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Abstract

Magnetic nanoparticles (MNPs) have unique physical and chemical properties, such as high 

surface area to volume ratio and size-related magnetism, which are completely different from 

their bulk materials. Benefiting from the facile synthesis and chemical modification strategies, 

MNPs have been widely studied for applications in nanomedicine. Herein, we firstly summarized 

the designs of MNPs from the perspectives of materials and physicochemical properties tailored 

for biomedical applications. Magnetic particle spectroscopy (MPS), first reported in 2006, has 

flourished as an independent platform for many biological and biomedical applications. It has been 

extensively reported as a versatile platform for a variety of bioassays along with the artificially 

designed MNPs, where the MNPs serve as magnetic nanoprobes to specifically probe target 

analytes from fluid samples. In this review, the mechanisms and theories of different MPS 

platforms realizing volumetric- and surface-based bioassays are discussed. Some representative 

works of MPS platforms for applications such as disease diagnosis, food safety and plant 

pathology monitoring, drug screening, thrombus maturity assessments are reviewed. At the end 

of this review, we commented on the rapid growth and booming of MPS-based bioassays in its 

first 15 years. We also prospected opportunities and challenges that portable MPS devices face in 

the rapidly growing demand for fast, inexpensive, and easy-to-use biometric techniques.
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1. Introduction

The application of MNPs in biological and biomedical context is a fast-growing area. 

Where MNPs, with proper surface functionalization, are used as contrast agents in MRI and 

NMR-based biosensors [1, 2], tracers for MPI and MPSF-based biosensors [3, 4], tags for 

MR-based biosensors [5, 6], labels for cell sorting and separation [7, 8], heating sources 

for hyperthermia [9, 10], carriers for drug/gene delivery [11, 12], as well as SERS-active 

substrates for different biochemical assays [13, 14]. As these technologies become more 

mature and widely used in clinical theragnostics (therapy and diagnostics), the pursuit 

of higher-sensitivity bioassay platforms, higher-resolution medical imaging technologies, 

and lower-dose magnetic therapies has led researchers to rethink the basic designs of 

MNPs (figure 1). For example, IONs (Fe3O4 and γ-Fe2O3) are frequently used for these 

applications due to high biocompatibility, stability, low cost, and biodegradability. The quest 

for high magnetic moment MNPs using other magnetic materials such as pure metals (e.g. 

Fe, Co, Ni), alloys (e.g. FeCo, alnico, permalloy), and oxides (e.g. MFe2O4 where M = Fe, 

Co, Mn, Ni, Zn) [15-17] is growing in view of higher magnetic signal and magnetic force for 

those aforementioned magnetic theragnostic applications. Pure metal MNPs show favorable 

magnetic properties, such as high saturation magnetization, but they may be toxic like Co 

MNPs, or oxidative sensitive like Fe MNPs. Thus, proper treatments are needed to make 

them more suitable for biomedical applications. In addition, some limitations including 

cytotoxicity and biocompatibility, potential agglomerates [18, 19], the synthesis method 

(such as whether it can be prepared in large quantities, the accessibility of raw materials 

and elements) and cost should be taken into consideration when choosing the right MNPs 

[20-22]. Furthermore, the design of MNPs specially tailored for biological and biomedical 

applications has been of less attention compared to its wide applications. Herein, we will 

review and discuss possible options in designing MNPs regarding different choices of 

magnetic materials, MNP synthesis and characterization techniques, MNP structural designs 

(i.e. core@shell, single- and multi-core designs), and the surface functionalization strategies. 

We aim to provide peers with available options for the design, synthesis, functionalization, 

and characterization of MNPs, which are specifically tailored for different application 

purposes and scenarios.

MPI, since its first report in 2005, has been developed into a complementary tomographic 

technique to MRI. It is a tracer imaging technique that differs from the structural imaging 

techniques (e.g. x-ray, CT, and MRI) that allows quantitative 3D imaging of MNPs with 

high spatial and temporal resolution [23]. MPS, firstly reported by Nikitin et al [24] and 

Krause et al [25] in 2006, it is a technology derived from MPI and thrives as a new research 

topic in the field of magnetic bioassays [23-26]. The MPS-based bioassay platform is one 

of the direct beneficiaries of facile preparation and chemical modification of MNPs and has 

become a rapidly developing research topic in recent years [27, 28]. For both techniques, 

MNP acts as a tracer and is the only source of magnetic signal from the biological samples. 

Both MPI and MPS rely on the nonlinear magnetic responses of MNPs and the fact that 

MNP’s magnetization saturates at a specific magnetic field strength. Upon the application 

of oscillating magnetic fields (magnetic drive field), MNPs are periodically saturated by the 

fields and exhibit dynamic magnetic responses that contain not only the drive field frequency 
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but also a series of harmonic frequencies. These higher harmonics are uniquely generated by 

MNPs and can be easily separated by means of appropriate filtering. Since subtle changes 

in MNP design may result in significantly different magnetic responses, by fine-tuning the 

MNP material, size, shape, structure etc, each kind of MNP has its own unique ‘fingerprint’ 

(i.e. MPS spectrum), allowing multiplexed bioassays [29-36]. From its first report in 2006 

to date (2021), different MPS platforms developed by several research groups have been 

categorized either by the drive field format (mon- and dual-frequency) or by the bioassay 

method (surface- and volumetric-based). The mechanisms and schematic drawings of each 

scenario are provided. Herein, we will recap the 15 year development history of MPS 

technique (2006–2021), summarize different branches of MPS-based bioassay methods, 

analyze the different structures of MNPs tailored to different MPS platforms, and propose 

the future development trend in miniaturized, portable, rapid, accurate, and easy-to-use 

bioassay kit. It is worth mentioning that the author published a review article on MPS 

technology in 2019, mainly focusing on theoretical and mathematical models [27]. Another 

short review article published by the authors focuses on various MPS-based applications, not 

only in bioassays, but also in target tracking and recognition, as an adjunct to magnetic 

imaging and hyperthermia [28]. To the best knowledge of the authors, there are no 

resources to review the 15 year history of MPS development (2006–2021) and the trends 

in miniaturized, portable, fast, accurate, and easy-to-use bioassay kit over the next 15 years. 

This review will fill the gap between our current understanding of MPS technology and the 

path ahead.

2. MNPs: properties, synthesis, functionalization and characterization

In this section we reviewed the different magnetic materials for the synthesis of MNPs 

including pure metals, alloys, and oxides. Generally, top-down and bottom-up approaches 

are used to synthesis MNPs. For the top-down approach, a ball milling method is reviewed. 

For the bottom-up approach, which is commonly used for the synthesis of MNPs, a 

sputtering-based GPC method, co-precipitation method, and thermal decomposition method 

are summarized. Both the advantages and disadvantages of each method are discussed 

in table 2, providing various options to obtain MNPs based on different applications. 

Several characterization techniques are also reviewed in figure 5. The phase information, 

morphology, sizes and size distributions, compositions, and magnetic properties can be 

characterized on MNPs to make sure they fulfill the requirements of a specific application. 

Different surface functionalization strategies for MNPs are reviewed, categorized by organic 

and inorganic coating methods. The surface functionalization improves the biocompatibility 

of MNPs, increases the colloidal stability of MNP suspension, protects the magnetic cores 

from oxidation and corrosion.

2.1. Magnetic materials: from bulk to nanoparticles

2.1.1. Magnetic materials and properties—As discussed in the previous section, 

most magnetic bioassay platforms rely on the magnetic signals from MNPs. Thus, the basic 

magnetic properties of MNPs are critical when choosing MNPs for a specific application, 

such as the saturation magnetization, magnetic anisotropy, size and size distribution, whether 

it is superparamagnetic or not, etc. The saturation magnetization, Ms, is defined as the 
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maximum magnetic moment per unit volume for a magnetic material, which is intrinsic and 

related to the spin–orbit coupling of a magnetic material. Ms is one of the decisive factors of 

the magnetic moment per MNP (m). The other factor is the magnetic core size or magnetic 

core volume. MNPs with a higher Ms may provide larger magnetic signals compared with 

MNPs with a lower Ms. Magnetic anisotropy, K, indicates a preferred direction on the spin 

for a system and this direction may not align with an external magnetic field. Magnetic 

anisotropy induces a hysteresis loop of MNPs with non-zero coercivity and remanence. 

Thus, magnetic dipolar interactions between MNPs may induce agglomerations, which is 

not preferred for biomedical applications. However, when the size of MNPs is smaller 

enough, the thermal energy is large enough to overcome the magnetic anisotropy energy 

and the MNPs become superparamagnetic (the coercivity and remanence become zero). The 

criteria for MNPs to be superparamagnetic is KV/kBT ⩽ 25, where V is the magnetic core 

volume of a MNP, kB is Boltzmann constant, and T is temperature in Kelvin.

It should be pointed out that Ms can change with temperature and the size of MNPs. 

Generally, Ms decreases with temperature due to thermal fluctuation. There are several 

sources of magnetic anisotropy, such as magnetocrystalline anisotropy, shape anisotropy, 

magnetoelastic anisotropy, and exchange anisotropy. Magnetocrystalline anisotropy is an 

intrinsic property of MNPs, which depends on the crystal structure of MNPs and decreases 

with temperature. Shape anisotropy is related to the shape of MNPs. For example, the 

shape anisotropy of spherical MNPs is isotropic and no shape anisotropy but asymmetric 

shapes like a rod and a disk may induce large shape anisotropy. The shape anisotropy 

is proportional with the saturation magnetization of MNPs and also decreases with 

temperature. In a strained system, however, a magnetoelastic anisotropy appears, depending 

on the strength of strains. In some core@shell MNPs, if one is ferromagnetic and the 

other is antiferromagnetic, the exchange interaction between the ferromagnetic material 

and antiferromagnetic material can induce an exchange anisotropy, which is unidirectional 

parallel or antiparallel to the magnetization of the ferromagnetic material.

For MNPs in most bioassay applications, superparamagnetism is the prerequisite to avoid 

agglomerates that may cause false magnetic signals or lead to the blocking of blood vessels 

(in the case of intravenous administration of MNPs for in vivo applications). Furthermore, 

MNPs with uniform or narrow size distribution can help improve magnetic performance 

and bioassay repeatability, especially when detecting ultra-low amounts of target analytes. 

Table 1 summarizes the specific saturation magnetizations, anisotropy values, and critical 

sizes of superparamagnetism of some popular magnetic materials. Here, a specific saturation 

magnetization (σs) is defined as the maximum magnetic moment per unit weight, which is 

more convenient to characterize MNPs. Magnetic materials such as pure metals (Fe, Co, 

Ni), alloys (FeCo, permalloy, etc), and oxides (Fe3O4, γ-Fe2O3, etc) are most frequently 

reported to produce MNPs. Among which, iron oxide MNPs, such as magnetite (Fe2O3) and 

maghemite (γ-Fe2O3), are mostly used in biomedical applications due to their outstanding 

stability and biocompatibility. However, the σs of iron oxide MNPs is much lower than other 

magnetic materials such as Fe, γ′-Fe4N, FeCo, Fe16N2, etc [37-40]. FeCo has a high σs, 

which is two to three times higher than iron oxides. Although this material is cytotoxic, the 

issue can be addressed by introducing a biocompatible shell such as silica. The nonmagnetic 

shell may reduce the σs of a MNP depending on the shell thickness. It is reported that FeCo 
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MNPs can show superparamagnetic behaviors with the size around 100 nm [41], which may 

compensate the reduction of magnetization if coating a nonmagnetic shell. Fe also shows 

high σs but it can be easily oxidized. A proper approach is needed to reduce/avoid the 

oxidation. FeSi MNPs show good biocompatibility and comparable σs to iron oxides and its 

Curie temperature is tunable by controlling the Si content, which has been applied for proper 

self-regulation of thermal energy [42]. γ′-Fe4N is another candidate of high moment MNPs. 

It is stable and biocompatible. However, γ′-Fe4N MNPs usually have large size distribution 

due to the relatively high temperatures during the synthesis process. α″-Fe16N2 is known 

for its giant σs, which can be higher than that of FeCo alloy, which provides much higher 

magnetic signals. But α″-Fe16N2 MNPs tend to be oxidized in the air and the Dsp is much 

smaller due to it high magnetocrystalline anisotropy. Fe16CN also has high Ms and the Dsp 

is larger than that of α″-Fe16N2 because of the relatively lower anisotropy. However, no 

Fe16CN MNPs have been reported yet.

To obtain high magnetic signals when using iron oxide MNPs, larger sizes are required that 

may exceed the superparamagnetic critical size to make these MNPs not superparamagnetic 

anymore with non-zero coercivity and remanence [43, 44]. Typically, MNPs are defined 

as nanoparticles that are smaller than 1 μm in diameter. To maintain superparamagnetic 

properties, the sizes of MNPs are usually limited to tens of nanometers, as listed in 

table 1. On the other hand, magnetic nanoclusters that composed of multiple individual 

superparamagnetic MNPs, known as magnetic nanobeads, within the size range of 50–

200 nm are also a popular choice for biomedical applications. In this review, the 

superparamagnetic MNPs and magnetic nanobeads are noted as single- and multi-core 

MNPs.

2.1.2. From bulk magnetic materials to superparamagnetic nanoparticles—
Magnetic materials may be divided into multiple magnetic domains to minimize the 

magnetostatic energy. A magnetic domain is a small unit that contains magnetic spins 

in a uniform direction. Each domain is spontaneously magnetized to the saturation state. 

The domains are separated by domain walls that are transections of magnetizations from 

one direction to another. The magnetization direction of each domain may not be aligned 

without the assistance of a high enough external magnetic field. It also requires energy for 

creating domain walls. Thus, when the size of magnetic materials decreases, the energy 

required to create a domain wall equals to or larger than the magnetostatic energy. In 

this case, no domain wall will be created, and a single domain state is achieved. The 

critical size of a single domain state depends on the magnetic properties of magnetic 

materials. The size is proportional to (A/2K)1/2, where A is the exchange stiffness of a 

magnetic material. Generally, the single domain size of MNPs ranges from 10 nm to 100 

nm depending on the magnetic properties of a specific magnetic material. Figure 2(A1) 

shows the schematic drawing of the coercivity versus the size of MNPs, where Dcrit denotes 

as the critical size of a single domain state. MNPs with single domain state show high 

coercivity but the coercivity decreases significantly with the decrease of the size of MNPs 

and becomes zero when the size reaches the superparamagnetic criteria (Dsp). The M–H 
curves of superparamagnetic and ferromagnetic materials are schematically drawn in figure 

2(A2).
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2.1.3. MNP structure designs—There are many MNP structure designs reported so 

far, such as the core@shell structure including single-core and multi-core MNPs, the 

core@shell@shell (i.e. core@multi-shell), the hollow core@shell, the core@porous-shell, 

and the hollow shell structures, as shown in figure 2(B). Other structures such as inverse 

core@shell, Janus structure, dumbbell structure, etc are not included [63-67]. Here the 

shells can be organic and inorganic materials as discussed in section 2.3. For the MNPs 

with hollow and porous-shell designs (figures 2(B4)-(B6)), the voids and pores are usually 

designed for drug/gene/biocatalyst loading purposes [68-73]. These structural designs are 

usually not considered for designing MNPs for bioassay applications since the voids 

and mesoporous are non-magnetic or paramagnetic thus, the overall magnetic moment 

of each MNP is lower than the solid MNP counterpart of same size. Which is not 

practical for magnetic bioassays where higher magnetic moment per MNP is preferred for 

higher detection sensitivity. On the other hand, the core@shell and core@multi-shell MNP 

structures are prevalently used for magnetic bioassays. The ‘core’ is typically magnetic 

material and ‘shell’ is organic compound and/or inorganic material such as polymers, silica, 

carbon and gold [74-80]. In addition to the application-oriented functions of shells such as 

for drug loading and releasing (for drug/gene delivery application) [81-83], for dual-modal 

imaging and thermal therapy [84-87], for dual-modal T1/T2-weighted MRI [73, 88-90], etc. 

More practical and prevalent functions of shells are (a) to prevent the magnetic core from 

oxidation, (b) to facilitate the surface functionalization of chemical compounds, and (c) to 

improve the colloidal stability and biocompatibility of MNPs [82, 91-93].

Herein, we will focus the application of single- and multi-core MNPs (subordinate to 

the core@shell and core@multi-shell structures). For the single-core design, the magnetic 

moment comes from the magnetic core. Besides choosing different MNP materials with 

high saturation magnetizations, an alternative to achieve high moment single-core MNPs 

is to use larger magnetic cores. With increasing magnetic core size, these MNPs show 

ferromagnetic behavior and hysteresis loops (non-zero remanent magnetization, as shown 

in figure 2(A1)), which, is preferred for some applications such as magnetic hyperthermia 

[99-103]. However, this remanent magnetization may leads to the agglomeration of MNPs, 

blocking blood vessels and causing false magnetic signals for imaging and biosensing 

[104-106]. Thus, MNPs with superparamagnetic behaviors (zero remanent magnetization) 

are chosen for most biomedical applications. Superparamagnetism appears in very small 

MNPs when the magnetizations randomly flip due to thermal fluctuations. The core 

sizes of superparamagnetic nanoparticles are usually below several nanometers to several 

tens of nanometers depending on the materials [107]. Consequently, the requirement on 

magnetic core size for superparamagnetism limits the achieving of high magnetic moment 

MNPs. Thus, multi-core MNPs are designed where a cluster of smaller superparamagnetic 

nanoparticles are embedded in a polymer matrix [32, 108, 109]. These relatively large, 

multi-core MNPs show negligible remanent magnetization (compared to single-core 

MNPs with the same overall size), higher colloidal stability, and low tendency to form 

agglomerates. Thus, multi-core MNPs is an excellent alternative to single-core MNPs. 

Nowadays, multi-core MNPs have also been exploited for magnetic separation [110, 111], 

MPI [32, 112, 113], MRI [114-116], and hyperthermia [117]. While for most biological 
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and biomedical applications, single- and multi-core MNPs hold equally important roles 

[118-120].

Nowadays, there are many commercially available MNPs of varying sizes, shapes, structure 

designs, and materials provided by companies such as Ocean NanoTech, LLC (United 

States), Nanoprobes, Inc. (United States), NANOGRAFI Co. Inc. (Turkey), Nilaco Corp. 

(Japan), Hongwu International Group Ltd (China), and micromod Partikeltechnologie 

GmbH (Germany), etc. Available choices are single- and multi-core MNPs with surface 

functionalization of proteins such as streptavidin, biotin, chemical compounds such as 

carboxyl, amine, PEG, azide, dextran, PS, PLA, PEI, inorganic materials such as silica, 

gold, etc. Materials of MNP cores such as oxides (Fe3O4, γ-Fe2O3, etc), pure metals (Fe, 

Co, Ni, etc), alloys (FeCo, FeNi, etc), nitrides (FexN, x = 2–4), etc.

2.2. Methods for synthesis of MNPs

Numerous methods have been reported for the synthesize of MNPs. Generally, these 

methods are categorized into two approaches: top-down and bottom-up approaches (as 

shown in figure 3(A)). Top-down approaches are used to prepare MNPs by breaking 

down bulk materials into nano-sized particles, such as ball milling, laser ablation, spark 

ablation, etc. Bottom-up approaches synthesize MNPs from nucleation and growth of atoms, 

such as physical methods like GPC, wet-chemical methods like co-precipitation, thermal 

decomposition, sol-gel method, etc. For the top-down approach, we will take the ball milling 

method as an example. For the bottom-up method, which is the most commonly used for 

the synthesis of MNP, the GPC method (physical method), the co-precipitation method 

(chemical method), and the thermal decomposition method (chemical method) are reviewed.

2.2.1. Ball milling method—Ball milling is widely used for preparing nanoparticles by 

breaking down bulk materials into nano-sized particles. This method is firstly developed 

in 1970 to prepare nanoparticle powders [121]. A schematic drawing of the ball milling 

machine and the working mechanism of this method is illustrated in figure 3(B). Grinding 

media (i.e. balls) and materials to grind (the bulk materials) are sealed in a grinding tank. 

The mechanism of ball milling method is firstly proposed by Fecht et al consisting of 

three stages [122]. In the 1st stage, share bands are induced in bulk materials with a high 

dislocation density. In the 2nd stage, nano-sized grains are created in the material due to the 

dislocation rearrangement to minimize the energy of the system. In the last stage, more high 

angle grain boundaries are induced in the material and some small grains are peeled off to 

form particles. The size of particle decreases with time following the equation d = kt−2/3, 

where d is the grain diameter, k is a constant, and t is the grinding time [123]. However, 

due to the cold welding effect between these small particles, they can be welded together to 

increase the overall particle size, thus, the particle size cannot be reduced indefinitely with 

the increasement of grinding time t [124, 125]. A ball milling method also has difficulties to 

obtain MNPs with desired shapes and sizes.

There are two different kinds of ball milling methods that being used for synthesizing 

nanoparticles. One is milling without surfactants, called dry milling, and the other is 

milling with surfactants, called wet milling. A surfactant, such as heptane, oleic acid, etc, 
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is adsorbed on the new surfaces of particles peeled off from the bulk material during the 

milling process [126-128]. Then, the fresh surfaces of the new particles are separated by 

layers of surfactant, which can help decrease the welding effect of small particles to obtain 

nanoparticles with smaller sizes. Nowadays, different kinds of MNPs have been synthesized 

by the ball milling method including Fe, Co, FeCo, SmCo, NdFeB, etc [129-133]. The size 

distribution of nanoparticles synthesized by this method is usually very wide. A narrower 

size distribution can be obtained by dispersing these nanoparticles in a surfactant/solution 

and extracting the supernatant after centrifugation but the yield of MNPs is low [128, 134].

2.2.2. GPC method—The GPC method is a type of bottom-up approach. It synthesizes 

nanoparticles through the nucleation and growth of atoms in a high vacuum environment 

[16]. For this method, the atomic gas is obtained through different energy sources, such 

as evaporation, sputtering, etc, and then the atomic gas is cooled down and begins the 

nucleation and growth. A sputtering source is more widely used since more materials are 

suitable for sputtering. Herein, we will focus on a sputtering-based GPC method. A GPC 

system with a sputtering source is shown in figure 3(C), which has two chambers connected 

by a small orifice [40, 138]. A pressure differential is created between these two chambers 

and the synthesized nanoparticles can be carried by a gas flow through the orifice and 

deposited on a substrate.

In the schematic drawing, the synthesis of Fe nanoparticles is used as an example. Fe atoms 

are knocked out of the target, forming atomic gas. A high sputtering pressure of several 

mTorr is used for this system to provide enough Ar atoms to collide with Fe atoms. The 

energy of the Fe atom will then be transferred to the Ar atom through collision, and the 

temperature of the Fe atom will decrease. When the temperature is low enough and the 

density of the Fe atom gas is high enough, the Fe nanoparticles begin to nucleate and 

grow. By tuning the sputtering current density and the intensity of magnetic field near the 

target surface, the plasma region and distribution can be tuned back and forth. Thus, Fe 

nanoparticles with different phases can be obtained. When the sputtering current I is high 

and magnetic field intensity B is low, the plasma is long and Fe nanoparticles can gradually 

cool down to obtain bcc Fe nanoparticles. In contrast, bct Fe nanoparticles are obtained if 

the plasma is short under the condition of low I and large B [40].

Different kinds of MNPs, such as high magnetic moment Fe and FeCo MNPs, have been 

synthesized by this GPC method, which have different shapes, sizes, and narrow size 

distributions [39, 139]. By controlling the plasma distribution different sizes and shapes of 

nanoparticles can be synthesized such as spherical and cubical nanoparticles [40, 140, 141]. 

MNPs with a narrow size distribution synthesized by the GPC method can also be achieved 

by separating the nucleation zone and growth zone of nanoparticles. In addition, core@shell 

nanoparticles can also be synthesized using the GPC technique. Wang et al reported the 

Co@Au, FeCo@Au MNPs prepared by this GPC system with a single sputtering source 

using an alloy target [142, 143]. Huttel et al reported the synthesize of core@shell and 

core@shell@shell nanoparticles using multiple sputtering sources [144-146]. The ‘shell’ 

material can help prevent oxidation of nanoparticles and severs as seeding layers for surface 

chemical functionalization purposes.
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However, the yield of MNPs by this method is relatively low compared with chemical 

synthesis methods. Several groups have proposed solutions to enhance the yield. Liu et al 
reported a hollow cathode designed for the sputtering-based GPC method to increase the 

utilization rate of the target material and make the output four times higher than that of 

the conventional GPC system with a flat target material [147]. Huttel et al reported a new 

magnetron design of a GPC system, which can increase the life of a magnetron target up to 

100% [148].

2.2.3. Co-precipitation method—Co-precipitation is a convenient method for 

obtaining IONs (magnetite, maghemite) from aqueous solution, which contains Fe2+ and 

Fe3+ salts as shown in figure 3(D) [149, 150]. Magnetite nanoparticles can be synthesized 

by the co-precipitation of these ions when adding alkaline into the solution at room 

temperature or at elevated temperature under inert atmosphere. Magnetite nanoparticles 

can be easily oxidized to maghemite or dissolved in acidic environment. Thus, by properly 

controlling the synthesis conditions, maghemite nanoparticles can also be synthesized using 

a co-precipitation method. Maghemite nanoparticles are stable in both alkaline and acidic 

solutions.

This method has a good control on the shape and phase of nanoparticles. But it is 

challenging to manipulate the size to obtain nanoparticles with a narrow size distribution 

[149, 150]. Since the blocking temperature of a particular material depends on the size of the 

nanoparticles, a wide size distribution of MNPs may cause undesirable magnetic properties, 

for example, some of the larger MNPs are ferromagnetic while others with smaller sizes are 

superparamagnetic. Thus, a narrow size distribution of MNPs is critical to obtain uniform 

magnetic performance.

There are several parameters affecting the size of IONs such as the ratio of Fe2+/Fe3+, 

pH values, types of iron salts used, the reaction temperatures, stirring speed, etc [151]. 

However, once the parameters for synthesizing IONs are fixed, the nanoparticles are 

reproduceable. It is critical to control these parameters to produce IONs with a narrow 

size distribution. In general, nanoparticles with a narrow size distribution can be achieved 

using the co-precipitation technique by controlling a short nucleation time followed by a 

slower subsequent growth of these nuclei [152].

Recently, significant efforts have been made to explore the synthesis of magnetite 

nanoparticles with a narrow size distribution by adding organic additives as stabilizing 

materials, controlling the pH value, manipulating reaction temperatures, etc. Mello et al 
reported that a stabilizer, PEG, was used to synthesize MNPs with a monodisperse size 

distribution since PEG can provide a coordination to the surface of nanoparticles for 

stabilization [153]. Some other organics are also used to obtain a better control on the 

size of nanoparticles, such as PVA, oleic acid, etc [154-157]. The pH value of the reaction 

solutions also affects the size distribution. A higher pH value usually induces a smaller 

particle size and narrower size distribution since high pH will modify the electrostatic 

surface charge of nanoparticles, which enhances the repulsion among nanoparticles [45]. 

Dewi et al investigated on the effect of precipitation pH on magnetite nanoparticles and 

reported that the size of MNPs tends to decrease with the precipitation pH, demonstrated 

Wu et al. Page 9

Nano Futures. Author manuscript; available in PMC 2022 October 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



by PSA and HRTEM [158]. The size and size distribution of nanoparticles can also be 

manipulated by the reaction temperature. The crystalline size of nanoparticles increases with 

the reaction temperature due to the enhanced number of collisions between particles during 

the synthesis process [159, 160]. Usually, the reaction is processed at ambient temperature 

instead of elevated temperatures.

2.2.4. Thermal decomposition method—The thermal decomposition method 

prepares MNPs by the decompositions of organometallic precursors in the presence of 

surfactants. Surfactants such as oleic acid, lauric acid, oleylamine, etc are adsorbed on the 

surface of MNPs for controlling the shape and size and preventing aggregations of MNPs. 

Thermal decomposition method has a much better control on the nucleation and growth 

process of MNPs, compared with the co-precipitation method, since they happen at different 

temperature ranges, such as 150 °C–200 °C for the decomposition and 250 °C–300 °C for 

the growth of MNPs. It results in synthesized MNPs with a very narrow size distribution 

and better structural properties than MNPs prepared by the co-precipitation method. High 

temperatures also help enhance the crystallinity of synthesized MNPs [161].

The synthesis of MNPs by a thermal decomposition method can be divided into three 

stages. First, the solvent containing the organometallic precursors, the surfactants, and the 

stabilizing agent are heated to reach the nucleation or precursor decomposition temperature. 

In some cases, reactants at high temperatures are directly introduced to the medium instead 

of heating from room temperature to the decomposition temperature. Thus, it leads to 

a rapid nucleation process. Then the solution is heated up to the boiling temperature 

of the solvent. Small nanocrystals are formed at this stage. Finally, the solution is 

kept at the high temperature in reflux for the growth of MNPs during a certain time 

and then cooled down to room temperature to collect the synthesized MNPs. All these 

stages are carried out in a system under inert atmosphere. Herein, we use the synthesis 

of iron oxide MNPs as an example. Most commonly used iron organic precursors are 

iron (III) N-nitrosophenyhydroxylamine (Fe(cup)3), cetylacetonate (Fe(acac)5), and iron 

pentacarbonyl (Fe(CO)5) [162]. The reaction routes are as follows: Fe(cup)3 or Fe(acac)3 

directly decompose into magnetite/maghemite, while Fe(CO)5 goes through an intermediate 

step of metal formation and then an oxidation of Fe0 into magnetite by addition of a mild 

oxidant [163, 164].

In principle, MNPs with different sizes, shapes, and crystallinities can be synthesized 

by properly manipulating experimental parameters such as ratios of reagents (i.e. 

organometallic precursors, surfactants, and solvents) and temperature ramp, which 

sometimes might make the reproducibility of MNPs more complicated. Additionally, MNPs 

prepared by a thermal decomposition method are only dispersible in polar solvent but water, 

which may limit the applications. Some phase transfer agents such as tetramethylammonium 

hydroxide, PEG can be used in order to make the MNPs dispersible in water [161, 165].

The pros and cons of each MNP synthesis technique reviewed in section 2.2 are listed and 

compared in table 2.
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2.3. MNP surface modification and functionalization strategies

2.3.1. MNP surface modification—Due to high surface energy and chemical activity, 

MNPs are easy to agglomerate in solution, and are easy to oxidize or corrode under 

environmental or physiological conditions [162]. Meanwhile, since MNPs are made of 

non-precious metal or metal oxide, they often exhibit toxicity to cells and organs [166], 

which limits the biological applications of MNPs. Therefore, MNPs are usually coated 

with protective layers (i.e. shells) to increase their dispersibility, stability and improve their 

biocompatibility. Based on the coating materials, MNPs surface modification strategy can 

be classified into two categories, organic coating and inorganic coating. Coating can be 

achieved during the synthesis of MNPs, known as in situ coating. Coating layers can also 

be added to the synthesized MNPs through post-synthesis adsorption and post-synthesis 

grafting. In this section, we will review the advantages, coating methods, and potential 

applications of both kinds of coating compounds.

Organic coating layer can be physically absorbed or covalently bonded to the surfaces of 

MNPs, and forming different structures as shown in figure 4(A). Both natural compounds 

like proteins, carbohydrates and synthetic compounds like surfactants and synthetic 

polymers have been extensively investigated.

MNPs coated with surfactant such as small organic molecules generally have micellular 

or liposomal structures. They are often used to stabilize MNPs in aqueous condition or oil/

hydrocarbon carrier fluids [167]. For example, sodium oleate is one kind of biocompatible 

surfactant. Sun et al prepared sodium oleate coated Fe2O3 nanoparticles with a size 

distribution of 8–20 nm [168]. The coated MNPs show high dispersity in aqueous solution 

with the existence of COO─ at the surface. Sahoo et al demonstrated that citric acid 

coated MNPs can be stabilized in aqueous condition by exposing at least one hydrophilic 

carboxylic acid group to the solvent [169]. Moreover, the terminal carboxylic group also 

extended bond formation with target molecules like proteins and fluorescent dyes.

Synthetic polymers, such as PEG, PVA, PEI, and alginate, if coated, can bring MNPs with 

tailored and desired properties [162, 170]. The most popular synthetic polymer for MNPs 

coating is PEG, which is a hydrophilic polymer that has low toxicity. Several studies have 

shown that PEG-coated MNPs have improved biocompatibility, high water-solubility, and 

increased blood circulation time [171-174]. Two prevail methods to coat PEG layers are 

physico-chemical binding and chemical coupling [174-176].

Compared to synthetic polymers, natural polymers usually have milder formulation 

processes and have advantages in terms of biocompatibility and biodegradability. Various 

kinds of natural polymers have been exploited for MNPs coating. For instance, dextran 

and its derivatives are biocompatible, biodegradable and have a high affinity for iron oxide 

surface owing to their polar interactions [171]. Dextran-coated iron oxide MNPs have been 

reported as a versatile platform for in vivo molecular diagnostic and therapy [177]. A 

hydrophilic, biodegradable natural polymer chitosan has also drawn the interests of many 

researches due to its natural abundance and multiple functional groups in its backbone 

structure [178, 179]. Other common natural coating compounds include starch and gelatin 

[180, 181].
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As an alternative and addition to organic coating materials, oxides like silica, noble metal 

like gold or silver, and carbon-based materials, are frequently used inorganic coating 

compounds. Silica is one of the most used inorganic coating compounds, which can be 

applied on various kinds of MNPs like nickel, cobalt, iron, iron oxide, etc [182]. It is 

an ideal coating material because of its biocompatibility, hydrophilicity and reactivity 

with biological ligands [149, 183]. Also, silica shell can prevent the agglomeration and 

improve the colloidal stability of the MNPs, since it increases the columbic repulsion 

with a negatively charged surface and is able to shield the magnetic dipole interactions 

between neighboring magnetic cores. Silica coating strategies for MNPs has been well 

documented. For instance, it can be directly coated onto the MNPs via the hydrolysis 

of a sol-gel precursor like TEOS and subsequent condensation [184]. Yue et al reported 

a method to synthesis silica-coated Fe3O4 with yolk-shell structure [185]. They used 

an interface sol-gel coating and surfactant-involved co-assembly method to construct 

Fe3O4@SiO2@hollow mSiO2 microspheres, then introduced ultra-small Au nanoparticles 

via an in situ reduction method. The synthetic procedure and resulting structures are shown 

in figure 4(B). This novel structure is ready to be used as a recyclable nanocatalyst 

with high-performance. Another common synthesis method for silica coating is the 

microemulsion/reverse microemulsion process which will not be covered in this review 

[186, 187].

Similar to silica, gold and some other noble metal coatings are nontoxic and can also 

improve the stability and biological compatibility of MNPs and are nontoxic. Moreover, 

gold coated MNPs have increased electrical conductivity and additional optical properties, 

which adds new possibility to the application of the MNPs [188]. Gold shells can be 

formed directly or indirectly onto the MNP cores. Chemical reduction and reverse micelle 

method are two common direct coating methods. For example, Wang et al synthesized 

monodispersed core@shell Fe3O4@Au nanoparticles through an initial synthesis of Fe3O4 

nanoparticles followed by a reduction of Au(OOCCH3)3 [189]. Cho et al prepared Fe@Au 

nanoparticles through reverse micelle method and reported their potential application as 

magnetic resonance agents [190]. Indirect coating involves a ‘glue’ layer between the gold 

layer and the magnetic core, which is often made of silica, polymer or carbon [67].

Besides of the aforementioned compounds, recent years have seen an increasing research 

interest on carbon coating since carbon-based materials are much more chemically and 

thermally stable compare to polymer or silica [149]. Several coating strategies have been 

developed so far, includes vapor deposition [191], sonochemical process [192], and pyrolysis 

of iron stearate [193]. In one recent example of carbon coating reported by Song et al, 
graphitic carbon shells were coated on FeCo particles through methane CVD to prevent 

FeCo against oxidation and chemical reaction [194]. Also, the graphitic coating shell shown 

broad absorbance to the NIR-II region. With further surface modification, these FeCo@C 

particles have great potentials in facilitating cancer imaging and hyperthermal treatment.

2.3.2. MNP surface functionalization—Apart from protection, the coating layer can 

also serve as the anchoring location for bioconjugates like antibody or protein, which 

enables further functionalization of MNPs [162, 166, 167, 195]. Surface functionalization 

is especially important for MNP-based biomedical applications including diagnostics 
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and targeted therapy [171]. Antibodies are the most commonly used functional groups 

conjugated on MNP surfaces due to their high specificity and abundance in species [196]. 

For example, Rashid et al synthesized PMIDA grafted, SiO2 coated Fe3O4 MNPs, then 

functionalized these MNPs with anti-CD4 antibodies. They demonstrated that these surface 

functionalized MNPs can be used to positively select peripheral blood T CD4+ lymphocytes 

[197]. DNA and/or RNA aptamers can also serve as the conjugating ligands. Bamrungsap 

et al reported a kind of aptamer conjugated MNPs for cancer cell recognition. To obtain 

such MNPs, iron oxide MNPs were first coated with streptavidin and then conjugated with 

biotin-labeled DNA aptamers [198]. Other ligands used for MNPs surface functionalization 

include but not limit to peptides, folate and folic acid, affibodies and lectins [199].

2.4. Methods for characterization of MNPs

Prior to biomedical applications, the physicochemical properties of MNPs such as crystal 

structures, sizes and size distribution, elemental compositions, magnetic hysteresis loops, 

etc are usually characterized by the standard techniques. In this section, we will review the 

characterization techniques such as XRD, SEM, TEM, VSM, and DLS.

The crystal structures of magnetic materials can be characterized by XRD patterns. As 

shown in figure 5(A1), the incoming x-ray beam injects into a sample and the atomic plane 

in the sample diffracts the x-ray, which is collected as the XRD pattern. Different materials 

have different crystalline structures and thus, the distance between atomic planes (dhkl) 

corresponds to different XRD patterns. Diffraction peaks of a XRD patten represent crystal 

planes. Hence, XRD patterns indicate the phases of a magnetic material. A XRD pattern of 

magnetite nanoparticles is shown in figure 5(A2) for example. The positions of diffraction 

peaks (2θ values) indicate the phases by comparing them with standard pdf.

The morphologies of MNPs and their sizes and size distributions can be characterized by 

TEM and SEM. Here, we take the TEM as an example. TEM is comparable to an OM. 

The source of a TEM is accelerated electrons comparable to a light source in an OM. 

Electromagnets are used to control the paths of electrons, which works like a lens in an 

OM. The wavelength of these accelerated electrons, depending on the acceleration voltage 

of electrons, is much smaller than that of the light source of an OM. Thus, the resolution of 

TEM can reach sub-nanometers. One TEM image of MNPs is shown in figure 5(B2) as an 

example. Based on the TEM image, the sizes and size distribution of these nanoparticles can 

be obtained as shown in figure 5(B3).

The elemental compositions of MNPs can be characterized by EDS. The working principle 

of EDS is illustrated in figure 5(C1). High energy electromagnetic radiation (x-ray) ejects 

the inner-shell electrons from an atom. High energy electrons at the outer shells of the atom 

can fill in, and release energy as x-ray radiations during this process. Such radiation is 

unique to each element and can be used to identify compositions of a sample. Figure 5(C2) 

shows the STEM image of magnetite nanoparticles. Figures 5(C3) and (C4) are elemental 

mappings of iron (Fe) and oxygen (O) using EDS, respectively.

Magnetic properties such as saturation magnetization, remanence magnetization, magnetic 

coercivity, etc are characterized by VSM. A schematic drawing of a VSM is shown in 
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figure 5(D1), which has main components such as electromagnets, pick-up coils, sample rod, 

vibrator, etc. Uniform magnetic field is generated between these two electromagnets and a 

magnetic sample fixed by a sample rod is put between these electromagnets. When there is 

a vibration for the sample, it can generate electrical signals in the pick-up coils, which is 

proportional to the magnetic moment. Thus, a M–H curve (hysteresis loop) can be obtained 

as shown in figure 5(D2). Several magnetic parameters can be obtained from a hysteresis 

loop such as the saturation magnetization, remanence, coercivity, etc.

Since for most applications, MNPs are surface-functionalized and dispersed in solution, the 

hydrodynamic sizes and hydrodynamic size distributions of MNPs can be characterized by 

DLS. DLS measures the Brownian motion of MNPs in solutions. As shown in figure 5(E1), 

MNPs are dispersed in a solution and a laser beam is used as the incoming source. The 

detection angle tells the size of nanoparticles, and the PSD then can be characterized and 

summarized in the format of figure 5(E2).

MFM is used to scan the surface of a sample with a magnetic probe by measuring the 

interactions between the probe and the sample. The most common approach to use MFM 

to characterize MNPs is so-called ‘two-pass technique’, where the sample is scanned twice. 

First, it scans the sample like a conventional AFM to obtain the topographical image, where 

the van der Waals force plays the significant role. Second, the cantilever of the MFM is then 

raised to a certain height away from the surface of the sample and then it starts to collect 

the magnetic single following the topographical pattern defined by the first step. Thus, the 

MFM image can reflect the magnetic properties of the sample by collecting the long-range 

magnetic interactions.

3. MPS-based bioassays: mechanisms

In this section, we reviewed the theory of MPS-based bioassay including the nonlinear 

dynamic magnetic responses of MNPs, the higher harmonics uniquely generated by MNPs, 

and the Brownian and Néel relaxations of MNPs. Different MPS platforms developed 

by several research groups have been categorized either by the drive field format (mon- 

and dual-frequency) or by the bioassay method (surface- and volumetric-based). The 

mechanisms and schematic drawings of each scenario are provided.

3.1. From MPI to MPS

Since its first report in 2005, MPI has been developed into an alternative or complementary 

tomographic technique to MRI [4, 23, 207-210]. MPI is a tracer imaging technique (different 

from the structural imaging techniques such as x-ray, CT, and MRI) that allows quantitative 

3D imaging of MNPs with high spatial and temporal resolution [3]. As shown in figure 

7(A2), MPI relies on an AC ‘modulation field’ and a constant ‘selection field’ (i.e. magnetic 

gradient field) to selectively suppress magnetic responses of MNP tracers in some regions 

while only record MNP responses from a FFP. To be specific, the ‘modulation field’ with 

frequency f and a high amplitude A periodically saturates MNPs. Due to the nonlinear 

magnetic responses of MNPs (figure 7(A1)), the induced magnetic response, M(t), contains 

not only the ‘modulation field’ frequency f but also a series of higher odd harmonics (figures 

7(A3) and (A4)) such as 3f, 5f, 7f, 9f etc. These harmonics are extracted for analysis 
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by means of appropriate filtering. On top of the ‘modulation field’, a ‘selection field’ is 

applied to selectively suppress these harmonics for spatial encoding purpose (i.e. to suppress 

the magnetic responses from MNPs outside the FFP). It is a magnetic gradient field that 

vanishes in the FFP and increases in magnitude towards the edges as shown in figure 7(A6) 

[23]. The MNPs outside FFP are fully saturated by this ‘selection field’ and their magnetic 

responses in the form of harmonics are largely suppressed. As shown in figures 7(A2)-(A4), 

the ‘selection field’ with amplitude A0 shifts the magnetizations of MNPs to the saturated 

region and the magnetic responses generate not only the odd but also even harmonics. The 

amplitudes of these harmonics are negligible compared to the odd harmonics generated by 

MNPs within the FFP. Thus, MNPs within the FFP are the only signal sources of higher odd 

harmonics responsible for 3D tomographic imaging.

Figure 6(A1) is an example of MPI platform with the magnetic gradient field (‘selection 

field’) generated by NdFeB permanent magnets and the FFP is steered in X and Y 
directions. By steering the FFP through the volume of interest, a 3D tomographic image 

is generated as shown in figure 6(A2). Figure 6(A3) shows a photograph of MPI system. 

Nowadays, both prototypes and commercial MPI scanners have been reported for in 
vivo applications in vascular imaging [211-213], oncology [214-217], cell-tracking [211, 

218-221], etc. For example, figure 6(A5) shows in vivo cancer imaging with systemic MNP 

tracer administration. The MNP dynamics in the tumor is clearly visualized with MPI where 

they preferentially accumulate in tumor regions due to the abnormally leaky vasculature. By 

96 h, the MNPs are cleared. The dissected organs at the end of MPI imaging are shown in 

figure 6(A6) where the presence of MNP tracers is observed from liver, spleen, and tumor 2 

d post injection. As an emerging imaging technique, MPI opens up a new route to in vivo, 

real-time 3D imaging and it is expected that human scanner will reach to clinical stage in the 

near future [3, 222].

Meanwhile, different MPS platforms derived from MPI have been reported for bioassay 

purposes and later become a new research topic in magnetic bioassay area [24, 25, 223]. 

The first generation MPS platforms were independently reported by the Russia group Nikitin 

et al [24] and the Germany group Krause et al [25] in 2006, where a magnetic drive field 

having two frequency components at fH and fL was applied to repeatedly saturate MNPs 

for bioassay application. This platform is named ‘dual-frequency drive field’ modality in 

this review. Weaver et al [223] from the United States reported a second version of MPS 

platform for bioassay applications, where the magnetic drive field only has one frequency 

component f. This group also reported the combination of one AC magnetic drive field with 

a constant field for MPS-based bioassays [224, 225]. Herein, we categorized both methods 

under ‘mono-frequency drive field’ modality. The schematic drawings of mono- and dual-

frequency drive field MPS modalities are shown in figure 6(B). The mono-frequency drive 

field modality has one set of coils responsible for generating one sinusoidal magnetic drive 

field (figure 6(B1)). While, on the other hand, the dual-frequency drive field modality has 

two sets of coils responsible for generating two sinusoidal magnetic drive fields of distinct 

frequencies and amplitudes (figure 6(B1)). It should be noted that both ‘modulation field’ in 

MPI and magnetic drive field in MPS are sinusoidal fields responsible to repeatedly saturate 

MNPs. In order to distinguish these two techniques, we use the term ‘magnetic drive field’ 

in MPS technique only.
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MPS-based bioassays are also categorized by the assay strategies. For the surface-based 

MPS bioassay, a chemically functionalized reaction surface called ‘substrate’ is introduced 

to fix MNP tracers for the detection of target analytes from biofluid samples. As shown 

in figure 6(C), combined with LF test strips or 3D fiber filters, MNP tracers can be fixed 

to the substrate through a sandwich assay format. After washing out the unbound MNP 

tracers, these fixed MNPs are ‘counted’ by analyzing MPS spectra. For the volumetric-based 

MPS bioassay, MNP tracers are binding to target analytes from liquid phase and the binding 

events cause lower degrees of rotational freedom and weaker magnetic responses, which is 

monitored by MPS readers, as shown in figure 6(D).

MPS is treated as a 0D MPI technique that instead of recording the spatial distribution of 

MNP tracers in X, Y, and Z axis, MPS records the magnetic responses of MNPs from the 

whole sample space. Thus, the ‘selection field’ is not required in MPS-based bioassays. 

Up to now, MPS platforms have been reported for the detection of nucleic acid [226], 

virus [227-231], bacteria, fungi and microbial toxins [232-237], protein biomarkers [226, 

238], blood clot [225], etc. In addition, portable MPS devices are also reported for on-site 

bioassays [229, 230, 239]. A summary of these applications is given in table 4.

3.2. Different MPS platforms classified by magnetic drive field

MPS technique inherits MPI’s design of applying a ‘modulation field’ (in MPS, it is called 

magnetic drive field) to trigger the nonlinear magnetic responses of MNP tracers and 

utilizes the higher harmonics as information for different application purposes. In MPS, 

tomographic scanning is not required thus, ’selection field’ is removed. There are currently 

two types of MPS platform classified by the magnetic drive field. The first one is mono-

frequency drive field modality where there is only one sinusoidal magnetic drive field H(t) 
= Asin (2πft) as shown in figures 7(B2) and (B5). This drive field with amplitude A large 

enough to repeatedly saturate MNPs and cause nonlinear magnetic responses (figure 7(B3)). 

Higher harmonics at frequencies of 3f(the 3rd harmonic), 5f(the 5th harmonic), 7f(the 7th 

harmonic) are generated, filtered, and collected as information (figure 7(B4)). It is similar 

to the scenario of MNPs within the FFP in MPI. The other one is dual-frequency drive 

field modality where there are two sinusoidal magnetic drive fields applied. Namely, one 

drive field with low frequency and large amplitude, expressed as HL (t) = AL sin (2πfLt), 
is applied to repeatedly saturate MNPs while, a second drive field with high frequency and 

low amplitude, expressed as HH (t) = AHsin (2πfHt), is applied to modulate the higher 

harmonics to high frequency regime, as shown in figures 7(C2) and (C5). Higher harmonics 

at frequencies of fL, 3fL, 5fL, …, fH ± 2fL (the 3rd harmonics), fH ± 4fL (the 5th harmonics), 

fH ± 6fL (the 7th harmonics), and fH, 3fH, 5fH are observed due to the dynamic magnetic 

responses of MNP tracers.

Aside from the magnetic drive fields, from a macro perspective, both MPS platforms record 

the higher odd harmonics from nonlinear dynamic magnetic responses of MNPs [24, 25, 

27]. Qualitatively, the amplitudes (or intensities) of higher harmonics are proportional to 

the number of MNPs, magnetic moment per particle, drive fields (including field amplitude 

and frequency) and inversely proportional to the phase lag of magnetic moments to the 

drive fields [27, 36, 240, 241]. The phase lag is affected by the drive field and effective 
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relaxation time of MNPs (joint effects of Brownian and Néel relaxation processes) [26, 

242-245]. While the Brownian and Néel relaxation processes are affected by one or more 

of the following factors such as temperature, magnetic anisotropy, liquid medium viscosity, 

magnetic core size, hydrodynamic size and saturation magnetization of MNPs. From a 

macro perspective, the relaxation time of magnetic moments of MNPs under AC magnetic 

drive field leads to the AC magnetic susceptibility [241, 246-250].

As a result, in addition to the biomedical applications, the higher harmonics have been 

exploited as metrics for measuring the temperature (T) and viscosity (η) of MNP medium 

[251-256], as well as the saturation magnetization (Ms), magnetic core size (Vc), and 

hydrodynamic size (Vh) of MNPs [36, 241]. Due to the complexity of theoretical models 

leading to the MPS spectra, this review will not elaborate on the mathematical models 

contributing to the reconstruction of higher harmonics. Several literatures are suggested for 

readers to investigate in depth of these theoretical models: [26, 36, 240, 242-245, 251, 253, 

257].

3.3. Surface- and volumetric-based MPS bioassays

There are two kinds of MPS bioassay methods that have been frequently reported, 

the surface- and volumetric-based methods. The intrinsic differences between these two 

methods are that the surface-based bioassay monitors the amount of MNP tracers captured 

due to the presence of target analytes while, on the other hand, the volumetric-based 

bioassay monitors the bound status (or, rotational freedom) of MNP tracers in the presence 

of target analytes. Both methods will be explained in detail in this section.

The surface-based MPS bioassay method is similar to traditional surface biosensors such 

as LF tests [259-263], GMR [5, 264-269], and SERS [270-274] biosensors. These types of 

biosensors use a chemically functionalized reaction surface to capture tracers/markers, in 

the presence of target analytes, tracers/marked are bound to the reaction surface through 

specific recognition (such as antibody-antigen, DNA-DNA, etc), then they are sensed by 

means of fluorescence, optical, and magnetic signals. Surface-based MPS bioassay method 

works in a similar manner. As shown in figure 8(A1), taking a sandwich bioassay design 

as an example. The substrate (reaction surface) is a nonmagnetic porous membrane or fiber 

filter [275], and its surface is functionalized with capture antibodies. As biofluid sample 

passes through the surface, target analytes are captured through antibody-antigen specific 

binding. Other molecules and compound that are not bound to the reaction surface are 

washed out. Followed by another layer of detection antibodies specifically bind to target 

analytes. After removing the excess antibodies, MNP tracers are added and conjugate to one 

end of detection antibodies. Free MNPs are washed out and only leaving captured MNPs on 

the substrate. The number of bound MNPs on the substrate is proportional to the number 

of target analytes, and the amplitudes (intensities) of higher harmonics are proportional to 

number of MNPs from sample. Thus, allowing for quantitative MPS bioassays. Figure 8(A2) 

schematically shows the MPS spectra before and after the capture of MNPs. Since biological 

tissues and fluids are nonmagnetic or paramagnetic, none or negligible harmonic signals can 

be observed from the sample. MNP tracers captured and fixed on the substrate will be the 

only magnetic signal sources responsible for MPS spectra.
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On the other hand, the volumetric-based MPS bioassay method is a homogeneous assay that 

detects target analytes directly from liquid phase without wash steps. Where the MNPs are 

suspended in liquid and, an extra degree of rotational freedom appears, namely, Brownian 

relaxation (figure 8(B)). For stational/fixed MNPs, like the scenario in surface-based MPS 

bioassays, their magnetic moments follow the AC magnetic drive field through the Néel 

relaxation process as shown in figure 8(B). Néel process is the relaxation of magnetic 

moment inside a stational MNP to align with external magnetic field and there is no physical 

movement related to this process. While Brownian process is the rotational movement 

of the whole MNP along with its magnetic moment in response to external magnetic 

field. Upon the application of magnetic drive fields, the magnetic moments of MNPs in 

liquid medium try to align with the fields through the joint effects of Brownian and Néel 

relaxation processes, to minimize magnetostatics energy, which are countered by the thermal 

fluctuations (kBT, where kB is the Boltzmann constant and T is temperature). In addition 

to thermal energy that randomizes magnetic moments, Brownian process is also affected by 

the hydrodynamic volume, Vh, of MNP as well as the viscosity, η, of the liquid medium. 

On the other hand, Néel process is also affected by the effective magnetic anisotropy 

(including crystal and shape anisotropies), Keff, and volume of magnetic core, Vc. These 

two processes jointly govern the ability of magnetic moments to follow the time-changing 

magnetic field, thus, affecting the dynamic magnetic responses of MNPs to the drive fields. 

The effective relaxation time is dominated by the faster relaxation process. For single-core 

MNPs with magnetic core size above 25 nm (some papers and books reported this number 

to between 12 nm and 20 nm), the Brownian process will dominate dynamic magnetic 

responses [29, 254, 276-278]. It should be noted that the Langevin model that has been 

frequently reported to describe magnetic responses of MNPs does not contain the phase 

information or, the phase lag of MNPs’ magnetic moments to the external fields. Thus, 

Langevin model is insufficient to provide the vectorial responses of MNPs. This phase 

lag leads to a complex magnetic susceptibility that firstly reported in the Debye model 

[279]. Although the Debye model is valid for describing the vectorial responses of MNPs 

under small magnetic fields, it is inaccurate when extended to the nonlinear ranges of 

the magnetization. Wawrzik et al reported a modified Debye model that includes both 

the nonlinear magnetizations and vectorial responses of MNPs in the context of viscosity/

binding-dependent MPS measurements [249].

Since the Brownian process can be altered by the hydrodynamic size of MNPs, researchers 

have been exploiting the Brownian process-dominated MNPs for volumetric-based MPS 

bioassays. This method detects target analytes from liquid medium where the harmonics 

from MNPs are used as metrics for monitoring their hydrodynamic size Vh, which reflects 

the bound states of target analytes to MNPs [27]. As shown in figure 8(C1), when the 

capture antibodies (aptamers, proteins, DNA etc) are functionalized on MNP surface. 

Target analytes will bind to MNPs through specific antibody-antigen (DNA–DNA, protein–

antibody, etc) Interactions. This specific binding process allows us to quantify target analytes 

from the aqueous testing sample. The dynamic magnetic responses of MNPs will be 

impaired by the conjugation of target analytes and the Brownian process is countered. As a 

result, the observed harmonics become weaker and phase lag between magnetic moments to 

external field becomes larger [27, 226, 280, 281]. The magnetic signals are then recorded 
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by the pick-up coils in the format of time-varying voltage signals, converting the quantity of 

target analytes to spectral components, i.e. harmonics.

3.4. Portable MPS devices for on-site bioassays

With the increasing demands for high accuracy, rapid, inexpensive, and easy-access devices 

for routine daily at-home diagnosis, on-site sample diagnosis in regions with scarce medical 

resources, disease surveillance and control in pandemics. POC devices that combine the 

advantages of quantitative and high accuracy nature that are comparable to laboratory-based 

tests, ease-of-access, and short turn-around times have become a new trend [282-289]. In 

the past 15 years, several groups have reported the design and application of portable MPS 

devices targeting for rapid and accurate field tests in nonclinical settings, handheld by 

layperson with minimal training requirements. In this section, we will review different MPS 

portable devices regarding the design, bioassay method, and capabilities, which are also 

summarized in table 3.

Wu et al reported a MagiCoil MPS portable device along with a smartphone application user 

interface as shown in figure 9(A1) [239]. The overall dimensions of this device are 212 mm 

(L) × 84 mm (W) × 72 mm (H). It is powered by wall plug and can communicate with 

smartphones (Android and IOS systems), tablets, computers through Bluetooth and USB. 

It is a volumetric-based MPS platform and the biofluidic samples are contained in a flat 

bottom, USP type I, glass vial with dimensions of 31 mm × 5 mm and a volume capacity 

of 0.25 ml, as shown in figure 9(A4). This kind of glass vial is one-time use only and 

disposable and it can be seamlessly inserted into the sample loading port from the top of 

the MagiCoil device. The user interface gives users step-by-step instructions on carrying out 

each test.

Pietschmann et al and Rettcher et al have reported a FMMD MPS portable device with 

intuitive touch display, as shown in figures 9(A2) and (A3) [230, 236]. Its overall size is 230 

mm (L) × 100 mm (W) × 70 mm (H) and it can be connected to a conventional power outlet 

or battery, allowing the device to be used in remote locations without a power source. It is a 

surface-based MPS platform where the immuno-filtration columns are sintered polyethylene 

filters with a pore diameter of 50 μm to provide reaction surface for binding of MNPs, as 

shown in figure 9(A5).

For both portable devices in figure 9(A), biofluidic samples and/or reaction substrates (such 

as immune-filtration columns in figure 9(A5) and cylindrical 3D fiber filters in figure 9(A6)) 

can be fitted in a small cylindrical vial and inserted into a MPS signal reader as shown 

in figure 9(A7). Taking the dual-frequency MPS platform as an example, the MPS signal 

reader consists of two sets of coils generating low- and high-frequency magnetic drive fields, 

and one-pair of differentially wounded pick-up coils to sense magnetic responses of MNPs. 

The pick-up coils are designed in a way that the top half is wounded clock-wise as sensing 

coils and the bottom half is wounded counter-clock-wise as balancing coils. Both the sensing 

and balancing coils pick up the time-varying magnetic fields from drive coils and MNPs due 

to Faraday’s law of induction. In order to remove the effect of magnetic drive fields and only 

read the dynamic magnetic responses from MNP tracers, the balancing coils are designed 

in a counter-clock-wise manner to cancel out the EMF caused by magnetic drive fields. On 
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the other hand, the mono-frequency MPS reader is designed in a similar manner except that 

there is only one set of coils for drive field.

Figure 9(B) shows another type of MPS portable device, named MPQ (magnetic particle 

quantification), that combined with lateral flow test strips, reported by Orlov et al [233], 

Guteneva et al [290], and Bragina et al [291]. It is a surface-based MPS bioassay platform 

relying on lateral flow test strip as reaction surface. Each lateral flow test strip is 3 mm (W) 

× 40 mm (L) in dimension and composed of overlapping sample pad, nitrocellulose, and 

absorbent membranes assembled on an adhesive plastic backing sheet, as shown in figure 

9(B3). Multiplexed bioassay design for simultaneous detection of different target analytes 

has also been reported based on this platform, such as adding multiple test lines on one 

lateral flow strip for the simultaneous detection of morphine, fentanyl and methamphetamine 

as shown in figure 12(A3) [290], or stacking several single-plex test strips in a cartridge as 

shown in figure 6(C1) [233].

Meanwhile, MPS portable devices mounted with microfluidic channels have also been 

reported for fully automatic disease screening. As shown in figure 9(C1), Kim et al [292] 

have reported a p-FMMD (planar-frequency mixing magnetic detection) system for the 

detection of amyloid beta 42 (Aβ42), a promising biomarker of Alzheimer’s disease, at 

the minimum concentration of 23.8 pg ml−1. The p-FMMD system is composed of two 

parts: a MPS reader and a motorized translation stage in X and Y-direction with a motion 

controller. The MPS reader (including drive coils and pick-up coils) is separated into two 

equally parts by the microfluidic channel. The motorized translation stage is controlled 

by a user-programmed interface and the speed of this stage can be varied from 0.1 to 8 

mm s−1. The spatial traveling range of this stage covers a 25 mm (X-direction) × 60 mm 

(Y-direction) rectangular region. It is a surface-based MPS bioassay platform and the large 

detection area allows multiplexed bioassay with ROI functionalized by different capturing 

probes. Another microfluidic channel mounted MPS device is reported by Rabehi et al [293] 

where the planar drive coils are contained in two PCB structures each with dimensions of 

100 mm (L) × 40 mm (W) × 1.55 mm (H) and separated by a serpentine-like microfluidic 

channel (12 mm × 12 mm), as shown in figure 9(C2). This is the first report of MPS device 

with planar drive and pick-up coils in PCB structures. Each coil is composed of four layers, 

the tracks are 100 nm wide with an inter-distance of 100 nm. Each layer of track has a 

thickness of 35 nm. The drive coils have a radius of 13 mm (60 turns/layer), and the pick-up 

coils have a radius of 10 mm (46 turns/layer). Despite the concern of magnetic drive field 

intensity and uniformity, this is the first step in pushing MPS devices into chip-sized devices.

With the progress of miniaturization of the MPS platform and the trend of fully automated 

bioassays, it can be foreseen that MPS portable devices can transform the current multi-

step, laboratory-based bioassays into non-clinical environments such as homes, schools, 

offices, and airports, etc. Nowadays, the MPS handheld device combined with lateral 

flow technology is commercially available at OVVI Diagnostics founded in Belgium. Pure 

Devices GmbH (Germany) is also providing MPS benchtop systems with laptop software.

Wu et al. Page 20

Nano Futures. Author manuscript; available in PMC 2022 October 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4. MPS-based bioassays: applications

In this section, we reviewed the MPS-based applications in the areas of disease diagnosis, 

food safety, plant pathology, drug screening, etc. All these applications reported between 

year 2006 and 2021 are summarized in table 4. Herein, we highlighted some representative 

works applying MPS in the detection of fT4, an indicator biomarker of thyroid diseases, 

SARS-CoV-2, H1N1, SEB, aflatoxin B1, and the multiplexed detection of drugs. Other 

notable MPS-based applications, such as the monitoring of blood clot formation and 

mechanical force, detecting cold-chain breaches, temperature, pH, and viscosity, as well 

as the MNP characterizations indicate that MPS can potentially serve as auxiliary tool in 

different fields in the future.

4.1. MPS for disease diagnosis

In the past 15 years, MPS platforms have been applied for disease diagnosis including 

Hepatitis B, Influenza, and SARS-CoV-2 viruses [227-229, 231, 275], Alzheimer’s disease 

[292], hormones, cytokines and other signaling molecules from body fluid [294, 298], etc. 

Different MPS-based bioassays reported in the past 15 years are summarized in table 4. In 

this section, we only highlight a few of recent publications between year 2018 and 2021.

MPS platform combined with lateral flow assay is frequently used as one representative 

of surface-based MPS bioassay [232-234, 290, 294, 297, 299, 300]. Herein, we provide 

readers with one example of this detection scheme for the measurement of fT4 [297]. As 

shown in figures 10(A1) and (A3), each lateral flow test strip is composed of overlapping 

nitrocellulose and absorbent membranes assembled on an adhesive plastic backing sheet. 

This is an example of competitive binding assay. The less amount of fT4 from human 

blood serum sample, the more such streptavidin-T4-bt-MNP-Ab complexes are formed on 

the test line. Figure 10(A2) shows the magnetic signal vs fT4 concentration from blood 

serum. Figure 10(A3) shows the SEM images of MNP tracers at different spots of test strip. 

This developed surface-based (i.e. LF strip), dual-frequency drive field, MPS (competitive 

assay)-based method provides a tool for detection of ultra-low concentrations of fT4 in 

small-volume samples of human serum within the range of 20 fM–10 pM (16 fg ml−1−8 pg 

ml−1), which is clinically relevant at hypothyroidism.

Figure 10(B) is an example of volumetric-based MPS assay using surface functionalized 

MNPs and non-magnetic beads, for the detection of SARS-CoV-2 spike protein [228]. 

In this work, MNPs are surface functionalized with SARS-CoV-2 spike antibody while, 

nonmagnetic PS beads are coated with SARS-CoV-2 spike protein to mimic SARS-CoV-2 

virus particles, as shown in figures 10(B1) and (B2). The presence of mimic SARS-CoV-2 

virus particles will cause MNPs form clusters, and the rotational freedom is constrained 

(figures 10(B3) and (B4)). As a result, the dynamic magnetic responses in time domain 

(figure 10(B5)) and harmonics in MPS spectra in frequency domain (figure 10(B6)) become 

weaker. Thus, quantitative detection of SARS-CoV-2 spike protein (or the mimic SARS-

CoV-2 virus particles) can be achieved by analyzing the harmonics. In figures 10(B7) 

and (B8), the authors used the ratios of the 3rd over the 1st harmonic amplitudes as 

parameters for quantification of mimic virus particles. The results of MNPs with and without 
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functionalization of antibodies are compared. A detection limit of 0.084 nM (5.9 fmole) 

mimic SARS-CoV-2 virus particles is achieved in this work.

Figure 10(C) is another example of volumetric-based MPS assay while only surface 

functionalized MNPs are used for the detection of H1N1 nucleoprotein [227]. It is based on 

the fact that MNPs coated with pAbs can bind to different epitopes of H1N1 nucleoprotein 

molecule (figure 10(C1)). Thus, the target analyte caused MNP clustering will further reduce 

the rotational freedom of MNPs, and lower weaker harmonic signals are observed (figure 

10(C2)). The bright-field TEM Images from figure 10(C3) prove that with higher amount 

of H1N1 nucleoprotein presenting In the sample, larger MNP clusters are formed. This 

approach achieved a detection limit of 44 nM (4.4 pmole) for H1N1 nucleoprotein molecule.

4.2. MPS for food safety and plant pathology

Furthermore, the applications of MPS In food safety Industry has also been reported, such 

as detecting microbial toxins [232, 233, 236, 237, 291] and antibiotics [296] from food 

matrices, and detecting plant viruses including GFLV, PVX, and TMV [230].

Bragina et al reported the MPS platform combined with LF strip for detection of SEB from 

different food matrices [291]. MNPs are surface functionalized with detection antibody to 

SEB. The test line of FL strip is coated with capture antibody to SEB. In their MPS bioassay 

step, MNP-Ab conjugates are mixed with SEB from different food matrices including 

buffer, milk, canned meat and canned mushrooms, then magnetically separated to wash out 

unbound chemicals, as shown in figure 11(A1). The IMS time is varied from 0 min, 30 min, 

to 4 h. The front end of LP strip is immersed into the solution of separated MNP-Ab-SEB 

conjugates. Under capillary forces, the conjugates migrate to the test line of LF strip. If the 

sample contains the SEB, MNPs are captured on the test line and measured by MPQ reader. 

The authors varied sample volume and IMS time and different LODs are reached for SEB 

from different food matrices, as shown in figures 11(A2) and (A3).

On the other hand, Pietschmann et al reported a surface-based MPS platform with immuno-

filtration columns as reaction substrates for the detection of aflatoxin B1 [236]. As shown 

in figure 11(B1), the immuno-filtration column made of polyethylene matrix is surface 

coated with aflatoxin B1 and remaining binding sites are blocked by BSA solution. Then the 

biotinylated, aflatoxin B1-specific monoclonal antibodies with serially diluted free aflatoxin 

B1, the sample is flushed through an aflatoxin B1-BSA coated immune-filtration column. 

Non-saturated antibodies bind to the coated antigen from immuno-filtration column and are 

retained within the matrix. As shown in figure 11(B3), the higher the mycotoxin content 

within the sample, the more antibodies are saturated and are flushed through the column. 

Afterward, streptavidin functionalized MNPs are applied onto the column, bind to retained 

antibodies and can be detected using the portable FMMD device (see figure 11(B2)). The 

authors compared the platform sensitivity by using 700 nm and 70 nm MNP tracers. 

Calibration curves are summarized in figures 11(B3) and (B4). Although 700 nm MNP 

generates higher magnetic moment (thus, higher MPS signal) than 70 nm MNP of the same 

materials. Results show that under the same conditions, using 70 nm MNP tracers yield a 

tenfold increase of MPS signal compared to 700 nm tracers. The possible reason is that 

when large MNPs are applied, steric hindrance can occur on the substrate surface. So, by 
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applying a higher ratio of small particles onto the column, a higher amount of small MNPs 

could bind to antigens coated on the column surface. Similar results have also reported by 

Achtsnicht et al where 75 nm MNPs yields better detection sensitivity than 1010 nm MNPs 

under the same conditions, for the detection of Cholera toxin subunit B [237].

4.3. MPS for drug screening

In addition to the disease diagnosis and food safety monitoring, researchers have also 

reported the drug screening using MPS platform. For example, Guteneva et al reported 

the multiplexed detection of drugs including morphine, fentanyl, and methamphetamine 

from human urine samples, using a surface-based MPS platform combined with LF strips, 

as shown in figure 12(A) [290]. A competitive bioassay strategy is used and, combined 

with MNP tracers, MPS platform, and LF strips, this technique offers significant advances 

over the traditional LF test. The MPS-based LF assays are rapid, highly sensitive, and 

user-friendly, on the level of quantitative laboratory methods. As shown in figure 12(A1), 

biofluidic sample containing free hapten (free target analytes) mixed with MNP/hapten-BSA 

conjugates (MNP surface functionalized with target analytes and BSA) migrates along 

the LF strip under capillary forces. Then free hapten competes with MNP/hapten-BSA 

complexes for the limited number of antibody binding sites on the test line. Some complexes 

bind at the test line while the unbounded ones pass through and accumulate in the absorbent 

membrane. The MNPs bound at the test line is then read by MPS reader coils as shown in 

figure 12(A3). With this design, the authors proposed multiplexed detection of morphine, 

fentanyl, and methamphetamine from human urine samples, where MNPs functionalized 

with morphine, fentanyl, methamphetamine and BSA are added to 75 μl of human urine 

samples containing known concentrations of morphine and methamphetamine and zero 

concentration of fentanyl. The obtained solution is incubated for 10 min at room temperature 

and applied onto the LF test strip. After migration of the sample along the membrane, the 

test strip is inserted into three MPS reader coils. Thus, the MPS signals from three test 

lines can be simultaneously readout as shown in figure 12(A2). Although the multiplexed 

bioassay has 2.3–3-fold deterioration of LODs compared with the monoplexed bioassay. 

These drawbacks can be eliminated by multiplex spatial separated layout proposed in [233].

MPS has also been reported in the application of mechanical force monitoring [301], where 

the superparamagnetic microballoons of around 40 μm with hollow cores are used as sensor 

particle for mechanical stress as shown in figure 12(C1). These microballoons are patchy 

silica-IONs obtained by a partial coverage of IONs with condensed TEOS. Their balloon-

like structures can be observed by LSM and SEM as shown in figures 12((C1): (b1), (c1), 

(b2) and (c2)). These magnetic microballoons are susceptible to mechanical forces and are 

continuously fragmented under static or dynamic force as shown in figure 12((C1): (c2)). 

The deformation and subsequent fragmentation (depending on the intensity of mechanical 

forces) results in a modification of their magnetic properties and thus, the MPS spectra. By 

use of MPS, these structural changes are readily detected and enable the quantification of 

the applied mechanical forces in ball mills. As shown in figure 12(C2), the MPS spectra are 

collected from magnetic microballoons after the application of static compression force. The 

steepening of the signal curve drop with increasing mechanical energy is evident, especially 

if one considers the logarithmic scale of the y-axe. This design enables the quantification of 
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acting mechanical forces on an arbitrary sample. As MPS is highly sensitive, the magnetic 

microballoons do not necessarily have to be separated from the processed material for 

measurements, which may enable a future inline monitoring.

4.4. Other MPS-based applications

Other applications of MPS platforms in clinical theragnostic are worth a mention, such as 

blood clot formation monitoring [224, 225], mechanical force monitoring [301], detection 

of cold-chain breaches [302], the temperature, pH, and viscosity measurements [254, 257, 

303], the MNP characterization [36, 241], the in situ MNP biodegradation monitoring [304], 

etc. For example, Khurshid et al proposed to use MPS platform for a noninvasive evaluation 

of thrombus maturity, providing the promise of much earlier and more accurate diagnosis 

of diseases ranging from stroke to myocardial infarction to deep vein thrombosis, as shown 

in figure 12(B) [224, 225]. In their work, MNPs are functionalized with ATP15 and ATP29 

aptamers that can bind to two distinct epitopes on thrombin. The event of MNPs binding to 

thrombus from blood clot causes reduced rotational freedom (Brownian relaxation), reduced 

relaxation time, as well as weaker harmonics, as shown in figure 12(B2) [26, 224]. Figure 

12(B1) shows clear SEM images of MNP clusters bound on the cell surface.

The real-time MNP binding events are monitored by MPS spectra as shown in figure 12(B3) 

where the harmonic ratios are recorded under different drive field frequencies, following the 

addition of a blood clot to MNP solution. The first MPS reading is taken from MNPs before 

adding the blood clot, plotted in blue colored curve. The harmonic ratios drop over time as 

more and more MNPs bound on the clot. The arrow in figure 12(B3) marks harmonic ratios 

drop over the course of sequential measurements in a time window of 30 min. As the MNPs 

are bound to blood clot, the 2nd and the 4th harmonics both drop due to reduced rotational 

freedom, however, the harmonic ratio also drops since the 4th harmonic drops faster than 

the 2nd harmonic. Note that in this work, the authors applied a small DC magnetic field 

along with a sinusoidal magnetic drive field, thus, only the even harmonics are observed. 

They used the ratio of the 4th harmonic over the 2nd harmonic as a metric for their rotational 

freedom that reflects the bound state of the MNPs.

5. Challenges and opportunities

Many biomedical applications require various MNPs with varying magnetic properties and 

structures, which provides a good opportunity for the synthesis of MNPs by different 

methods such as ball milling, GPC, co-precipitation, thermal decomposition, etc. MNPs are 

synthesized with a narrow size distribution, mono dispersion, well-controlled shapes and 

phases, and so on to meet the requirements of related applications. However, a specific 

synthesis method of MNPs not only has its advantages to fulfill the demand of MNPs 

used for biomedical applications but also has some disadvantages that need to pay attention 

to. For example, ball milling method can synthesize large amount of MNPs but these 

MNPs may have large size distribution and some contamination from the grinding balls and 

containers. Although the GPC method can prepare MNPs with a narrow size distribution, 

well-controlled phases and shapes, the yield of MNPs is very low. The co-precipitation is a 

simple way to synthesize MNPs with a good yield, but it is challenging to precisely control 
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the stoichiometry and sizes of MNPs. The thermal decomposition method can synthesize 

MNPs with a narrow size distribution and good structural properties, but some toxic organic 

solvents are bonded with MNPs, and relatively high temperatures are required. Therefore, a 

proper synthesis method of MNP is needed to be considered based on different biomedical 

applications.

Although coating strategies has been well developed over the past few decades, the synthesis 

of the coating layers is still sometimes challenging. For instance, due to the distinct 

structural difference between Au and Fe3O4 MNPs, a full coverage of Au shell on Fe3O3 is 

often achieved at the expense of forming byproducts like separate Au nanoparticles [307]. 

Frequently used organic coating approaches usually involves complex conjugation chemistry 

and prior functionalization, thus are impractical to produce a large amount of MNPs [308, 

309]. Therefore, improvements on synthesis process of the coating layers are yet to be 

achieved. While coating brings additional properties and applications to MNPs, it may 

cause some adverse effects on the magnetic properties of those nanoparticles. For example, 

coating layers can change the shape and size of the MNPs, such changes may affect the 

coercivity and anisotropy of MNPs [17]. Also, since magnetic saturation is proportional to 

the weight of the materials, the existence of non-magnetic coating materials reduces the 

overall magnetization of the MNPs. Throat et al has compared the magnetic behaviors of 

bare and dextran coated LSMO MNPs [310]. They observed that the magnetization at 20 

kOe for bare LSMO MNPs is about 20% higher than those coated with dextran. Villanueva 

et al also reported that silica-coated manganese oxide nanoparticles shown an obvious drop 

in saturation magnetization and the Curie temperature than naked ones [311]. Therefore, 

how to get improved biological properties while maintaining desired magnetic response can 

be another challenge and optimization direction for future research.

After 15 years of rapid development (2006–2021), MPS platforms have been transformed 

into POC devices such as the MagiCoil, FMMD, MPQ, and p-FMMD devices independently 

reported by different groups (listed in table 3). The additions of microfluidic channels and 

planar coils push this MPS-based bioassay into a more automatic, user-friendly, easy-to-use, 

on-site and bed-side healthcare solution. Realizing ‘press one button and get the result 

within a few minutes’. Figure 13 summarizes the 15 year roadmap of MPS technology 

along with MPS-based applications since 2006. With the ongoing coronavirus disease 2019 

(COVID-19) pandemic, MPS technology starts to shine as a possible solution for faster, 

more accurate, and inexpensive SARS-CoV-2 detection. Several groups have reported the 

MPS for SARS-CoV-2 specific antibody and antigen detection [228, 229, 295].

The novel combination of MPS with LF strips or filters opens a new door to multiplexed 

bioassays, allows the use of multi-core superparamagnetic MNPs with high magnetic 

moment per particle, enables the quantitative detection of target analytes by ‘counting’ the 

MNPs captured. This surface-based MPS bioassay method relies on the functionalization 

of reaction surface (i.e. LF strips and filters), and the removal of unbound compounds 

such as MNPs and proteins. Thus, the multiple wash steps introduced makes the bioassay 

complicated and not appliable to layperson for on-site bioassays. Although the current trend 

of adding microfluidic channels to MPS devices that can simplify the steps and allows for 
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fully automatic assays [292, 293]. At current stage, the surface-based MPS assay method is 

still one step away from on-site assays that can be handled by layperson.

The volumetric-based MPS bioassay method relies on the Brownian relaxations of MNPs. 

By functionalizing probing complexes (i.e. DNA, antibody) to MNP surfaces, these MNPs 

serve as nano-probes to specifically bind to targe analytes (i.e. DNA, antigen) from liquid 

phase. This volumetric-based MPS assay method directly measures the collective dynamic 

magnetic signals from the sample thus, allows for one-step, wash-free bioassay. It allows 

for on-site test handled by layperson with minimum training requirements. However, the 

sensitivity of this assay method is impaired by the amount of unbound MNP probes in 

the sample. Since the MNPs bound to target analytes show a different (or weaker) MPS 

spectra while the spectra from unbound MNPs are unchanged. As a result, the collective 

MPS spectra from whole MNP sample is a combination of bound MNPs and free MNPs. 

For scenarios of detecting very low abundancy of target analytes, the vast majority of MNPs 

are unbound. Thus, the MPS spectra difference caused by a small amount of bound MNPs 

will be negligible. There are two strategies to solve this issue of detecting low abundancy 

analytes: (a) use clustering-based assay where more than one MNPs can bind to one targe 

analytes [226, 227, 239]; (b) use lower amount of MNPs for volumetric-based bioassays 

[312].

For both surface- and volumetric-based MPS bioassay methods, in order to achieve the fully 

automatic, one-step, wash-free bioassays at users’ end. An all-on-one chip that combines 

a filtration system along with a microfluidic channel for reagents mixing (i.e. surface 

functionalized MNPs specifically bind to target analytes) is suggested. The on-chip filtration 

system can be achieved by introducing a microfabricated micropillar array [313]. This 

filtration step is of great importance for testing raw/unprocessed biological samples such 

as whole blood, saliva, etc, where the large cells, viscous mucus, debris may interfere with 

the signal. Furthermore, the microfabricated micropillar array is fully compatible with the 

on-chip microfluidic channels. On the other hand, the microfluidic channel can be designed 

into serpentine shapes to enhance mixing and cut down the biding time (as well as assay 

time). Thus, allowing faster filtration and reagent mixing all-on-one chip. Another common 

challenge faced by both surface- and volumetric-based MPS bioassays is the stability issue 

for continuous measurements. It is caused by heat dissipation from high current-carrying 

solenoid coils. This heat dissipation causes the temperature of the coil and biological sample 

to increase, resulting in increased thermal noise and changes in the MPS harmonic spectrum 

(the magnetic properties of MNPs are temperature dependent). Mitigation strategies for 

this issue have not been widely discussed in published literature, a possible workaround is 

discussed by Wu et al [295]. In their work, they reported a test strategy that includes a 3 

min cooldown between measurements. Although this manual waiting strategy is suitable for 

lab-based test systems, it is not suitable for the operation of POC devices, so a more robust 

approach is needed to address thermal-related MPS stability issues.
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Abbreviations

3D Three-dimensiona

η Viscosity

σ Specific magnetization

σ s Specific saturation magnetization

A Exchange stiffness

Ab Antibody

Aβ42 Amyloid beta 42

ATP Aptamer

bcc Body-centered cubic

bct Body-centered tetragona

BSA Bovine serum albumin

CRP c-reactive protein

CVD Chemical vapor deposition

D crit Critical size of a single domain state

DLS Dynamic light scattering

D sp Critical size of superparamagnetism

EDS Energy dispersive spectroscopy

FFP Field-free point

fT4 Free thyroxine

GFLV Grapevine fanleaf virus

GMR Giant magnetoresistive

GPC Gas-phase condensation

HBsAg Hepatitis B surface antigen
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HRTEM High-resolution transmission electron microscopy

IMS Immunomagnetic separation

IONs Iron oxide nanoparticles

K Magnetic anisotropy

k B Boltzmann constant

K eff Effective anisotropy

LF Lateral flow

LOD Limit of detection

LSM Laser scanning microscopy

mGZM-B Mouse Granzyme B

M–H curve Hysteresis loop

mIFN-γ Mouse interferon-gamma

mIL-6 Mouse interleukin-6

MNP Magnetic nanoparticle

MPI Magnetic particle imaging

MPQ Magnetic particle quantification

MPS Magnetic particle spectroscopy

MR Magnetoresistive

MRI Magnetic resonance imaging

M s Saturation magnetization

mVEGF Mouse vascular endothelial growth factor

NIR-II Second near infrared red

NMR Nuclear magnetic resonance

OM Optical microscopy

pAb Polyclonal antibody

PCB Printed circuit board

Pdf Powder diffraction files

PEG Polyethylene glycol

PEI Polyethylenimine
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p-FMMD planar-frequency mixing magnetic detection

PLA Polylactic acid

PMIDA N-(phosphonomethyl) iminodiacetic acid

POC Point-of-care

PS Polystyrene

PSA Particle size analyzer

PSA Prostate specific antigen

PVA Polyvinyl alcohol

PVX Potato virus X

rCGRP Rat calcitonin gene related peptide

rIL-6 Rat interleukin-6

ROI Regions of interest

SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2

SEA Staphylococcal enterotoxin A

SEB Staphylococcal enterotoxin B

SEM Scanning electron microscope

SERS Surface-enhanced Raman spectroscopy

STEM Scanning transmission electron microscopy

T Temperature

T4 Thyroxine

T4-bt biotinylated T4

TEM Transmission electron microscope

TEOS Tetraethoxysilane

TEOS Tetraethyl orthosilicate

TMV Tobacco mosaic virus

TSST Toxic shock syndrome toxin

V c Magnetic core size

V h Hydrodynamic size

VSM Vibrating sample magnetometer
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XRD X-ray diffraction
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Figure 1. 
The MNP synthesis, functionalization, and characterization lay the foundation of MNP-

based biomedical applications.
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Figure 2. 
(A) Superparamagnetic and ferromagnetic materials. (A1) Size dependence of the coercivity 

of magnetic materials. Larger crystallites with multi-domain states lower the coercivity. 

Small crystallites with a single-domain state show higher coercivity. When the size is 

below the superparamagnetic limit, it constantly flips the direction of magnetization to 

become superparamagnetic. (A2) M–H curves of superparamagnetic and ferromagnetic 

materials. (B) Schematic views and TEM images of MNPs with different structure designs. 

The core@shell structure including (B1) single-core and (B2) multi-core designs. (B3) 

Core@multi-shell structure. (B4) Hollow core@shell structure. (B5) Core@porous-shell 

structure. (B6) Hollow shell structure. (A1) is reproduced from [17]. © IOP Publishing Ltd. 

All rights reserved. (i) and (vii) are reprinted with permission from [94]. Copyright (2016) 

American Chemical Society. (ii) is reprinted with permission from [95]. Copyright (2018) 

American Chemical Society. (iii) is reproduced from [39]. CC BY 4.0. (iv) is reproduced 

from [96]. CC BY 4.0. (v) is reproduced from [97] with permission from the Royal Society 

of Chemistry. (vi) is reprinted with permission from [68]. Copyright (2015) American 
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Chemical Society. (viii) is reproduced from [98]. CC BY 3.0. (ix) is reproduced from [70] 

with permission from the Royal Society of Chemistry.
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Figure 3. 
(A) Schematic drawing of the top-down and bottom-up approaches for synthesizing 

MNPs. In the top-down approach, bulk materials break down in to powders and then 

nanoparticles. For the bottom-up approach, atoms nucleate to form small clusters and 

then nanoparticles. (B) Schematic drawing of a ball milling machine and the working 

mechanism of synthesizing nanoparticles by using a ball milling method. During the milling 

process, shear bands and dislocation structures are induced into bulk materials to form 

cell grain structures. Nanoparticles will peel off from bulk materials with the accumulation 

of dislocations and cell grain structures. (C) GPC system with a sputtering source for 
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synthesis of nanoparticles. Atoms are kicked out of the target to form atomic gas. The 

collisions between these atoms and sputtering gas atoms (argon) cool down the atoms 

to start nucleation and grow into nanoparticles. By properly control the distribution of 

the plasma region in the GPC system different phase and shape of nanoparticles can be 

synthesized. (D) The co-precipitation method. (E) The thermal decomposition method. (E1) 

A schematic drawing of thermal decomposition method. (E2) A SEM image shows that 

CoFe2O4 MNPs prepared by this method have a narrow size distribution. (B) is reproduced 

from [135]. CC BY 4.0. (C) is reprinted figure with permission from [40], Copyright 

(2018) by the American Physical Society. (D) is reproduced from [136]. CC BY 4.0. (E) is 

reproduced from [137], with permission from Springer Nature.

Wu et al. Page 50

Nano Futures. Author manuscript; available in PMC 2022 October 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Schematic illustration of different structures of organic (A) and inorganic coating (B). 

(B1) The synthetic procedure for the multifunctional yolk-shell magnetic mesoporous 

silica microspheres with gold nanoparticles embedded in the voids. TEM images of the 

multi-shelled Fe3O4@SiO2@RF@CTAB/SiO2 microspheres with an outer shell of ~50 nm 

thick CTAB/silica composite (B2), (B3) and the yolk-shell Fe3O4@SiO2@hollow mSiO2 

microspheres (B4), (B5) with different magnifications obtained after calcination treatment. 

(A) is reprinted from [171], Copyright © 2009 Elsevier B.V. All rights reserved. (B) is 

reproduced from [185] with permission from the Royal Society of Chemistry.
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Figure 5. 
Characterization techniques of MNPs. (A) XRD patterns for characterizing the phases 

information. Figure (A1) is schematic drawing of the working mechanism of XRD. The 

reflections of x-rays from different crystal planes form the diffraction patterns. Figure (A2) 

shows an example of the x-ray diffraction pattern of magnetite MNPs. Different diffraction 

peaks indicate different crystal planes to identify the phase information. (B) TEM for 

characterizing morphology of MNPs and their size and size distributions. Figure (B1) shows 

the working principle of a typical TEM system. Figure (B2) is a TEM image of magnetite 

MNPs whose size distribution is shown in (B3). (C) EDS for measuring the compositions 

of MNPs. Figure (C1) indicates that the EDS signal is determined by the difference of 
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electron energy level of the outer shell and inner shell. Different energy levels can be used 

to identify the elements. Figures (C2)–(C4) are a TEM image of magnetite MNPs with 

elemental mapping of Fe and O. (D) VSM for collecting magnetic parameters such as the 

saturation magnetization, remanence, coercivity, etc. Figure (D1) shows the components of 

a VSM and an image of a photograph of VSM system. Figure (D2) illustrates a M–H curve 

of magnetite MNPs measured by VSM. (E) DLS for characterizing the size distribution 

of MNPs dispersed in a solution. Figure (E1) shows the working principle and sizes of 

MNPs are determined by the detection angle of the laser beam. Figure (E2) indicates the 

size distribution of MNPs. (A1) is reprinted from [200], Copyright © 2016 Elsevier Ltd. All 

rights reserved. (A2), (C2)–(C4) are reproduced from [201], with permission from Springer 

Nature. (B1) is reprinted from [202], Copyright © 2016 Elsevier Ltd. All rights reserved. 

(B2), (B3), (D2) are reproduced from [203]. CC BY 4.0. (C1) is reproduced from [204]. CC 

BY-SA 3.0. (D1) is reprinted from [205], © 2018 Elsevier B.V. All rights reserved. (E) is 

reproduced from [206]. CC BY 4.0.
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Figure 6. 
(A) MPI technique. (A1) Schematic view of MPI platform with a magnetic field gradient 

created by NdFeB permanent magnets (green), the FFP is shifted in X and Y directions with 

electromagnets (yellow and red, respectively). (A2) The FFP follows the specified trajectory 

through the sample in the field of view and a 3D MPI image is acquired. A maximum 

intensity projection of the 3D MPI image is shown. (A3) Photograph of a custom-built FFP 

MPI scanner. (A4) In vivo MPI scan of MNP tracer biodistribution through time in rats. 

The MPI images with a field of view of 4 × 4 × 5.8 cm and acquisition time of 5 min 

were captured for these rats. The exquisite contrast of MPI allows clear visualization of the 

dynamics: initial rim enhancement, followed by accumulation, and then clearance. (A5) Ex 
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vivo MPI scan (right) and corresponding photograph (left) 2 d post MNP tracer injection. 

(B) Schematic views of two variations of MPS platforms. (B1) MPS with mono-frequency 

drive field modality. (B2) MPS with dual-frequency drive field modality. (C) Surface-based 

MPS bioassay scheme. Figures (C1) and (C2) show one type of surface-based MPS bioassay 

using test strips as reaction and binding surface. (C1) Several test strips combined in a 

miniature cartridge (top), the cartridge with a sample deposited onto its front end is inserted 

into the portable MPS reader (middle); and simultaneous readout of magnetic signals from 

all participating test strips (bottom). (C2) One test strip design based on sandwich-LF assay 

with antibody conjugated MNPs as labels. Figures (C3) and (C4) show another type of 

surface-based MPS bioassay using 3D fiber filters as reaction and binding surface. (C3) 

Schematic representation of the magnetic sandwich immune-filtration assay. (C4) Schematic 

view of one 3D solid phase fiber filter located inside a pipette tip. (D) Volumetric-based 

MPS bioassay scheme. The MNP’s hydrodynamic size increases as it surface functionalized 

with antibodies, bounds to target analyte, and forms larger nanoparticle cluster due to 

inter-link with other MNPs. As a result, its dynamic magnetic responses in the form of 

harmonic amplitudes decrease. (A) is reprinted with permission from [214]. Copyright 

(2017) American Chemical Society. (B1) is reproduced with permission from [26]. (B2) is 

reproduced from [236]. CC BY 4.0. (C1) and (C2) are reprinted with permission from [233]. 

Copyright (2016) American Chemical Society. (C3) is reproduced from [237]. CC BY 4.0. 

(C4) is reprinted with permission from [232]. Copyright (2013) American Chemical Society. 

(D) is reprinted with permission from [227]. Copyright (2020) American Chemical Society.
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Figure 7. 
(A) MPI technique with modulation and selection fields. (B), (C) Two types of MPS 

platforms classified by the magnetic drive fields. Figures (B) and (C) are the mono- 

and dual-frequency drive field designs, respectively. Figure (A6) is a schematic view of 

MPI scanner with the FFP in the center. Figures (A2)–(A5) show the magnetic fields 

and magnetic responses of MNP tracers in and out of FFP. (X1) are the static magnetic 

responses of MNPs (i.e. MH curves of superparamagnetic nanoparticles). (X2) are the time 

domain magnetic drive fields, and (X5) are their corresponding frequency domain spectra, 

respectively. (X3) are the dynamic magnetic responses of MNPs upon the application 
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of different magnetic drive fields, and (X4) are their corresponding frequency domain 

spectra, respectively. X = A, B, and C. (A6) is reprinted with permission from [258]. 

Copyright (2015) American Chemical Society. (B) and (C) are reproduced from [27]. © IOP 

Publishing Ltd. All rights reserved.

Wu et al. Page 57

Nano Futures. Author manuscript; available in PMC 2022 October 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Two types of MPS bioassay methods classified by magnetization relaxation mode. Figures 

(A) and (C) are schematic views of surface- and volumetric-based MPS assay methods, 

respectively. (A1) In a surface-based MPS bioassay method, a non-magnetic substrate 

functionalized with capture antibodies is applied as the reaction surface to specifically 

capture target analytes from biofluid sample, then one layer of detection antibody is 

anchored accordingly, followed by the last layer of MNPs. In this scenario, MNPs are fixed 

to the reaction surface and the number of MNPs left on the surface is proportional to the 

number of target analytes captured. Upon the application of drive fields, the fixed MNPs 

realign their magnetic moments through a Néel relaxation process (B1). Correspondingly, 

the MPS spectrum in (A2) changes in different stages of the MPS bioassay. Figure (C1) 
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shows a volumetric-based MPS bioassay method, MNPs are dispersed in a homogeneous 

liquid, which adds an additional degree of rotational freedom to their dynamic magnetic 

responses upon drive fields, i.e. Brownian relaxation (B2). As MNP is surface functionalized 

with antibodies, bound with target analytes, interlinks and forms clusters, this rotational 

freedom reduces, and dynamic magnetic responses become weaker. Figure (C2) is another 

example of volumetric-based MPS bioassay method introducing non-magnetic beads as 

reaction surface to further reduce the rotational freedom of MNPs. Correspondingly, the 

MPS spectrum in (C3) becomes weaker and weaker as Brownian relaxation is hindered by 

the binding and clustering events. (B) Dynamic magnetic relaxations. Figures (B1) and (B2) 

are the Néel and Brownian relaxation processes where Néel relaxation is the rotation of 

magnetic moment insides a stational MNP while, on the other hand, Brownian relaxation 

is the physical rotation of MNP along with its magnetic moment, following the direction 

of drive field. (B) is reprinted with permission from [280]. Copyright (2019) American 

Chemical Society.
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Figure 9. 
Figures (A) and (B) are different MPS portable devices reported. (A1) MagiCoil portable 

device with a smartphone application reported by Wu et al (A2) and (A3) FMMD portable 

device reported by Pietschmann et al (A4) volumtric-based MPS bioassay in a vial. (A5), 

(A6) Surface-based MPS bioassay in a vial. (A7) A dual-frequency MPS signal reader 

consists of (i) one set of coils generating low-frequency drive field, (ii) one set of coils 

generating high-frequency drive field, and (iii) one pair of differentially wounded pick-up 

coils sensing magnetic signals from MNPs. (B) MPQ portable device reported by Orlov 

et al, Guteneva et al, and Bragina et al. Figure (C) shows different MPS portable devices 

combined with microfluidic channels. Figure (C1) is a p-FMMD portable device reported 
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by Kim et al. Figure (C2) is a MPS portable device with planar coils for drive fields 

and pick-up coils reported by Rabehi et al. (A1) is reprinted with permission from [239]. 

Copyright (2021) American Chemical Society. (A2) and (A5) are reproduced from [236]. 

CC BY 4.0. (A3) is reproduced from [229]. CC BY 4.0. (A6) is reprinted with permission 

from [232]. Copyright (2013) American Chemical Society. (B1) is reprinted from [294], 

Copyright © 2015 Elsevier B.V. All rights reserved. (B2) is reprinted with permission from 

[291]. Copyright (2019) American Chemical Society. (B3) is reprinted with permission from 

[233]. Copyright (2016) American Chemical Society. (C1) is reprinted from [292], © 2016 

Elsevier B.V. All rights reserved. (C2) is reproduced from [293]. CC BY 4.0.
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Figure 10. 
(A) Surface-based, dual-frequency drive field MPS platform with LF strip for detection of 

human serum of fT4. (A1) Principle of lateral flow assay on a strip and its reading by 

the MPQ-reader. (A2) Dependence of magnetic signal on fT4 concentration from human 

serum. (A3) SEM-characterization of the lateral flow test strip assay components: MNPs 

conjugated with antibody to thyroxine (a) nitrocellulose membrane on the test line (c) 

and beyond it (b), absorbent pad (d). Volumetric-based, mono-frequency drive field MPS 

platform for detection of mimic SARS-CoV-2 nanoparticles. Figures (B1) and (B2) are the 

schematic views of functionalized MNPs and mimic SARS-CoV-2 nanoparticles. Figures 

(B3) and (B4) are the schematic views of rotational freedom of functionalized MNPs with 
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and without the presence of mimic SARS-CoV-2 nanoparticles (virus). Figures (B5) and 

(B6) are the corresponding time domain and frequency domain MPS signal for scenarios 

in (B3) and (B4), respectively. Figures (B7) and (B8) are the experimental results of 

measured harmonic ratio R 3rd/1st vs drive field frequency of functionalized (B7) and 

unfunctionalized (B8) MNPs with different mimic virus concentrations. (C) Volumetric-

based, dual-frequency drive field MPS platform for detection of H1N1 nucleoprotein. 

(C1) Experimental and negative control groups. Sample indexes I–VII are MNP-antibody 

complexes in the presence of different concentrations of the H1N1 nucleoprotein; sample 

index VIII is an MNP-antibody complex in the absence of the H1N1 nucleoprotein (denoted 

as ‘0 nM (MNP + Aby)’); sample index IX is bare MNP suspension (denoted as ‘Bare 

MNP’). (C2) MPS measurements of the 3rd and the 5th harmonics from samples I–IX at 

varying magnetic drive field frequencies from 400 Hz to 20 kHz. Figures (i)–(iv) highlight 

the 3rd harmonic amplitudes measured at 1 kHz, 5 kHz, 10 kHz, and 20 kHz, respectively. 

(C3) The bright-field TEM images of MNPs highlighting the different degrees of MNP 

clustering in the presence of H1N1 nucleoprotein. (A) is reprinted from [297], © 2018 

Elsevier B.V. All rights reserved. (B) is reprinted with permission from [228]. Copyright 

(2021) American Chemical Society. (C) is reprinted with permission from [227]. Copyright 

(2020) American Chemical Society.
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Figure 11. 
(A) Surface-based, dual-frequency drive field MPS platform with LF strip for the detection 

of SEB. (A1) Steps of LF strip assay combined with MPS platform including magnetic 

enrichment, migration of samples, and MPS reading. (A2) LODs for SEB from different 

food matrices with different sample volumes and IMS time. (A3) SEB concentration vs 

magnetic signal from MNPs. (B) Surface-based, dual-frequency drive field MPS platform 

with immune-filtration columns as substrates. (B1) Schematic view of immuno-filtration 

column coated with aflatoxin B1-BSA, then bind with biotinylated monoclonal antibodies 

targeting aflatoxin B1. MNPs functionalized with streptavidin bind to antibodies and can be 

detected by the FMMD as shown in (B2). (B3) Schematic view of calibration curves based 
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on competitive bioassay method. (B4) and (B5) are the calibration curves using 700 nm 

and 70 nm MNP tracers, respectively. The concentration of free aflatoxin B1 is varied from 

0.006 ng ml−1 to 500 000 ng ml−1. (A) is reprinted with permission from [291]. Copyright 

(2019) American Chemical Society. (B) is reproduced from [236]. CC BY 4.0.
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Figure 12. 
(A) Surface-based, dual-frequency drive field MPS platform with LF strip for the detection 

of drugs from urine. (A1) Principle of competitive magnetic LF assay with MPS platform. 

MNPs functionalized with target analyte and BSA are added to 75 μl of human urine 

samples containing known concentrations of a drug of abuse, incubated for 10 min at room 

temperature and applied onto the LF test strip. After migration of the sample along the 

test strip, the test strip is inserted into the MPQ reader to readout the magnetic signal. 

(A2) MPQ signal simultaneously measured in the MPS platform along with the photos of 

respective LF strips. The human urine samples contained known concentrations of morphine 
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and methamphetamine but no fentanyl to verify the assay specificity. (A3) Scheme of view 

of MPS for the multiplexed detection of morphine, fentanyl, and methamphetamine from 

human urine samples. (B) Volumetric-based, mono-frequency drive field MPS platform for 

the evaluation of blood progression. (B1) SEM image of the blood clot with MNPs in 

secondary electron mode (left) and in BSE mode showing MNP clusters on the blood cells, 

marked by arrows. (B2) Schematic view of surface functionalized MNPs forming clusters 

in the presence of thrombin. The rotational freedom of MNPs is blocked due to thrombin. 

Figure (B3) shows MPS signals of the functionalized MNPs bind to thrombin on the blood 

clot over time (30 min). The blue curve marks MNPs before adding clot and the red curves 

mark signal from MNPs with blood clot over time. The signal from blood clot in PBS is 

shown in black curve. (C) Hollow superparamagnetic nanoparticle-based microballoons for 

mechanical force monitoring by MPS. (C1) The as-prepared hollow spherical balloon-like 

shape is observed as depicted in schematic (a1) as well as LSM (b1) and SEM (c1) images. 

After application of mechanical forces, the microballoons are fragmented due to their hollow 

structure, which is also shown in the schematic, LSM and SEM images ((a2), (b2), and (c2), 

respectively). (C2) Drop of the MPS signal curves of microballoons during the application 

of quasi-static compression increases significantly with increasing load. (A) is reproduced 

from [290], with permission from Springer Nature. (B1) is reproduced with permission from 

[225]. (B3) is reproduced from [224]. CC BY 4.0. (C) is reprinted with permission from 

[301]. Copyright (2019) American Chemical Society.
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Figure 13. 
The 15 year roadmap of MPS platform and MPS-based applications.
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Wu et al. Page 69

Table 1.

Some popular magnetic materials and their magnetic properties.

Material σs (emu g−1a σ (emu g−1)
b K (erg cm−3) Dsp (nm)

c References

Fe3O4 90–98 (bulk) 50 (80 nm MNP at 1 kOe) −1.1 × 105 26 [45-47]

60 (80 nm MNP) 30–60 (10–300 nm MNP at 1 kOe)

55–85 (10–300 nm MNP) —

γ 76–82 (bulk) 40 (20 nm MNP at 1 kOe) −4.6 × 104 35 [45, 48, 49]

51 (20 nm MNP) 50 (30 nm MNP at 1 kOe)

74 (30 nm MNP) —

FeCo 270 (bulk) ~60 (40 nm MNP at 1 kOe) 105 27 [50-52]

200 (20 nm MNP) 50–100 (8–20 nm MNP at 1 kOe)

175 (12 nm MNP) —

125 (8 nm MNP)

Fe 217 (bulk)

26–113 (8–20 nm Fe@oxide MNP)
d

<40 (20 nm Fe@oxide MNP at 1 kOe) K1 = 4.8 × 105

K2 = ±0.5 × 105

16 [53, 54]

Fe5Si3 80 (20 nm MNP) 66 (20 nm MNP at 1 kOe) 3 × 105 19 [42]

γ′-Fe4N 184 (bulk)
117–182 (80 nm MNP)

100 (40 nm MNP at 1 kOe) 2.9 × 105 19 [55-57]

α″-Fe16N2 226–290 (bulk) 170 (100 nm MNP at 5 kOe) 9.6 × 106 5.9 [54, 58-60]

Fe16CN 258 (bulk) — 2.4 × 106 9.4 [61, 62]

a
Specific saturation magnetization.

b
Specific magnetization.

c
Dsp is the size limit below which MNPs show superparamagnetic property at 300 K.

d
Fe MNP can easily oxide so a shell layer will be covered on its surface, which decreases its magnetization tremendously.
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Table 2.

Advantages and disadvantages of different MNP synthesis techniques.

Method Advantages Disadvantages

Ball milling Easy process
High yield

Contaminations of MNPs
Large size distributions

Gas-phase condensation Phase and size control
Contamination-free

Low yield
Requires high vacuum environment
Expensive systems

Co-precipitation Simple and effective Precise stoichiometric and size control

Thermal decomposition Narrow size distribution
Good structural properties

Toxic organic solvents chemically bonded to surfaces of MNPs
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Table 3.

Summary of different MPS portable devices reported so far.

MPS portable 
device Platform Bioassay method

Detected target
analytes References

MagiCoil Dual-frequency Volumetric-based SARS-CoV-2 spike and nucleocapsid proteins [295]

FMMD
a Dual-frequency Surface-based SARS-CoV-2-specific antibody [229]

Grapevine fanleaf virus (GFLV), Potato virus X (PVX), and Tobacco 
mosaic virus (TMV).

[230]

Aflatoxin B1 [236]

Antibiotic including penicillin G and kanamycin [296]

MPQ Dual-frequency Surface-based Botulinum neurotoxins A, B, and E [233]

Hepatitis B surface antigen (HBsAg) [275]

Staphylococcal enterotoxin B [291]

Drugs including morphine, fentanyl and methamphetamine [290]

Prostate specific antigen (PSA) [294]

Free thyroxine (fT4) [297]

p-FMMD
a Dual-frequency Surface-based Amyloid beta 42 (Aβ42) [292]

a
FMMD and p-FMMD are two different devices independently developed by different groups.
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