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on the cuproptosis‑related genes identifies 
LIPT1 as a novel therapy target for liver 
hepatocellular carcinoma
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Abstract 

Background:  Liver hepatocellular carcinoma (LIHC) ranks sixth among the most common types of cancer with a 
high mortality rate. Cuproptosis is a newly discovered type of cell death in tumor, which is characterized by accumula-
tion of intracellular copper leading to the aggregation of mitochondrial lipoproteins and destabilization of proteins. 
Thus, understanding the exact effects of cuproptosis-related genes in LIHC and determining their prognosticvalue is 
critical. However, the prognostic model of LIHC based on cuproptosis-related genes has not been reported.

Methods:  Firstly, we downloaded transcriptome data and clinical information of LIHC patients from TCGA and GEO 
(GSE76427), respectively. We then extracted the expression of cuproptosis-related genes and established a prognos-
tic model by lasso cox regression analysis. Afterwards, the prediction performance of the model was evaluated by 
Kaplan–Meier survival analysis and receiver operating characteristic curve (ROC). Then, the prognostic model and 
the expression levels of the three genes were validated using the dataset from GEO. Subsequently, we divided LIHC 
patients into two subtypes by non-negative matrix factorization (NMF) classification and performed survival analysis. 
We constructed a Sankey plot linking different subtypes and prognostic models. Next, we calculate the drug sensitiv-
ity of each sample from patients in the high-risk group and low-risk group by the R package pRRophetic. Finally, we 
verified the function of LIPT1 in LIHC.

Results:  Using lasso cox regression analysis, we developed a prognostic risk model based on three cuproptosis-
related genes (GCSH, LIPT1 and CDKN2A). Both in the training and in the test sets, the overall survival (OS) of LIHC 
patients in the low-risk group was significantly longer than that in the high-risk group. By performing NMF cluster, we 
identified two molecular subtypes of LIHC (C1 and C2), with C1 subtype having significantly longer OS and PFS than 
C2 subtype. The ROC analysis indicated that our model had a precisely predictive capacity for patients with LIHC. The 
multivariate Cox regression analysis indicated that the risk score is an independent predictor. Subsequently, we identi-
fied 71 compounds with IC50 values that differed between the high-risk and low-risk groups. Finally, we determined 
that knockdown of LIPT1 gene expression inhibited proliferation and invasion of hepatoma cells.
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Introduction
Liver hepatocellular carcinoma (LIHC) is one of the most 
common malignancies worldwide, ranking as the sixth 
most common type of cancer globally [1]. According 
to the World Health Organization, liver cancer will kill 
more than 1 million people by 2030 [2]. The LIHC has a 
poor prognosis and high mortality rate worldwide, with 
only 18% of patients surviving 5 years, which is lower 
than bladder cancer (77.1%), renal pelvis cancer (74.8%) 
and myeloma (52.2%) [3].

At present, patients with hepatocellular carcinoma are 
mainly treated with liver transplantation, hepatectomy, 
radiofrequency ablation, transcatheter arterial chem-
oembolization (TACE) and radioembolization [4–6]. 
However, due to LIHC has an insidious onset, rapid 
progression, and low early diagnosis rate, most cases of 
LIHC tend to be diagnosed at an advanced stage and miss 
the best opportunity for treatment. Therefore, it is essen-
tial to identify novel biomarkers that simultaneously 
serve as prognostic predictive markers and therapeutic 
targets for LIHC.

Copper plays an important role in cells as a catalytic 
cofactor for essential enzymes involved in energy con-
version, oxygen transport, and regulation of oxidative 
metabolism in cells [7]. The concentration of copper in 
cells is regulated by metabolic demands and changes 
in the cellular environment, and too little or too much 
can cause significant damage to cells [8]. Imbalance of 
copper metabolism can seriously affect the develop-
ment of the central nervous system and have an impact 
on the normal metabolism of the liver [9]. Copper ions 
will regulate cell death in a distinct manner when the 
intracellular concentration of copper ions reaches a 
certain level by targeting lipoylated TCA cycle proteins 
[10]. A recent study found that accumulation of intra-
cellular copper triggers aggregation of mitochondrial 
lipoproteins and destabilization of proteins, leading to 
a unique type of cell death called cuproptosis [11, 12]. 
The Cuprotosis gene affects the process of tumor initia-
tion, invasion, and metastasis in a manner similar to the 
ferroptosis and pyroptosis genes. Cuprotosis is closely 
related to cancer progression and is expected to be a 
novel therapeutic target to specifically kill cancer cells 

[13, 14]. However, the prognostic model of LIHC based 
on cuproptosis-related genes has not been reported.

In this study, we developed a prognostic risk model 
based on three cuproptosis-related genes by perform-
ing LASSO cox regression and multivariate cox regres-
sion analysis. Both in the training and in the test sets, 
the OS of LIHC patients in the low-risk group was sig-
nificantly longer than that in the high-risk group. The 
Kaplan–Meier curve and the ROC curve were per-
formed to estimate the sensitivity and specificity of 
the prognostic signature. By performing NMF cluster, 
we identified two molecular subtypes of LIHC (C1 and 
C2), with C1 subtype having significantly longer OS 
and PFS than C2 subtype. Then, we performed drug 
sensitivity analysis, which might provide a novel refer-
ence index for determining prognosis risk and select-
ing treatment strategies for LIHC patients. Finally, we 
validated the function of LIPT1 in LIHC by knocking 
down its expression level, LIPT1 may provide a poten-
tial therapeutic target.

Methods
Data acquisition
The TCGA (The Cancer Genome Atlas) database was 
created by the National Cancer Institute and contains 
genomic, transcriptomic, proteomic, and methylation 
data for 20,000 primary cancers (http://​cance​rgeno​me.​
nih.​gov/). From TGCA, we collected 424 LIHC patients 
transcriptomic data and corresponding clinical infor-
mation. From GEO (GSE76247), we collected 167 LIHC 
patients transcriptomic data and corresponding clinical 
information (https://​www.​ncbi.​nlm.​nih.​gov/).

Expression of extracted cuproptosis‑related genes
Firstly, we extracted the expression of cuproptosis-
related genes in the expression matrix of the training 
set. We then extracted the expression of cuproptosis-
related genes in the test set expression matrix similarly 
and corrected the extracted genes from the training set 
and the test set.

Conclusion:  In this study, we developed a novel prognostic model for hepatocellular carcinoma based on cupropto-
sis-related genes that can effectively predict the prognosis of LIHC patients. The model may be helpful for clinicians to 
make clinical decisions for patients with LIHC and provide valuable insights for individualized treatment. Two distinct 
subtypes of LIHC were identified based on cuproptosis-related genes, with different prognosis and immune char-
acteristics. In addition, we verified that LIPT1 may promote proliferation, invasion and migration of LIHC cells. LIPT1 
might be a new potential target for therapy of LIHC.

Keywords:  Liver hepatocellular carcinoma, Cuproptosis, Prognostic model, LIPT1
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The construction and validation of a prognostic model 
based on prognostic cuproptosis‑related genes
Firstly, we performed Lasso cox regression analysis to 
avoiding overfitting of prognostic risk model variables 
and built prognostic models. The risk score was calcu-
lated using the formula as follows:

The Coef represents each gene’s prognostic value in 
multivariate Cox regression analysis. A gene expression 
value represents the expression value of a correspond-
ing prognostic cuproptosis gene. The test set was used 
to validate the prognostic risk score model built from the 
training set. R “survival” package is a tool for statistical 
analysis and visualization of survival data and is widely 
used in scientific research work [15, 16]. Using the “sur-
vival” package in R (version 4.1.2), we calculated the 
overall survival analysis and plotted the Kaplan–Meier 
survival curves. Chi-square tests were applied to the cal-
culation of p values [17]. ROC curves were drawn using 
the R package “survivalROC” to verify the accuracy of the 
predictive model.

NMF classification of molecular subgroups
Firstly, Spearman correlation was performed to analyze 
the relationship between the expression level of cuprop-
tosis-related genes and prognostic value. Subsequently, 
we performed non-negative matrix factorization (NMF) 
clustering analysis to develop the molecular subtypes 
based on the expression profiles of 3 cuproptosis-related 
modeling genes. For the NMF method, the standard 
“brunet” option was selected and 10 iterations were per-
formed. The number of clusters was set to range from 2 
to 10, and the average profile width of the common mem-
bership matrix was determined by the R package “NMF”, 
with the minimum membership of each subclass set to 
10. The optimal number of clusters was determined by 
co-occurrence, dispersion and contour indexes, and the 
optimal number of clusters selected was 2. Using the 
“survival” package in R, we analyzed OS and PFS for sub-
types and plotted Kaplan–Meier survival curves. The 
“GSVA” package was used for ssGSEA analysis.

Construction of the nomogram for patients with LIHC
The nomogram containing the clinical characteristics 
was established to predict individual survival probabil-
ity by the “rms” package of R software [18]. To assess the 
consistency between actual survival time and predicted 
prognosis in the nomogram, calibration curves for pre-
dicting 1-, 3-, and 5 year survival rate were plotted.

risk score=Coef1 × Gene expression1
+Coef2 × Gene expression2
+ · · · Coefn × Gene expression

Clinical relevance analysis
In order to investigate whether there are differences 
between the clinical characteristics of LIHC patients in 
high- and low-risk, we first drew a heatmap. By using the 
Chi-square test, we performed a correlation analysis on 
each significant clinical feature.

Analysis of immune cell infiltration
The Cell-type Identification by Estimating Relative Sub-
sets of RNA Transcripts (CIBERSORT) method is a 
general way to measure cell fractions based on the gene 
expression profiles (GEPs), which can accurately estimate 
the immune component of tumor biopsies [19]. using 
the CIBERSORT deconvolution method, we calculated 
the composition of 22 tumor-infiltrating immune cell in 
each tumor sample, and then performed the Wilcoxon 
test to compare the difference of immune cells infirtraion 
between high-risk and low-risk group [20]. The level of 
statistical significance was set at P < 0.05.

Enrichment analysis of KEGG and GO pathways
The gene ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analysis of 
the differentially expressed genes between high and low 
risk groups were performed to find the enriched biologi-
cal pathways and functions related to the cuproptosis-
related genes by clusterprofiler R package [21, 22]. The 
enriched results for GO and KEGG analysis were visual-
ized by “ggplot2” package.

Calculating sensitivity score of potential durgs
pRRophetic is an R package that uses tumor gene expres-
sion levels to predict clinical chemotherapy responses 
[23]. The half-maximal inhibitory concentration (IC50) of 
compounds obtained from the Genomics of Drug Sensi-
tivity in Cancer (GDSC) website. Using the pRRophetic 
package in R software, we calculate the sensitivity score 
of each compound for each patient in the high-risk group 
and low-risk group. The statistical difference was per-
formed by Wilcox test with a P value less than 0.05 as the 
threshold. To visualize the conformations of drugs in 2D, 
PubChem online tool (https://​pubch​em.​ncbi.​nlm.​nih.​
gov/) was used.

Tumour mutation analysis
By using the maftool package in R software, 15 genes 
with the highest tumour mutation frequency (TMF) 
in patients with LIHC from TCGA were analysed and 
visualized.

Using the R “ggalluvial” package, we plotted Sankey 
plots for the relationship between patients in the high 
and low risk groups and patients with NMF subtypes.

https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
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Cell culture
HepG2 and Hep3B cells are acquired from American 
Type Culture Collection. HepG2 and Hep3B cells are cul-
tured with RPMI-1640 supplemented with 2  mM l-glu-
tamine and 10% FBS.

Western blotting
The LIPT1 antibody (AV48784) was obtained from 
Simga. The expression of LIPT1 in cells was evaluated 
using typical Western blotting, which actin as a loading 
control. Then, the protein signal was determined by ECL 
reagent. Subsequently, two siRNAs were applied to knock 
down expression level of LIPT1. The siRNA sequences 
were as follows: si-LIPT1-1: 5’-GGA AAU ACG UGA 
CAA AUU AAA-3’, si-LIPT1-2: 5’-CGU GAC AAA UUA 
AAU UCA AGU-3’.

Cell viability assay
HepG2 and Hep3B cells transfected with si-LIPT1 or si-
scrambled siRNA in 6-well plate. Twenty-four hours after 
transfection, the cells number was countered and 4000 
cells were seeded into 96-well plates. The cell viability 
was acquired at indicated time points using the CCK8 kit.

Clone formation tests
Cells transfected with control and siRNA were seeded 
into 6-well plates. After 2  weeks, colonies were stained 
using crystal violet.

Edu assay
HepG2 and Hep3B cells were seeded in 24-well plates 
then transported with scrambled or two independent 
siRNA targeting LIPT1. After 48 h, cells were added with 
EdU and continued incubating for another 2 h. Then, the 
cells were fixed with a 4% paraformaldehyde solution for 
30 min. The staining process was perfermed according to 
the manufacturer’s instructions. Images were captured 
using Nikon microscope and the numbers of positive 
cells were calculated using the imageJ software.

Wound healing assay
The ability of cell migration was evaluated by wound 
healing experiment. HepG2 and Hep3B cells transfected 
with si-LIPT1 or si-scrambled siRNA were inoculated 
in 6-well plates. When the cells reach reaching a conflu-
ence of 100%. Use a 10 µL pipette to form a wound in the 
center of the cell monolayer, and then continue to cul-
ture in the incubator. Images were captured at 0 and 48 h 
after the scratch by an optical microscope. The wound 
area was measured by ImageJ software at indicated time 
points and normalized with starting time point.

Cell invasion assay
Transwell assay was conducted to determine cell inva-
sion. Transfected cells were collected, resuspended 
in serum-free RPMI-1640 medium, and cultured on 
Matrigel-coated upper chamber surfaces. The lower 
chamber was filled with FBS medium. After 24  h, the 
upper membrane surface was wiped with a cotton swab 
to remove the remaining cells. The cells adhering to the 
lower membrane were then fixed by using 4% paraform-
aldehyde and stained with crystal violet. Then, cells were 
photographed using a light microscope. Finally, cells were 
counted using ImageJ.

Result
The construction and internal validation of a prognostic 
model based on prognostic cuproptosis‑related genes
The flow chart shows the overall experimental design of 
this study (Fig. 1).

In order to construct the prognostic model and evalu-
ate its performance, we randomly divided the TCGA data 
into training and internal validation set in a 1:1 ratio. 
We conducted the LASSO cox regression analysis to 
build the cuproptosis-related genes prognostic model for 
patients with liver hepatocellular carcinoma (Additional 
file  1: Figure S1A, B). The prognostic model was con-
structed with GCSH, LIPT1 and CDKN2A, and the risk 
score was calculated as follows:

Patients were assigned to high-risk and low-risk groups 
according to the median risk score (Fig. 2A, B). The prog-
nosis of LIHC patients in the low-risk group was better 
than that in the high-risk group in both the training set 
and the internal validation set (Fig.  2D, E). The heat-
map was used to visualize the expression levels of the 
3 cuproptosis-related genes in the high- and low-risk 
group patients (Fig.  2G, H). Survival curves indicated 
that patients with LIHC in the low-risk group had a sig-
nificantly higher survival probability compared to the 
patients in high-risk group (p < 0.05) (Fig.  2J, K). ROC 
analysis showed that the area under the curve (AUC) for 
1 year OS was 0.683 for the training set and 0.652 for the 
internal validation set (Fig. 2M, N). Clearly, our model is 
helpful in predicting the outcome of LIHC patients.

Validation of the prognostic model
In order to validate the prognostic model in external 
validation set, we calculate the risk score of each patient 
in the external validation set according to the same risk 

Risk score = (0.43790 × GCSH)

+ (0.18261 × LIPT1)

+ (0.01477 × CDKN2A)
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score formula we constructed. The patients in the exter-
nal validation set were divided into the high-risk group 
and low-risk group based on the median risk score value 
of the training set (Fig. 2C). The survival status, and the 
heatmap of these 3 prognostic genes in the external vali-
dation set are shown in Fig.  2F, I. Consistent with the 
results of the training set, patients from the high-risk 
group in the external validation set showed a poorer 
prognosis compared to the patients from the low-risk 
group (Fig.  2L). In addition, ROC analysis showed an 
AUC of 0.614 for 1  year OS (Fig.  2O). These data sug-
gested that our prognostic model could also accurately 
predict prognosis of LIHC patients from external valida-
tion set.

Identification of independent prognostic indicator
To verify whether our prognostic model risk score could 
be an independent prognostic factor to predict the prog-
nosis of patients with LIHC, we performed univariate 
and multivariate cox proportional hazard model in train-
ing set and test set. In the training set, the univariate and 
multivariate regression analysis showed that Stage and 
risk score were independent prognostic factors (Addi-
tional file  2: Figure S2A, B). In the test set, independ-
ent univariate regression analysis showed Stage and risk 
Score were independent prognostic factors (Additional 
file 2: Figure S2C, D). These data indicated that the sig-
nature-based risk score was an independent prognostic 

indicator in LIHC, which might be useful to guide clini-
cal decision-making and diagnosis.

Construction of nomogram and calibration curves
In order to accurately estimate survival for individual 
patients with LIHC, we establish a nomogram to eval-
uate the survival probability at 1, 3, and 5 years based 
on risk scores and other clinicopathological charac-
teristics (Additional file  3: Figure S3A). Our results 
demonstrated that nomograms could be served as an 
effective tool for the prognostic evaluation of patients 
with LIHC. Moreover, calibration curves for OS indi-
cated that the predicted prognosis was in good agree-
ment with the actual mortality at 1, 3, and 5  years 
(Additional file  3: Figure S3B, C, D). These findings 
revealed that the nomogram we built could accurately 
assess the OS of patients with LIHC.

Clustering of molecular subgroup
The network diagram illustrates the relationship between 
cuproptosis-related genes (Fig. 3A). We found that all the 
18 cuproptosis-related genes have significant value for pre-
dicting the prognosis of LIHC patients. Among them, 13 
genes are risk factors, including NFE2L2, NLRP3, ATP7A, 
LIPT1, LIPT2, DLD, DLAT, PDHA1, PDHB, MTF1, GLS, 
CDKN2A and DLST. And the others are favorable factors, 
including FDX1, ATP7B, SLC31A1, LIAS and DBT.

Download transcriptome data and clinical data from 

TCGA(50 normal samples and 374 tumor samples)

Lasso cox regression analysis

Obtain 3 prognostic cuproptosis-related genes

NMF 

clustering

Overall Survival and

Progression-Free Survival

GSVA and ssGSEA analysis

Train set

Internal 

verification 

settest set

External 

verification 

set

Sankey 

diagram

Download GSE76427 

from GEO (n=167)

Analysis:heatmap/Kaplan-Meier 

curves/ROC curves

Independent prognosis analysis

Nomogram and correction curve

Immune cell infiltration and Drug 

sensitivity analysis

GO and 
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analysis

Knock down LIPT1 

gene expression

Culture of HEPG2 

and HEP3B cells

Western blotting, 

CCK8, Edu, 

Transwell, Wound 
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Fig. 1  A flowchart of the major steps in this study
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Fig. 2  Correlation between the risk score and overall survival of LIHC patients in the training and validation set. A The distribution of risk scores 
in the training set. B The distribution of risk scores in the internal validation set. C The distribution of risk scores in the external validation set. D 
The survival status of patients in the training set. E The survival status of patients in the internal validation set. F The survival status of patients 
in the external validation set. G Heat map of 3 genes expression in the training set. H Heat map of 3 genes expression in the internal validation 
set. I Heat map of 3 genes expression in the external validation set. J Kaplan–Meier curves of survival in training set. K Kaplan–Meier curves of 
survival in internal validation set. L Kaplan–Meier curves of survival in external validation set. M Time-dependent ROC curve of the risk score 
model for predicting 1 years in training set. N Time-dependent ROC curve of the risk score model for predicting 1 years in internal validation set. O 
Time-dependent ROC curve of the risk score model for predicting 1 years in external validation set
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Molecular subgroups were initially classified by NMF 
consensus clustering on the basis of three cuproptosis-
related genes that had been screened. The consensus map 
shows that LIHC from TCGA data were classified into 
two clusters (Fig. 3B). The Kaplan–Meier curves showed 
that either OS and RFS period of C1 was significantly 
longer than that of C2 with the P values being 0.018 and 
0.012, respectively (Fig. 3C, D).

GSVA analysis showed that subtype C1 was sig-
nificantly enriched in the cell cycle, DNA replication, 
homologous recombination pathway, and subtype C2 
was significantly enriched in linoleic acid metabolism 
and nitrogen metabolism (Fig.  3E). The ssGSEA analy-
sis showed that subtype C1 was significantly enriched 
in helper T cells, principal cells and eosinophils, and 
subtype C2 was significantly enriched in CD4 T cells 
(Fig. 3F).

Clinicopathological features in the low‑risk and high‑risk 
groups
In order to indicate the distribution of clinicopathological 
characters in the low-risk and high-risk groups, we per-
formed correlaion analysis between the clinicopathologi-
cal features and the risk signature. This heatmap is used 
to visualize the correlation between high and low risk 
groups and clinicopathologic characters (Fig.  4A). Our 
results indicated that the proportion of T2 and T3 patients 
were almost equally distributed between the two groups, 
but there were more T4 patients and fewer T1 patients 
in the CRGPI-high (cuproptosis related gene-based prog-
nostic index) subgroup than in the CRGPI-low subgroup 
(Fig. 4B).

Correlation between tumor immune cell infiltration 
and risk score
As tumor immune infiltration played a key role in tum-
origenesis and progression, we further compared the 
difference of infiltration immune cells between high 
and low risk groups via CIBERSORT analysis. Barplot 
and heatmap showed the composition of 22 subpopula-
tions of immune cells in high-risk and low-risk group 
(Additional file  4: Figure S4A, B). The proportion of 
monocytes and T cells CD4 memory resting cells was 
significantly higher in the low-risk group than in the 
high-risk group. Conversely, the proportion of mac-
rophages M0 was lower in the low-risk group than in 
the high-risk group (Additional file  4: Figure S4C). In 
addition, survival curves showed that LIHC patients 
with high plasma cell infiltration rates had significantly 
better prognosis than those with low infiltration rates 
(Additional file 5: Figure S5A). Similarly, LIHC patients 

displaying high T cell CD8 infiltration exhibited supe-
rior OS to those displaying low CD8 + cell infiltration 
(Additional file 5: Figure S5B).

Differences in expression of immune checkpoint molecules 
between the high‑risk group and low‑risk group
Comparing the immune checkpoint genes in the high-risk 
group to those in the low-risk group. We found that the 
expression of GLS, GCSH, MTF1, FDX1, NFE2L2, LIPT1, 
DLAT, CDKN2A and ATP7A had statistically significant 
differences (P < 0.001) between high-risk and low-risk 
groups (Additional file 6: Figure S6A).

Spearman correlation analysis showed that GLS, MTF1 
was significantly positively correlated with ATP7A, and 
GCSH, LIPT1, and CDKN2A were significantly positively 
correlated with risk scores (Additional file 6: Figure S6B).

Functional analysis of differentially expressed genes 
between high‑ and low‑ risk groups
To indicate the biological functions and pathways that 
were associated with the risk score, we obtained the dif-
ferentially expressed genes between the high- and low-
risk groups with a cutoff value of |log2fold change|> 0.5 
and false discovery rate (FDR) < 0.05, including 2784 up-
regulated genes and 158 down-regulated genes (Addi-
tional file  8: Table  S1). Then, we performed GO and 
KEGG enrichment analysis of these DEGs to identify the 
biological processes correlated with the risk score (Addi-
tional file 9: Table S2). GO enrichment analysis involving 
the BP category indicated that these DEGs are predomi-
nantly associated with organelle fission, nuclear division 
and chromosome segregation (Fig.  5A, B). For the CC 
category, enriched DEGs were mainly related to chromo-
somal region and spindle. For the MF category, enriched 
DEGs were largely related to tubulin binding and cata-
lytic activity on DNA. KEGG pathway analysis showed 
that Herpes simplex virus 1 infection, Cell cycle and Fan-
coni anemia pathway were significantly enriched with the 
DEGs (Fig. 5C, D).

Assessment of response of high‑risk and low‑risk patients 
with LIHC to candidate drugs
To further evaluate the response of LIHC patients to 
candidate drugs in the high-risk and low-risk groups, we 
assessed the sensitivity score for each compound for each 
patient in the high-risk and low-risk groups. We identified 
71 compounds with IC50 values that significantly differ-
ences between the high-risk and low-risk groups (Addi-
tional file  10: Table  S3). In addition, using the PubChem 
website, 2D conformations of the four compounds with the 
most significant differences in sensitivity score between 
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Fig. 3  Molecular subgroups were screened by non-negative matrix factorization (NMF) clusters. A The network diagram illustrates the relationship 
between cuproptosis-related genes. Where purple represents a risk factor and green represents a favorable factor. B Two subgroups were identified 
as optimal values for consensus clustering. C OS survival curves for both subtypes. D PFS survival curves for both subtypes E Heatmap of GSVA 
analysis between the two subgroups. F Box plots for ssGSEA analysis between two subgroups
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the high- and low-risk groups were visualized, including 
Gemcitabine (Additional file 7: Figure S7A), Epothilone.B 
(Additional file 7: Figure S7B), Embelin (Additional file 7: 
Figure S7C) and AMG.706 (Additional file 7: Figure S7D).

Tumour mutation analysis between high‑risk and low‑risk 
populations
Analysis and visualization of the top 15 genes associated 
with TMF in LIHC patients were performed using the 
maftool package in R software. In high-risk populations, 
TP53 mutation frequency is highest (Fig. 6A). In low-risk 

populations, CTNNB1 and TTN mutations are most fre-
quent (Fig.  6B). Heatmap of immune-related function 
analysis showed significant differences in immune func-
tion between patients in the high and low risk groups 
(Fig. 6C). The Sankey showed that patients in the C1 sub-
type and low-risk groups had a better prognosis (Fig. 6D).

Identifying LIPT1 as prognosis marker for LIHC
To identify cuproptosis-related prognosis markers for 
LIHC, we analyzed the expression levels of cuprop-
tosis-related genes expression in cancer and normal 

Fig. 4  The clinical correlation analysis. A Clinical Correlation Analysis Heatmap. B T stage clinical correlation chart
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tissues. Box plots showed that 15 genes were differentially 
expressed between normal and tumor tissue samples 
(P < 0.05) (Fig.  7A). Among them, 12 genes were highly 
expressed level in tumor tissues, including ATP7A, LIAS, 
LIPT1, LIPT2, DLD, DLAT, PDHA1, PDHB, MTF1, 

GLS, CDKN2A and DLST. And the others are highly 
expressed level in normal tissues, including NLRP3 and 
SLC31A1. The scatter plot showed that LIPT1 levels were 
higher in LIHC tumor samples compared with normal 
samples (Fig.  7B). LIPT1 was statistically significantly 

Fig. 5  GO and KEGG analysis of differentially expressed genes between the high- and low-risk groups. A The bar plot of GO enrichment analysis. 
The top 5 terms were significantly enriched in GO categories for BP, CC, and MF, respectively. B The circos plot of interconnection between GO terms 
and genes. C The bubble plot for KEGG enrichment analysis. D The circos plot of interconnection between KEGG terms and genes
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higher expressed in the LIHC tissues when compared 
with paired adjacent normal tissues in TCGA cohort 
(P < 0.001) (Fig. 7C). Survival curves showed that patients 
with low LIPT1 expression level had significantly longer 
OS compared with with high LIPT1 expression level 
(Fig. 7D).

Knockdown of LIPT1 inhibited LIHC cell proliferation 
and migration
To validate the biological function of LIPT1 in LIHC, we 
knocked down LIPT1 using two siRNAs in HepG2 and 
Hep3B cells.

Western blotting showed that LIPT1 could be effec-
tively silenced by two independent siRNAs (Fig.  8A). 
The CCK8 assay showed that LIPT1 depletion inhibited 

cancer cell proliferation in HepG2 and Hep3B cells 
(P < 0.05, Fig.  8B, C). Knockdown of LIPT1 inhib-
its cell proliferation and clone formation capability in 
HepG2 and Hep3B cells lines (Fig. 8D, F). Edu staining 
results showed that knockdown of LIPT1 significantly 
decreased LIHC cell proliferation (Fig. 8E, H). The trans-
well assay showed that LIPT1 knocking-down inhib-
ited cell invasion capacity in HepG2 and Hep3B cells 
(Fig. 8G). Subsequently, in the wound-healing assay, we 
found that LIPT1 depletion inhibited wound closure 
speed in both HepG2 and Hep3B cells (Fig. 8I, J). These 
results indicated that LIPT1 could promote hepatocel-
lular carcinoma cell proliferation and migration in vitro. 
LIPT1 is likely to be a potential target for hepatocellular 
carcinoma therapy.

Fig. 6  Differences in mutation frequency between high- and low-risk groups. A, B Comparing the degree of mutation between high and low risk 
groups, the abscissa represents the sample, and the ordinate represents the mutated gene. C A heatmap showing how immune-related functions 
differ between high- and low-risk groups. D Sankey diagram for two subtypes and high and low risk groups
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Discussion
A recent study found that accumulation of intracellular 
copper triggers aggregation of mitochondrial lipopro-
teins and destabilization of proteins, leading to a unique 
type of cell death called cuproptosis [11, 12]. Copper 
plays an important role in cells as a catalytic cofactor for 
essential enzymes involved in energy conversion, oxygen 
transport, and regulation of oxidative metabolism in cells 
[7]. The concentration of copper in cells is regulated by 
metabolic demands and changes in the cellular environ-
ment, and too little or too much can cause significant 

damage to cells [8]. Imbalance of copper metabolism can 
seriously affect the development of the central nervous 
system and have an impact on the normal metabolism 
of the liver [9]. When the intracellular copper concen-
tration reaches a certain level, copper ions directly bind 
to the lipidated component of the TCA cycle, resulting 
in abnormal aggregation of fatty acylated proteins and 
loss of iron-sulfur cluster proteins, ultimately leading to 
cell death mediated by proteotoxic stress responses [10]. 
Cuprotosis is closely associated with cancer progres-
sion and is expected to be a novel therapeutic target to 

Fig. 7  Identifying LIPT1 as prognosis marker for LIHC. A Box plots show gene expression values for cuproptosis-related genes. Blue represents 
normal samples and red represents tumor samples B LIPT1 expression levels of normal and breast cancer tissue in TCGA. C Relative expression of 
LIPT1 in hepatocellular carcinoma tissues and adjacent non-cancerous tissues in TCGA database. D OS curves for LIHC patients with high and low 
LIPT1 expression
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specifically induce cancer cell death [13, 14]. However, 
the prognostic model of LIHC based on cuproptosis-
related genes has not been reported.

In this study, we developed a prognostic risk model 
based on three cuproptosis-related genes by performing 
LASSO cox regression and multivariate cox regression 

Fig. 8  LIPT1 promotes proliferation, invasion and migration of LIHC cells. A Western blot to show knockdown efficiency of LIPT1 in HepG2 and 
Hep3B cells by two independent siRNAs. B, C Cell proliferation of HepG2 cells B or Hep3B cells C transfected with control or si-LIPT1 was measured 
by CCK8. D, F Colony formation of HepG2 cells or Hep3B cells transfected with control or si-LIPT1 was measured by ImageJ. E, H Edu assay to show 
the cell proliferation of control cells comparing to LIPT1 knockdown cells. G Transwell assay to show the cell metastasis of control cells compared to 
LIPT1 knockdown cells. I, J Wound healing assay to show the cell migration of control cells compared to LIPT1-depleted cells



Page 14 of 18Yan et al. Journal of Translational Medicine          (2022) 20:452 

analysis. Both in the training and in the test sets, the OS 
of LIHC patients in the low-risk group was significantly 
longer than that in the high-risk group. The Kaplan–
Meier curve and the ROC curve were performed to 
estimate the sensitivity and specificity of the prognos-
tic signature. By performing NMF cluster, we identified 
two molecular subtypes of LIHC (C1 and C2), with C1 
subtype having significantly longer OS and PFS than C2 
subtype. We then performed drug sensitivity analysis that 
may provide a new reference for selection of treatment 
strategies for LIHC patients. Finally, we validated the 
function of LIPT1 in LIHC by knocking down its expres-
sion level, LIPT1 may provide a potential therapeutic tar-
get. cancer, according to previous research.

These three genes play an important role in the devel-
opment and metastasis of many types of cancer.

The three genes (GCSH, LIPT1, CDKN2A) that we 
used to construct cuproptosis-related prognostic mod-
els played important roles in the progression of various 
types of cancer. Intracellular GCSH content is a critical 
factor in determining cellular metabolic status and via-
bility, including tumorigenesis, and it has been shown 
that GCSH is an effective tumor marker in breast can-
cer [24]. LIPT1 is the gene encoding fatty acyltransferase 
1, a key factor in regulating lipoic acid (LA) transport 
[25]. LA plays an important role in tricarboxylic acid 
cycle and mitochondrial metabolism in cancer cells [26, 
27]. CDKN2A is the gene encoding the cell cycle inhibi-
tor p16CDKN2A, and the expression level of p16CDKN2A is 
closely related to colorectal cancer invasion or metastatic 
potential [28, 29]. In addition, it has been shown that 
CDKN2A is a new marker of poor prognosis in patients 
with hepatocellular carcinoma [30], which is consistent 
with our study.

KEGG pathway analysis showed that differential 
expressed genes between high and low risk groups were 
significantly enriched for cell cycle signaling pathways. 
Dysregulation of the cell cycle underlies aberrant cell 
proliferation in cancer [31, 32]. CDKN2A is the gene 
encoding the cyclin inhibitor p16 protein, which prevents 
abnormal cell growth and proliferation by binding to a 
complex of cyclin-dependent kinases 4 and 6 and cyclin 
D [29]. Abnormal expression levels of cellular CDKN2A 
may lead to enhanced tumorigenesis and metastasis [33].

Subsequently, we identified 71 compounds with IC50 
values that significantly differences between the high-
risk and low-risk groups. Gemcitabine is a pyrimidine 
nucleoside antimetabolite that has been approved for 
the treatment of non-small cell lung cancer, pancreatic 
cancer, bladder cancer, and breast cancer [34, 35]. Ebo-
mycin is a macrolide with good anticancer activity and 
its mechanism of action is similar to paclitaxel. Mean-
while, epothilone B is also highly active against cancer 

cells resistant to paclitaxel and other anticancer drugs 
[36]. Embelin is a naturally occurring benzoquinone 
compound that has been shown to have many biological 
properties associated with cancer prevention and treat-
ment [37]. Embelin can induce apoptosis by modulating 
NF-κB, p53, PI3K/AKT, and STAT3 signaling pathways 
[37, 38]. In addition, it has been shown that Embelin 
induces autophagy in cancer cells in ovarian cancer [39]. 
AMG706 is a multikinase inhibitor that has been experi-
mentally demonstrated to have antiproliferative, antian-
giogenic, and apoptotic effects on colorectal cancer cells 
[40]. However, further studies are still needed to evaluate 
the effectiveness of these drugs in the treatment of LIHC. 
Our results may provide new insights into the treatment 
of patients with LIHC.

Oxidative stress (OS), a state characterized by an 
imbalance between pro-oxidant molecules including 
reactive oxygen and nitrogen species, and antioxidant 
defenses, is associated with the hepatocarcinogenesis 
[41–45]. Therefore, antioxidant therapy may potentially 
be effective for suppressing progression and metastasis of 
hepatocellular carcinoma. Recent studies have indicated 
that antioxidants may be potential candidates for the 
treatment of HCC since the main treatment includes sur-
gical removal and liver transplantation [46]. Resveratrol 
is a polyphenolic compound naturally found in several 
dietary sources, such as grapes, berries, peanuts, and red 
wine, which is well known as the compound to reduce the 
incidence of heart disease [47]. By decreasing the p-ERK 
expression and increasing p-JNK expression, Resveratrol 
significantly dramatically inhibited hepatocarcinoma cell 
viability and induced apoptosis in vitro and in vitro [48]. 
Similarly, Quercetin inhibits hepatocellular carcinoma 
progression by down-regulation of the activation of JAK2 
and STAT3. Gallic acid show strong antitumor potential 
in the treatment of cellular hepatocarcinoma in vivo and 
in vitro [49, 50]. Nevertheless, clinical trials have not yet 
been conducted to confirm their effectiveness in humans. 
Although antioxidants may be potentially appropriate 
in patients with hepatocellular carcinoma, there is still 
an urgent need for novel and improved drug identifi-
cation. Citalopram, anti-depressant agents, have been 
demonstrated it has the promising properties of anti-
cancer effect in liver cancer, bladder cancer, breast can-
cer, colorectal carcinoma and neuroblastoma [51–54]. 
Citalopram exert cytotoxic effects on liver cancer cells by 
through cytochrome c release and ROS-dependent acti-
vation of NFκB [53].

We selected two cell lines, HepG2 and Hep3B, for fur-
ther experiments on LIPT1. Western blotting showed 
that LIPT1 could be effectively silenced by two independ-
ent siRNAs. The CCK8 assay showed that LIPT1 deple-
tion inhibited cancer cell proliferation in HepG2 and 
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Hep3B cells. Knockdown of LIPT1 inhibits cell prolifera-
tion and clone formation capability in HepG2 and Hep3B 
cells lines. Edu staining results showed that knockdown 
of LIPT1 significantly decreased LIHC cell proliferation. 
The trans-well assay showed that LIPT1 knocking-down 
inhibited cell invasion capacity in HepG2 and Hep3B 
cells. Subsequently, in the wound-healing assay, we found 
that LIPT1 depletion inhibited wound closure speed 
in both HepG2 and Hep3B cells. Our results suggest 
that LIPT1 can promote the proliferation, invasion and 
migration of hepatocellular carcinoma. It turns out that 
LIPT1 is likely to be a very important potential target for 
the treatment of hepatocellular carcinoma.

The circulating renin-angiotensin system (RAS) is 
mainly known for its vital function in maintaining car-
diovascular homeostasis, electrolyte balance and kidney 
function [55]. Angiotensin I (Ang I), angiotensin II (Ang 
II), angiotensin-converting enzyme (ACE), angiotensin-
converting enzyme 2 (ACE2), and angiotensin (Ang) are 
considered essential elements of the RAS system [56, 
57]. Interestingly, previous studies suggest that RAS is 
involved in the formation and development of LIHC 
[56, 58]. The Ang II / Ang II type 1 receptor (AT1R) axis 
can promote tumor progression and metastasis, while 
the ACE2/Ang- (1 − 7)/MasR axis plays an opposite role 
[55, 59, 60]. Accordingly, some studies have indicated 
that AT1R is highly expressed in LIHC samples [61, 62]. 
Ang II is shown to increase vascular endothelial growth 
factor (VEGF) and promote tumor-associated, VEGF-
induced, ischemia-induced angiogenesis in liver cancer 
[63–65]. What’s more, some studies support that use of 
inhibitors of RAS is associated with better prognosis in 
patients with hepatocellular carcinoma [66]. Moreover, 
many studies have demonstrated that the upregulation 
of local RAS in the liver is associated liver fibrosis, which 
eventually develops into cirrhosis or even hepatocellular 
carcinoma [67–70]. In addition, renin angiotensin system 
inhibitor therapy results in a reduction in liver fibrosis 
score and liver fibrosis area in patients with liver fibrosis 
[71].These results indicate that targeting RAS may be a 
promising approach for the treatment of LIHC.

LIPT1 protein transfers a lipoyl moiety from lipoyl-
adenylate to both glycine cleavage system protein H 
(GCSH) and to the 2-oxoacid dehydrogenase E2 subu-
nits, which is involved in the metabolism of lipoic acid 
[10, 72]. Mutations in the LIPT1 gene were indicated 
to cause some genetic disorders, such as a Leigh dis-
ease with secondary deficiency for pyruvate and alpha-
ketoglutarate dehydrogenase and a fatal disease related 
to a specific lipoylation defect of the 2-ketoacid dehydro-
genase complexes [73, 74]. It has been found that LIPT1 
is a favorable prognosis in patients with urothelial cancer 
or melanoma [75, 76]. In this study, we found that LIPT1 

was upregulated in LIHC and an independent prognos-
tic factor for poor prognosis of LIHC, which is differ-
ent from previous study. Our results clearly indicated 
that genes played different role in different tumor types, 
which has been proved in previous study [77]. The point 
that the same gene can function in completely opposite 
ways in different cell types is crucial for understanding 
cellular fate decisions in cancer. The mechanisms under-
lying the regulation of LIPT1 on LIHC is need to be 
explored in the future. Our results provide a novel target 
gene for the treatment of LIHC.

However, there are some limitations to the study. 
Although LIPT1 can significantly affect the proliferation, 
invasion and metastasis of hepatocellular carcinoma, the 
specific mechanism is still unclear. We intend to explore 
the mechanism underlying the regulation of LIPT1 on 
LIHC both in vivo and in vitro.

Conclusion
In this study, we developed a prognostic model based 
on GCSH, LIPT1 and CDKN2A genes, which effectively 
predicted the prognosis of LIHC patients. Screening 
of four potential drugs that may be effective in treating 
patients with hepatocellular carcinoma. LIPT1 plays an 
important role in hepatocellular carcinoma, which affects 
proliferation, invasion, and migration of this type of can-
cer. LIPT1 may be a very important target in the treat-
ment of hepatocellular carcinoma.
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