learned coefficients. Adjusting the abundances with these random coefficients and 

recalculating the correlations with the mRNA measurements resulted in deterioration of 

correlation, highlighting the significance of our results (Figure 7). This analysis suggests that 

our coefficients can be used to reduce the biases associated with peptide measurements.
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3.7 The model learns successfully from a few runs

Finally, we investigated the effect of the number of training runs on the model performance, 

and whether it is possible to reduce peptide bias using a few runs. Accordingly, we 

downsampled the training runs in the Guo et al. dataset and repeated the model training 

while recording the percent reduction on a fixed set of test runs. We observe the test set 

performance increasing as the number of training runs increase, as expected, indicating that 

training from a higher number of runs can be helpful in increasing the generalizability of 

the model (Figure 8). On the other hand, the Pepper model trained from only two runs can 

achieve a test set loss reduction of 18.5%, indicating that our coefficient predictor can learn 

effectively from a small number of runs.

We also investigated Pepper’s ability to generalize across different mass spectrometry 

experiments. Accordingly, we trained our coefficient predictor on a combined set of all 

five CPTAC TMT11 datasets. We then applied the trained model to the held-out CPTAC 

TMT11 dataset (CPTAC S51) containing 35 runs.

This analysis showed a marked decrease in the model’s performance in the cross-experiment 

setting. In particular, when generalizing to new runs within the held-out dataset, the model 

achieved a reduction in loss of 24.84% (±1.76). In contrast, when generalizing to the held-

out experiment, the improvement was only 13.51% (±1.45). The limited ability of our model 

to generalize across experiments might be related to experiment-specific biases associated 

with each dataset, which restricts our ability to transfer the learned coefficients to unseen 

datasets, as also observed in previous studies.1, 2

4 Discussion

In this work, we aim to quantify the peptide-specific biases that arise in a quantitative 

MS/MS experiment, with the goal of adjusting the observed abundances to reduce bias. We 

developed a deep learning model, Pepper, that takes the peptide sequence and charge state 

as input and predicts a peptide coefficient to account for peptide-specific biases. Pepper 

was trained based on our assumption that the abundances of unique sibling peptides should 

be equal. We demonstrated that the predicted peptide coefficients successfully reduce our 

pre-defined loss function for new peptides and runs, which corresponds to reducing the CV 

of peptide intensities associated with a given protein. This generalization performance was 

replicated on multiple datasets generated with different MS/MS instruments using different 

acquisition and quantification techniques. We also detected significant correlation between 

various physicochemical features of peptides and the learned coefficients, highlighting 

that our model captures features, such as hydrophobicity and secondary structure, which 

were previously shown to affect how a peptide behaves in a mass spectrometer.1, 4-7 We 

demonstrated that our coefficients significantly improve the correlation between protein and 

mRNA expression, and we examined Pepper’s ability to learn from datasets of varying sizes 

and to generalize across MS/MS experiments.

One caveat of our approach is that Pepper learns a single peptide coefficient to be applied 

across all runs. However, each mass spectrometry run exhibits specific biases. With our 

current approach, our analysis showed that the model pretrained on a different dataset—even 
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if much larger—and transferred to the target dataset does not outperform a model trained 

directly on the target dataset itself. Previous studies also highlighted the same drawback, 

where the ability to predict across datasets was quite poor.1, 2 Some of these studies even 

found that the most discriminative features for predicting the detection probability of a 

peptide changed from experiment to experiment.1, 2, 4 Although training Pepper separately 

to learn distinct coefficients per run might seem like a plausible extension, our training 

procedure requires learning a function to map a peptide sequence to a generalizable 

coefficient. Hence, it is not possible to train our model using a single run. Alternatively, 

eliminating the run bias along with the peptide bias might be possible by learning run-

specific peptide coefficients, but such a training scheme would require labels other than 

those produced using sibling peptide relationships. Such labels might, for example, be drawn 

from metadata about the run, embedded in the mzML header. Improving our model to 

overcome the dependency between the quantitative biases and the experiment would enable 

jointly training from hundreds of datasets and making predictions for new experiments. If 

this approach is successful, our ultimate goal would be to offer our trained model as a 

general preprocessor for any quantitative mass spectrometry data to improve downstream 

analysis.

In addition, even within a single MS/MS experiment, Pepper is currently limited to capturing 

only sequence-related biases. However, many additional biases exist that our approach is not 

designed to address, such as protease cleavage rates and effects of chromatographic elution. 

Properties of the protein structure may also be relevant, since burial or surface exposure of 

any given peptide depends on that structure. Thus, one future direction is to generalize our 

model to take into account a wider variety of features.

An important caveat to the analyses reported here is that we have largely restricted ourselves 

to studies that focus on unmodified, fully tryptic peptides. As with any machine learning 

system, the parameters of the model are fit to the characteristics of the input data and 

hence likely capture trends that are specific to such peptides. In the future, we plan to 

investigate quantitative proteomics studies that employ a wider range of peptides, including 

partial cleavage products, cleavages from other enzymes, or that include various types of 

post-translational modifications.

The Pepper software enables researchers with quantitative peptide measurements to infer 

coefficients and improve protein expression analysis. Better detection and understanding 

of bias in mass spectrometry experiments can change how we carry out and interpret 

experiments, leading to a better understanding of the proteome.

Acknowledgments:

This work was funded by National Institutes of Health award R01 GM121818.

References

1. Mallick P, Schirle M, Chen SS, Flory MR, Lee H, et al. Computational prediction of proteotypic 
peptides for quantitative proteomics. Nature Biotechnology, 25:125–131, 2006.

Dincer et al. Page 14

J Proteome Res. Author manuscript; available in PMC 2023 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. Sanders WS, Bridges SM, McCarthy FM, Nanduri B, and Burgess SC. Prediction of peptides 
observable by mass spectrometry applied at the experimental set level. BMC Bioinformatics, 
8(7):S23, 2007.

3. Webb-Robertson BJ, Cannon WR, Oehmen CS, Shah AR, Gurumoorthi V, Lipton MS, and Waters 
KM. A support vector machine model for the prediction of proteotypic peptides for accurate mass 
and time proteomics. Bioinformatics, 24(13):1503–9, 2008. [PubMed: 18453551] 

4. Fusaro VA, Mani DR, Mesirov JP, and Carr SA. Prediction of high-responding peptides for targeted 
protein assays by mass spectrometry. Nature Biotechnology, 27(2):190–198, 2009.

5. Eyers CE, Lawless C, Wedge DC, Lau KW, Gaskell SJ, and Hubbard SJ. CONSeQuence: Prediction 
of reference peptides for absolute quantitative proteomics using consensus machine learning 
approaches. Molecular and Cellular Proteomics, 10(11):M110.003384, 2011.

6. Searle BC, Egertson JD, Bollinger JG, Stergachis AB, and MacCoss MJ. Using data independent 
acquisition (DIA) to model high-responding peptides for targeted proteomics experiments. 
Molecular and Cellular Proteomics, 14(9):2331–2340, 2015. [PubMed: 26100116] 

7. Muntel J, Boswell SA, Tang S, Ahmed S, Wapinski I, et al. Abundance-based classifier for the 
prediction of mass spectrometric peptide detectability upon enrichment. Molecular and Cellular 
Proteomics, 14(430–440), 2015.

8. Shuford CM, Comins DL, Whitten JL, Burnett JC, and Muddiman DC. Improving limits of 
detection for B-type natriuretic peptide using PC-IDMS: An application of the ALiPHAT strategy. 
Analyst, 135(1):36–41, 2010. [PubMed: 20024179] 

9. Shuford CM and Muddiman DC. Capitalizing on the hydrophobic bias of electrospray ionization 
through chemical modification in mass spectrometry-based proteomics. Expert Reviews in 
Proteomics, 8(3):317–323, 2011. [PubMed: 21679113] 

10. Kuster B, Schirle M, Mallick P, and Aebersold RH. Scoring proteomes with proteotypic peptide 
probes. Nature Reviews Molecular Cell Biology, 6:577–583, 2005. [PubMed: 15957003] 

11. Guo T, Luna A, Rajapakse VN, Koh CC, Wu Z, et al. Quantitative proteome landscape of the 
NCI-60 cancer cell lines. iScience, 21:664–680, 2019. [PubMed: 31733513] 

12. Xu H, Caramanis C, and Sanghavi S. Robust PCA via outlier pursuit. In Proceedings of the 23rd 
International Conference on Neural Information Processing Systems-Volume 2, pages 2496–2504, 
2010.

13. Kawashima S and Kanehisa M. AAindex: Amino Acid index database. Nucleic Acids Research, 
28(1):374, 2000. [PubMed: 10592278] 

14. Greenbaum D, Colangelo C, Williams K, and Gerstein M. Comparing protein abundance and 
mRNA expression levels on a genomic scale. Genome Biology, 4(9):117, 2003. [PubMed: 
12952525] 

15. Liu Y, Beyer A, and Aebersold R. On the dependency of cellular protein levels on mRNA 
abundance. Cell, 165(3):535–550, 2016. [PubMed: 27104977] 

Dincer et al. Page 15

J Proteome Res. Author manuscript; available in PMC 2023 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: Peptide coefficient predictor.
The neural network architecture for predicting peptide coefficients. The network takes 

as input the one-hot encoded peptide sequence and the charge state, and runs through 

convolutional layers followed by densely connected layers to output a peptide coefficient.
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Figure 2: Consistency of sibling peptide ratios across experiments.
The figure plots the log ratio of intensities of pairs of peptides across pairs of MS runs. Each 

point corresponds to a randomly selected pair of (A) non-sibling or (B) sibling peptides 

observed in a randomly selected pair of runs. Each panel contains 10,000 randomly selected 

pairs.
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Figure 3: Predicting peptide coefficients across proteins and runs.
(A) The figure plots a histogram of the difference between the observed and adjusted peptide 

quantities of all sibling peptide pairs, on a logarithmic axis, for the test peptides and runs. 

(B) The figure plots the coefficient of variation (CV) before and after adjustment, for the test 

proteins and runs. (C) The figure plots a histogram of the difference between the coefficient 

of variation for the observed and adjusted peptide quantities for the test proteins and runs in 

(B).
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Figure 4: Comparing observed and adjusted abundances.
The figure plots the abundance for all peptides occurring on 10 test set proteins with the 

highest numbers of peptides. The horizontal axis is amino acid position along the sequence, 

and the vertical axis shows the mean-centered peptide abundance for the original (top) and 

adjusted (bottom) abundances. The percent improvement is calculated with respect to the 

loss function (Equation 1). The percent reduction in coefficient of variation (CV) is also 

reported for each protein. Individual peptide sequences, segregated by charge state, are 

arrayed along the bottom of each figure.
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Figure 5: The model’s robustness to proteoform noise.
(A) A protein that has two isoforms, only one of which is in the database. The four peptides 

yield six pairs of apparent siblings. However, because of the presence of the unknown 

isoforms, some of the sibling relationships (marked in red) are invalid. (B) The figure plots 

the percent improvement over the baseline (when all coefficients are set to 1), over ten 

runs, of a fixed set of test peptides as the percentage of label noise increases. Error bars 

correspond to standard error.
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Figure 6: Physicochemical properties of peptides.
(A) The figure plots the relationship between median peptide coefficient (y-axis) and 

sequence length. Bars represent standard error. (B) Same as panel A but for peptide 

hydrophobicity. (C) Cluster map of the change in the peptide coefficient per amino acid 

substitution. The values are the median over all instances of the given substitution in our 

simulation. (D) The figure plots the distribution of the change in the peptide coefficient 

plotted separately for each N-terminus position in the peptide sequence. (E) Same as panel D 

but for C-terminus positions.
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Figure 7: Factoring out sequence-specific biases.
The figure plots the per-protein correlation between gene expression and protein expression, 

before (x-axis) and after (y-axis) adjusting the quantities using the deep neural network (red 

points) or using randomly selected coefficients (blue).
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Figure 8: Peptide coefficient predictor learning curve.
The figure plots the percent improvement over the baseline (when all coefficients are set 

to 1), over ten runs, of a fixed set of test peptides as the number of training runs increase, 

where 96 runs is the entire training set. Error bars correspond to standard error.
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Table 1:
Methods for predicting proteotypic peptides.

Year Model Experiment type

Mallick et al.1 2006 Gaussian mixture model DDA

Sanders et al.2 2007 Neural network DDA

Webb-Robertson et al.3 2008 Support vector machine DDA

Fusaro et al.4 2009 Random forest Targeted MS

CONSeQuence5 2011 Ensemble model Absolute quantification

PREGO6 2015 Neural network Targeted MS

PPA7 2015 Neural network DDA
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Table 2:
Datasets.

The table lists datasets used in the study. The numbers of peptides and proteins are given before (“Total”) 

and after (“Filtered”) eliminating shared peptides and peptides with missed cleavages, peptides that occur in 

modified and unmodified forms, and peptides with no siblings.

Dataset Runs

Total Filtered

#Quants % missing AccessionProteins Peptides Proteins Peptides

Slevlek et al. 18 3,529 34,490 2,669 23,971 269,039 37.65 PXD001010

Thomas et al. 103 4,479 25,311 3,199 19,742 884,245 59.65 PXD010437

Guo et al. 120 3,171 22,554 2,122 14,472 1,736,638 0.00 PXD003539

CPTAC S16 95 36,350 164,395 4,129 19,151 193,069 89.39 CPTAC S016

CPTAC S19 30 53,143 93,704 5,727 13,583 141,645 65.24 CPTAC S019

CPTAC S37 100 40,089 172,589 3,670 18,392 202,465 88.99 CPTAC S037

CPTAC S47 226 43,984 189,784 3,587 22,601 1,286,418 74.81 CPTAC S047

CPTAC S48 109 67,395 462,909 4,887 42,015 1,773,366 61.28 CPTAC S048

CPTAC S49 330 72,659 585,621 5,768 58,909 6,314,106 67.52 CPTAC S049

CPTAC S51 35 51,632 291,317 3,810 30,184 603,070 42.91 CPTAC S051

CPTAC S54 191 68,240 489,102 5,166 45,184 3,018,826 65.02 CPTAC S054

CPTAC S58 217 75,951 639,233 5,519 51,255 3,556,689 68.02 CPTAC S058

CPTAC S61 248 68,424 618,020 5,232 52,820 3,389,987 74.12 CPTAC S061
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Table 3:
Performance on various datasets.

The table lists a variety of datasets, reporting in the final column the mean percentage reduction in loss on the 

test set, relative to the baseline, along with the standard deviation.

Dataset Instrument Acquisition Quantification Improvement

Slevlek et al. 5600 TripleTOF DIA SWATH-MS 33.00 (±4.31)

Thomas et al. 5600+ TripleTOF DIA SWATH-MS 27.90 (±4.89)

Guo et al. 5600 TripleTOF DIA SWATH-MS 28.71 (±4.10)

CPTAC S16 LTQ Orbitrap Velos SIM Label Free 22.05 (±2.56)

CPTAC S19 LTQ Orbitrap Velos DDA Label Free 9.55 (±5.05)

CPTAC S37 Q-Exactive Plus SRM Label Free 15.83 (±0.24)

CPTAC S47 Orbitrap Fusion Lumos DDA TMT11 20.49 (±1.68)

CPTAC S48 Orbitrap Fusion Lumos DDA TMT11 14.88 (±1.91)

CPTAC S49 Q-Exactive HF DDA TMT11 17.50 (±4.57)

CPTAC S51 Orbitrap Fusion Lumos DDA TMT11 24.84 (±1.76)

CPTAC S54 Orbitrap Fusion Lumos DDA TMT11 15.31 (±0.65)

CPTAC S58 Orbitrap Fusion Lumos DDA TMT11 20.39 (±0.97)

CPTAC S61 Orbitrap Fusion Lumos DDA TMT11 20.30 (±1.79)
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Table 4:
Top physicochemical peptide features.

The table lists the peptide features yielding the highest correlation with the learned coefficients. All the 

features are obtained from the AAindex database.13 For each feature, the table reports the absolute value of the 

Pearson correlation coefficient (∣r∣).

Peptide feature ∣r∣

Hydration number 0.451

Relative preference value at N3 (ends of alpha helices) 0.442

Relative preference value at N2 (ends of alpha helices) 0.438

Percentage of exposed residues 0.437

Side chain oriental preference 0.437

Alpha-helix indices for beta-proteins 0.436

Average accessible surface area 0.436

Polar requirement 0.435

Hydrophilicity scale 0.434

Helix initiation parameter 0.431
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Table 5:
Performance for baseline approaches.

The table lists baseline approaches, reporting in the final column the mean percentage reduction in loss on the 

test set, relative to the baseline, along with the standard deviation.

Model Test set percent improvement

Pepper 28.72 (±4.10)

Amino acid (1-mer) count linear predictor 13.30 (±5.46)

2-mer count linear predictor 8.48 (±3.05)

3-mer count linear predictor 15.03 (±1.24)
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