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Abstract

Recent advancements of multimodal neuroimaging such as functional MRI (fMRI) and diffusion 

MRI (dMRI) offers unprecedented opportunities to understand brain development. Most existing 

neurodevelopmental studies focus on using a single imaging modality to study microstructure 

or neural activations in localized brain regions. The developmental changes of brain network 

architecture in childhood and adolescence are not well understood. Our study made use of 

dMRI and resting-state fMRI imaging data sets from Philadelphia Neurodevelopmental Cohort 

(PNC) study to characterize developmental changes in both structural as well as functional brain 

connectomes. A multimodal multilevel model (MMM) is developed and implemented in PNC 

study to investigate brain maturation in both white matter structural connection and intrinsic 

functional connection. MMM addresses several major challenges in multimodal connectivity 

analysis. First, by using a first-level data generative model for observed measures and a 

second-level latent network modeling, MMM effectively infers underlying connection states from 

noisy imaging-based connectivity measurements. Secondly, MMM models the interplay between 

the structural and functional connections to capture the relationship between different brain 

connectomes. Thirdly, MMM incorporates covariate effects in the network modeling to investigate 

network heterogeneity across subpopoulations. Finally, by using a module-wise parameterization 

based on brain network topology, MMM is scalable to whole-brain connectomics. MMM analysis 

of the PNC study generates new insights in neurodevelopment during adolescence including 

revealing the majority of the white fiber connectivity growth are related to the cognitive networks 

where the most significant increase is found between the default mode and the executive control 

network with a 15% increase in the probability of structural connections. We also uncover 

functional connectome development mainly derived from global functional integration rather 

than direct anatomical connections. To the best of our knowledge, these findings have not been 

reported in the literature using multimodal connectomics. Supplementary materials for this article, 

including a standardized description of the materials available for reproducing the work, are 

available as an online supplement.
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1 Introduction

In recent neuroscience research, there has been significant increase of interest on brain 

connectome analysis for understanding brain organizations and their alterations due to 

neurodevelopment or brain-related diseases. In particular, with the advances of imaging 

technologies, different imaging modalities including the anatomical and the functional 

imaging offer unprecedented opportunities for investigating the development of brain 

structural and functional connections during brain maturation. Neuroimaging studies have 

investigated brain white matter structural changes during neurodevelopment using diffusion 

magnetic resonance imaging (dMRI) (Krogsrud et al. 2016). Investigators mainly focused 

on studying changes in white matter microstructure captured by diffusion tensor imaging 

(DTI) summary measures including fractional anisotropy (FA), mean diffusivity (MD), and 

radial diffusivity (RD) which reflect water diffusion patterns in localized white matter 

regions. Other studies investigated brain functional changes using functional MRI (fMRI)

(Rubia et al. 2000). Investigators mainly focused on studying the effects of age on task-

related brain activations related to cognitive processes such as language development, 

inhibitory control and executive functioning. Though recent neuroimaging studies have 

generated important findings in brain development, there are two major limitations in 

current neurodevelopmental research. First, existing studies largely focus on studying 

developmental changes in white matter structure or brain activations in localized brain 

regions. More studies are needed to investigate neurodevelopment in network connections 

between regions across the brain. Secondly, existing studies mostly focus on single imaging 

modality investigation on either structural or functional development. Very limited work 

has been done to jointly consider the development of structural and functional connections 

among children and adolescents. Multimodal connectivity analysis has great potentials in 

filling the gap in current neurodevelopmental studies. Specifically, temporal coherence 

present in resting-state fMRI are believed to reflect the intrinsic functional connectivity 

(FC) of the brain. dMRI tractography is widely used now to infer underlying white matter 

fiber tracts for structural connectivity (SC) across the brain. By combining SC and FC 

information derived from dMRI and fMRI on the same individuals, multimodal connectivity 

analysis helps reveal the interplay between the brain structural connection maturation and 

function integration during the neurodevelopment, which is of paramount importance in 

more comprehensive understanding of brain maturation.

In the neuroscience literature, methods have been proposed to analyze dMRI and fMRI data 

together in order to exploit complementary information from different modalities. There has 

been work in using fMRI data to help fiber tracking and fiber filtering in dMRI data analysis 

and work in using dMRI data to better characterize functional connectivity (Zhu et al. 2014) 

or help understand the reproducibility of functional networks (Kemmer et al. 2018). There 

are also abundance of methods for incorporating SC metrics derived from dMRI data in 

Hu et al. Page 2

J Am Stat Assoc. Author manuscript; available in PMC 2023 April 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FC analysis to improve the accuracy for estimating functional networks (Hinne et al. 2014, 

Higgins et al. 2018).

Despite the existing multimodal methods, inferring the relationship between brain structural 

and functional connections based on observed multimodal images in neurodevelopment 

studies still remains a challenging task. Although existing evidence shows the role of white 

matter fiber tracts in regulating FC (Sporns 2013), the structure-function relationship is not 

deterministic but rather quite complex. For example, strong SC can predict higher functional 

correlations while the converse does not hold (Honey et al. 2009). It was found that 

structural connectivity alone only accounts for a small proportion of FC variance. Current 

understanding is that FC not only derives from structural connections but may also generate 

from unobservable dynamics in neuronal activity (Bressler and Tognoli 2006) and or 

result from hierarchical integration of brain functional networks (Mastrandrea et al. 2017). 

Additionally, given the well-known low signal-to-noise ratio of MRI and the limitations 

of imaging processing procedures, the FC and SC estimated from the observed fMRI 

and dMRI data usually contains considerable random variations in reflecting underlying 

functional and structural connections. Furthermore, the brain connections are altered by 

neurodevelopment. These challenges call for statistical methods that can effectively and 

reliably characterize brain functional and structure connections and their relationship, with 

the ability to accommodate and assess the heterogeneity across subpopulations.

The needs to develop such statistical methods for multimodal connectivity analysis are 

demonstrated by the Philadelphia Neurodevelopmental Cohort (PNC) study. The PNC study 

is a large-scale research initiative funded by National Institute of Mental Health, aiming to 

understand how brain maturation and how various factors affect the neurodevelopment and 

development of cognition (Satterthwaite et al. 2014). The cohort consists of youths aged 

8–21 years who went to the Children’s Hospital of Philadelphia for a pediatric visit and 

volunteered to participate in genomic studies of complex pediatric disorders. Brain images 

were acquired for a subset of the participants in the PNC study and included multiple 

modalities such as T1 weighted MRI, resting-state fMRI (rs-fMRI) and dMRI. A research 

goal in assessing the neurodevelopment is to investigate how structural and functional 

connections are altered during neurodevelopment and whether there is dependence between 

their changes when kids grow up. Given the wide spectrum of functions that the brain 

controls, it is also of great interest to understand whether and how the neurodevelopment 

occurs in different manners for various types of brain networks. For example, it is interesting 

to compare the neurodevelopment of the lower-level networks involved in sensory and 

motor functions vs. the higher-order cognitive networks involved in sophisticated cognitive 

functioning such as decision making and emotion regulation. Furthermore, it is important 

to control for potential confounding factors such as gender in the multimodal connectivity 

analysis of neurodevelopment.

In this paper, we develop a multimodal multilevel model (MMM) to conduct multimodal 

connectomics using dMRI and rs-fMRI in the PNC study to investigate neurodevelopment 

in structural and functional network architecture. MMM uses a population-level latent 

network modeling to model latent functional and structural connectivity states representing 

the underlying brain connectomes. MMM then includes data generative models to model 
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the observed FC and SC data across subjects based on the population-level latent 

connection states. The data generative models help account for the measurement variations 

and between-subject variability in the observed FC and SC metrics. MMM models the 

relationship between structural and functional connectivity in both the latent network 

modeling as well as the data generative models to capture the complex relationship between 

FC and SC. Furthermore, MMM allows assessing covariate effects on brain connections, 

which captures brain network differences between age and gender groups in the PNC study.

One common challenge in brain network modeling is the large number of edges in the 

network. Edge-specific parameterization in network modeling results in enormous numbers 

of parameters to be estimated from the data, which is computationally expensive or 

even infeasible in some cases. To address this issue, some existing multimodal network 

models (Venkataraman et al. 2012) assume common parameters to characterize the 

strength of connections across all edges in the whole brain network. This whole-network 

parameterization scheme doesn’t take into account the modular structure in brain network 

topology where within-modules nodes are highly inter-connected and between-module 

connections are relatively sparse (Meunier et al. 2010). Furthermore, the whole-network 

parameterization is too simple to capture the differences across various subnetworks in 

the brain and has limited capacity to provide a good fit to the observed connections. In 

this paper, we propose a module-wise parameterization for the latent network modeling 

of MMM. The module-wise parameterization takes into account the well-established 

intrinsic subnetwork structure in brain network topology (Smith et al. 2009) and specifies 

module-specific parameters for the edges based on the module memberships of the 

nodes. Compared with the edge-specific and whole-network parameterization, the proposed 

module-wise parameterization has the advantage of providing a great balance between 

computational efficiency and precision by exploiting the modularity of the brain network. 

This makes MMM scalable to whole brain connectomic analysis for a comprehensive view 

of neurodevelopment in the brain while at the same time provides MMM the precision 

to detect how neurodevelopment varies across different brain modules, e.g. cognitive vs. 

sensory networks. We develop an EM algorithm for estimating the parameters in the MMM 

and develop a statistical inference procedure based on parametric bootstrap to test covariates 

effects on brain connections.

Application of the MMM to the FC and SC measures from rs-fMRI and dMRI data in the 

PNC study leads to new insightful findings about age-related differences in brain functional 

and structure connections. Specifically, we find a general increase in white fiber structural 

connections across the brain with the increase in age. In particular, MMM results reveal that 

the increase in white matter fiber connection is more significant for higher-order cognitive 

networks such as the default mode network, executive control network and frontal parietal 

networks as compared to lower-order sensory and motor networks. In particular, we find 

the most significant white matter connection increase occurs between the default mode 

and the executive control network where there is a 15% increase in the probability of 

structural connections from the age group of 8–15 to the age group of 16–21. MMM also 

reveals that the brain becomes more functionally ordered or connected during adolescence. 

In particular, with the increase of age, we found a significant increase in the positive FC 

between the sensorimotor network and lateral visual and auditory network. Furthermore, 
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through MMM’s joint modeling of FC and SC, we obtain new insights that functional 

connection development during adolescence mainly happens at long-range edges and edges 

that are functionally integrated not by direct anatomical connections but rather via the global 

brain hierarchical organization. In addition to neurodevelopment, neural connectivity also 

plays an important role in brain diseases. Recent findings have shown that many mental 

disorders and neurodevelopmental disorders are caused by disrupted neural connections 

among certain brain circuits (Williams 2016, Henry and Cohen 2019). The proposed MMM 

method provides an advanced analytical tool for investigating the associations between 

disruptions in brain networks and brain diseases.

The remainder of the paper is organized as follows. The framework of MMM is presented 

in Methods section, which includes the model specification, estimation by EM algorithm, 

and inference procedure. We then perform a multimodal connectivity analysis of the PNC 

study with MMM and report detailed findings. Additionally, we conduct simulation studies 

to evaluate the proposed method in terms of the accuracy of the estimation and validity of 

the inference procedure. Conclusion and discussions are presented in the last section.

2 Methods

2.1 A multimodal multilevel model (MMM)

The MMM aims to jointly model the functional and structural connections estimated 

from multimodal imaging including fMRI and dMRI. Specifically, functional connections 

are defined as the temporal coherence between the fMRI blood-oxygen-level-dependent 

(BOLD) series of spatially disjoint brain regions, which is often quantified using functional 

connectivity (FC) correlations. Structural connections represent anatomical connections via 

white matter fiber bundles and are commonly measured by the probability of structural 

connectivity (SC) obtained from diffusion tractography on dMRI data. Prior to the modeling, 

some proper transformations are typically performed on the FC and SC measures, e.g. to 

change the range into the entire real line. Suppose we have I subjects in total from G 
subgroups with Ig subjects in gth group and we are considering connections between Q 
regions or nodes in the brain. Let Rjk, g, ig and Djk, g, ig denote the transformed FC and SC 

measure capturing the functional and structural connectivity, respectively, between the jth 

and kth node for subject i in the gth group, with j ≠ k, j, k = 1, …, Q and ig = 1, …, 

Ig. These FC and SC metrics are based on observed fMRI and dMRI imaging data and 

often measured with errors (Liu 2016, Côté et al. 2013, Zalesky et al. 2016). To infer the 

underlying brain connections from the observed data, we introduce latent structural and 

functional connectivity indicators for a given population. Specifically, Ajk,g is a binary latent 

indicator representing the latent structural or anatomical connectivity between the jth and kth 

node for the gth group. Ajk,g indicates whether or not there are white matter fiber bundles 

connecting the two regions. Fjk,g is a tri-state latent variables taking values of 1, 0, −1 

indicating two regions have positive functional connection, no functional connections or 

negative functional connections, respectively.

In MMM, we propose a multi-level modeling scheme where the first level of MMM 

models the observed FC and SC data across subjects in terms of the population-level 
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latent connectivity states and the second level of MMM models the latent functional and 

structural connectivity states for various subpopulations. In the first level of MMM, we 

model the observed FC and SC metrics, i.e. Rjk, g, ig and Djk, g, ig, in terms of the latent 

connectivity states, i.e. Ajk,g and Fjk,g. The data generative models are specified based on 

the characteristics of empirical distributions of the observed FC and SC. Specifically, for the 

SC metric based on the diffusion tractography, there are usually a considerable number of 

node pairs for which zero connecting tracts are found from the probabilistic tractography, 

i.e. Djk, g, ig is set to 0, and the rest of the node pairs have a varying number of connecting 

tracts. Given the latent structural connectivity state Ajk,g = u with u ∈{0, 1}, we propose the 

following model for the observed SC measure,

Djk, g, ig ∣ Ajk, g = u ρuδ Djk, g, ig + 1 − ρu MoGu, (1)

where δ(·) is the Dirac delta function and MoGu = ∑l = 1
L γl

uf Djk, g, ig; χl
u, ξl

u 2
 represents 

a Mixture of Gaussian (MoG) distribution with L Gaussian components where 0 < γl
u < 1

and ∑l
Lγl

u = 1, f( ⋅ ) is the pdf of Gaussian distribution, and χl
u and ξl

u 2
 are the mean 

and variance parameters. L = 3 is usually sufficient based on the empirical distribution 

of the SC measures. Latent labels are often introduced to facilitate derivations in models 

involving MoG. We define MoG latent labels τjk, g, ig, l l = 1
L

 that take value in {0, 1} with 

∑l = 1
L τjk, g, ig, l = 1 and p τjk, g, ig, l = 1 = γl

u. In (1), the Dirac delta captures the scenario that 

a node pair ends up with zero connecting tracts in tractography and the MoG describes 

the distribution of the probability of SC when the tractography generates connecting tracts 

for a node pair. The parameter ρu(u ∈ {0, 1}), controls the relative weight of the Dirac 

delta and the MoG in the overall distribution. Given that dMRI imaging and tractography 

uses imaging and computational algorithm to indirectly measure underlying water diffusion 

patterns and reconstruct fiber tracts, the observed SC measure is a noisy measurement of 

the underlying structural connection. Therefore, it is likely that the tractography doesn’t 

generate connecting tracts for node pairs with underlying structural connections, and 

generate tracts for node pairs without underlying structural connection (Côté et al. 2013, 

Zalesky et al. 2016). The parameter ρu(u ∈ {0, 1}), which is between 0 and 1, helps account 

for the variation of the observed data due to the noise in imaging measurements and the 

uncertainty from the tractography algorithm. It is worth noting that ρu depends on Ajk,g 

because the relative weight is expected to vary depending on the underlying connection 

status where lower weight of the Dirac delta is generally expected for node pairs with white 

matter fiber bundles connections.

We propose the following Gaussian model for the observed FC measure given latent 

structural connectivity state Ajk,g = u (u ∈ {0, 1}) and the latent functional connectivity 

state Fjk,g, = v (v ∈ {1, 0, −1}),

Rjk, g, ig ∣ Ajk, g = u, Fjk, g = v N μu, v, σu, v 2 , (2)
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The choice of Gaussian distribution model for FC measures is motivated by the empirical 

distribution of the observed FC metrics. The parameters of the Gaussian distribution in 

(2) depends on both the latent structural connectivity state Ajk,g and the latent functional 

connectivity state Fjk,g. This is to help better capture the complex relationship between the 

functional and structural connections. That is, FC is only partially dependent on direct fiber 

bundle connections and is also affected by other factors such as unobservable dynamics 

in the underlying neuronal activity or hierarchical integration of brain functional networks 

(Mastrandrea et al. 2017).

The second-level of MMM is latent network modeling of the underlying structural 

and functional connectivity states for the edges. To achieve a good balance between 

computational efficiency and precision for modeling the large number of edges in the brain, 

we exploit the well-established intrinsic module system in the brain (Smith et al. 2009) 

and propose a module-wise parameterization for the latent network modeling. Specifically, 

we specify module-specific parameters for the edges based on the module memberships of 

the node pairs. Furthermore, we specify group-specific parameters to capture and examine 

the network differences between subpopulations with varying clinical and demographic 

characteristics. We model the binary latent structural connectivity state variable between jth 

and kth node (j < k, j, k = 1, …, Q) for the gth (g = 1, …, G) subject group as follows,

Ajk, g Bernoulli πm(j)m(k), g ,
with   logit πm(j)m(k), g = xgTβm(j)m(k),

(3)

where m(j) and m(k) is the module membership of jth and kth node with m(j), m(k) ∈ 
{1, …, M} and M is the total number of modules in the brain network, xg represents the 

covariates patterns characterizing the gth subject group, βm(j)m(k) captures the covariate 

effects on the latent structural connectivity states.

We model the tri-state latent functional connectivity between jth and kth node for gth subject 

group using a multinomial logit model where the parameters depend on the latent structural 

connectivity state. As in the latent structural connectivity model, the parameters in the 

functional model are also module-specific and group-specific. Given Ajk,g, = u(u = 0, 1), we 

have

Fjk, g ∣ Ajk, g = u Multinomial pm(j)m(k), g
u , (4)

where pm(j)m(k), g
u = pm(j)m(k), g

u, 1 , pm(j)m(k), g
u, 0 , pm(j)m(k), g

u, − 1  are the multinomial parameters with 

pm(j)m(k), g
u, v (v = 1, 0, − 1) corresponding to the probability for positive connection, no 

connection and negative connection, respectively, and that ∑v pm(j)m(k), g
u, v = 1. We specify 

the no connection state, i.e. j = 0, as the reference level and model the log-odds in terms of 

covariates,
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log
pm(j)m(k), g

u, 1

pm(j)m(k), g
u, 0 = xgTαm(j)m(k)

u, 1 ,

log
pm(j)m(k), g

u, − 1

pm(j)m(k), g
u, 0 = xgTαm(j)m(k)

u, − 1
(5)

where αm(j)m(k)
u, 1  and αm(j)m(k)

u, − 1  captures the covariate effects on the latent functional 

connectivity states.

To provide an overview of the MMM modeling framework, we present a schematic diagram 

in Figure 1 and summarize the parameters in MMM in Table 1.

2.2 Maximum likelihood estimation and the EM algorithm

We develop a maximum likelihood (ML) estimation method via EM algorithm for 

estimating the parameters and inferring the latent variables in the the proposed MMM. 

Based on (1)–(4) and assuming the independence of the latent and observed variables, the 

complete data log-likelihood for MMM can be represented as

lC(Θ; D, ℛ, A, ℱ, T) = ∑
g = 1

G
∑
j = 1

Q − 1
∑

k: j < k
ljk, g(Θ; D, ℛ, A, ℱ, T), (6)

where Θ = {Θ1, Θ2, Θ3} includes the parameters, D = Djk, g, ig , ℛ = Rjk, g, ig  are 

observed SC and FC measures derived from dMRI and fMRI data across subjects, 

A = Ajk, g  and ℱ = Fjk, g  represents latent structural and functional connectivity states, 

respectively, and T = τjk, g, ig, l  represents latent labels for the mixture of Gaussian 

distribution for modeling the observed SC measures.

The detailed expression of ljk,g in the complete data log-likelihood is as follows:

ljk, g(Θ; D, ℛ, A, ℱ, T) = ∑
u = 0

1
∑

v = − 1

1
I Ajk, g = u, Fjk, g = v

× log Ψjk, g
u, v Θ1 ∏

ig = 1

Ig
ϕu, v Djk, g, ig, Rjk, g, igτjk, g, ig, l ∣ Θ2, Θ3 ,

(7)

where

Ψjk, g
u, v Θ1 = πm(j)m(k), g

α u 1 − πm(j)m(k), g
α 1 − upm(j)m(k), g

u, v ,

ϕu, v Djk, g, ig, Rjk, g, ig, τjk, g, ig, l ∣ Θ2, Θ3 = ρuδ Djk, g, ig + 1 − ρu

× ∑
l = 1

L
γl
uτjk, g, ig, lf Djk, g, ig; χl

u, ξl
u 2

× f Rjk, g, ig; μu, v, σu, v 2 .
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In (7), I is an indicator function, Θ1 ={α, β} represents the subset of parameters related 

to covariate effects in the second-level latent network modeling of MMM, Θ2 and Θ3 

represents the parameters in the SC and FC data generative model in (1) and (2), respectively 

(Table 1).

Since our likelihood function involves unobserved latent variables, we develop an 

expectation-maximization (EM) algorithm for finding the maximum likelihood estimates 

of parameters.

E-step: In the E-step, given the parameter estimates Θ(t) from the last step, we derive 

the conditional expectation of the complete data log-likelihood given the observed data as 

follows:

Q Θ ∣ Θ(t) = ∑
g = 1

G
∑
j = 1

Q − 1
∑

k: j < k
EA, ℱ, T ∣ D, ℛ, Θ(k) ljk, g(Θ; D, ℛ, A, ℱ, T) , (8)

The detailed definition of Q(Θ|Θ(t)) is presented in Section 1 of the Supplementary Material. 

We derive an explicit analytic form for the conditional expectation in (8). The E-step is fully 

tractable without the need for iterative numerical integration. The derivations can be found 

in Section 1.1 of the Supplementary Material.

M-step: In the M-step, we update the parameters estimates as,

Θ(t + 1) = argmaxΘQ Θ ∣ Θ(t) . (9)

We also derive explicit formulas for all parameter updates except for Θ1 which can be 

updated by an iterative algorithm such as the Newton-Raphson method or iteratively 

re-weighted least squares. The details are provided in Section 1.2 of the Supplementary 

Material.

In practice, one may potentially encounter challenges in obtaining finite solutions for Θ1 

during the ML estimation due to the complete separation or quasi-complete-separation 

issue (Albert and Anderson 1984), especially in small sample case. This is a well-known 

problem for the logistic or multinomial logit model. It happens when one or more covariates 

can perfectly (or nearly perfect) predict the outcome variable. Some techniques have 

been presented to deal with the separation issue. One of the most popular techniques for 

solving this issue is Firth’s method, which introduces a modified score function. If we 

denote log-likelihood function as l, likelihood function as L, the Fisher Information for the 

parameters in logistic regression model as H and the determinant of H as |H|, the solution 

of the modified score function is a stationary point of a modified log-likelihood function 

l* = l + 1
2 log( H ), which is equivalent to the penalized likelihood with the Jeffreys’ invariant 

prior as penalty L* = L* |H|
1
2  (Firth 1993). Bull et al. (2002) extended this method to deal 

with the separation issue in multinomial logit modeling. Motivated by previous work, we 
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propose to modify our complete log-likelihood function in (6) by adding a similar penalty 

term.

Specifically, we propose the following penalized log-likelihood function,

lC*(Θ; D, ℛ, A, ℱ, T) = ∑
g = 1

G
∑
j = 1

Q − 1
∑

k: j < k
ljk, g(Θ; D, ℛ, A, ℱ, T) + lP(Θ; D, ℛ

),
(10)

where lP(Θ, D, ℛ) is the penalty term defined as,

lP(Θ, D, ℛ) = ∑
m1 = 1

M
∑

m2 = 1

M 1
2 log Sm1m2 + ∑

m1 = 1

M
∑

m2 = 1

M
∑

u = 0

1 1
2 log Tm1m2

u . (11)

Here, m1, m2 represent the module memberships and u represents the latent structural state. 

Sm1m2 and Tm1m2
u  play the same role as the Fisher Information matrix does in Firth’s method. 

Sm1m2 serves as the correction term for latent structural states estimation and Tm1m2
u  serves 

as the correction term for latent functional states estimation. Their expressions are also very 

close to the Fisher Information matrix in logistic regression and multinomial regression 

respectively. Detailed expressions can be found in Section 2 in the Supplementary Material.

With this modification, we are able to obtain finite maximum likelihood estimator and 

reliable estimator in the case of complete separation and quasi-complete-separation. In 

addition, we would still be able to perform the EM algorithm to solve for the maximum 

likelihood estimation by modifying the Q function in the E-step based on the penalized 

log-likelihood function in (10). The modified Q* is derived as follows,

Q* Θ ∣ Θ(t) = Q Θ ∣ Θ(t) + lP(Θ, D, ℛ) . (12)

In M-step, we adopt following procedures to update parameters. We can update Θ2 and Θ3 

using the same updating formulas in Section 1.2 in the Supplementary Material. Then, we 

adopt the iterative algorithm in Bull et al. (2002) to update Θ1.

Typically, statistical inference after EM algorithm is conducted by inverting the information 

matrix to estimate the variance-covariance matrix of ML estimates of the parameters (Louis 

1982). However, this approach is computationally challenging for MMM given the large 

number of parameters in the brain network modeling. Therefore, we propose to use a 

parametric bootstrap method to investigate the significance of covariates effects on brain 

connectivity. Specifically, we first use the EM algorithm to obtain parameter estimates for 

the MMM and then generate bootstrap samples based on estimated MMM. We then conduct 

statistical inference on model parameters based on bootstrap variance estimates and apply 

the bootstrap functional delta method (Van Der Vaart and Wellner 1996) for hypothesis 

testing of functions of model parameters.
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3 MMM analysis of the PNC study

We analyzed the multimodal imaging data from the PNC study using the proposed 

MMM method to investigate changes in brain functional and structural networks during 

neurodevelopment. The PNC study was a collaborative project between the University of 

Pennsylvania and the Children’s Hospital of Philadelphia (CHOP). The study included a 

population-based sample of over 9500 individuals aged 8–21 years selected among those 

who received medical care at the Children’s Hospital of Philadelphia network in the 

greater Philadelphia area. The sample was stratified by sex, age and ethnicity. A subset 

of participants from the PNC were recruited for a multimodal neuroimaging study which 

included resting-state fMRI (rs-fMRI) and diffusion magnetic resonance imaging (dMRI). In 

this paper, 881 participants’ brain images from PNC study that were downloaded from the 

dbGaP database. Compared with other large-scale publicly available imaging datasets, the 

PNC data has a major advantage that all the images were acquired on a single MRI scanner 

using the same scanning protocol, without variations from different scanners.

3.1 Image Acquisition and Pre-processing

All imaging data from the PNC was acquired with a 3T Siemens TIM Trio scanner. 

The dMRI sequence consisted of 60 scans with different diffusion-weighted directions 

(b = 1000 s/mm2) and four non-diffusion weighted scans (b = 0). Preprocessing steps 

for the dMRI data included brain extraction to remove non-brain regions, co-registration 

between diffusion and structural images, removal of eddy current-induced distortions, and 

detection and removal of outlier slices. We applied a partial volume model (Behrens et 

al. 2003) implemented by the Diffusion Toolbox (FDT) in FSL to estimate the directional 

diffusion at each voxel. The partial volume model is an advanced Ball and sticks model 

that accommodates multiple fiber orientations at a voxel. Therefore, it provides more 

accurate estimation and prediction of diffusion patterns, especially at brain locations with 

crossing fibers. Resting-state fMRI scans were acquired on a single-shot, interleaved multi-

slice, gradientecho, echo planar imaging (GE-EPI) sequence. Nominal voxel size is 3×3×3 

mm with full brain coverage achieved with parameters of TR/TE=3000/32 ms, flip=90 

and FOV=200×220 mm. Participants were instructed to remain awake, motionless, and 

fixated on a crosshair throughout the duration of the data acquisition. Several standard 

preprocessing steps were applied to the rs-fMRI data, including despiking, slice timing 

correction, motion correction, registration to MNI 2mm standard space, normalization to 

percent signal change, removal of linear trend, regressing out CSF, white matter signals, 

and 6 movement parameters, band-pass filtering (0.009 to 0.08 HZ), and spatial smoothing 

with a 6mm FWHM Gaussian kernel. Furthermore, we performed quality control (QC) 

procedures on the rs-fMRI and dMRI data. For fMRI, we removed participants who had 

incomplete scans for certain part of the brain or had excessive motion. 515 participants’ 

fMRI data met the inclusion criterion. For dMRI, we performed QC of dMRI scans with 

visual inspection of the tensor fit and also checking artifacts in dMRI. After the QC, 

456 participants’ dMRI scans met the inclusion criterion. 240 participants who had both 

qualified rs-fMRI and dMRI data and were included in the MMM analyses.
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Based on the age range of the subjects in the study, we considered two age categories: the 

younger group (8 – 15 years old) which represents older children and younger adolescents, 

and the older group (16 – 21 years old) which represents older adolescents. We also 

considered the gender group in analysis. Therefore, the subjects were categorized into four 

groups based on age and gender for MMM network modeling. 69 females and 53 males are 

in the younger group (age: 8 – 15) while 69 females and 49 males are in the order group 

(age: 16 – 21).

3.2 Functional and Structural Network Construction

We constructed brain networks using Power’s 264 node system (Power et al. 2011). Each 

node is a 10mm diameter sphere in standard MNI space representing a putative functional 

area, and the collection of nodes provides good coverage of the whole brain. We assigned 

them to ten functional modules that correspond to the major brain functional networks by 

Smith et al. (2009) (see Figure S2 in Section 4 of the Supplementary Material). These 

functional modules, determined by ICA decomposition of a large database of activation 

studies (BrainMap) and rs-fMRI data, are coherent during both task activity and at rest. The 

functional modules include medial visual network (Med Vis), occipital pole visual network 

(OP Vis), lateral visual network (Lat Vis), default mode network (DMN), cerebellum (CB), 

sensorimotor network (SM), auditory network (Aud), executive control network (EC), and 

right and left frontoparietal networks (FPR and FPL). Some of nodes in Power’s system 

were not strongly associated with any of the functional modules, and were therefore not 

included in the analysis. Additionally, only a few nodes were located in the cerebellum, this 

module and corresponding nodes were not included in the analysis. Therefore, a total of 226 

nodes were considered in our network modeling.

To measure functional connectivity, we followed the procedure in Wang et al. (2016) by 

first detrending, demeaning, and whitening fMRI BOLD time series at each voxel. We 

extracted the representative fMRI BOLD series from each node by averaging the time series 

from all the voxels within the node. We then evaluated FC for each subject by calculating 

Pearson correlation between the representative time series extracted from the nodes. Fisher’s 

transformation was then applied to the correlation coefficients to obtain the final FC 

measures. We evaluated structural connections based on dMRI data from the PNC study. 

First, we followed the approach in Rudie et al. (2013) and dilated each node in Power’s 

system to 20mm diameter sphere to include white matter voxels for the nodes. To measure 

structural connectivity, we used the FSL functions ‘BEDPOSTX” and ‘PROBTRACKX2” to 

estimate the distribution of fiber orientations at each voxel and conducted the probabilistic 

tractography algorithm to estimate the count of white matter fibers tracts connecting pairs 

of brain regions. In the probabilistic tractography, fiber tracks passing through gray matter 

or cerebrospinal fluid were discarded. The SC for each node pair was then calculated based 

on the proportion of fiber tracts connecting the two node regions out of the total number of 

permissible tracts initiated at the node regions. A logit transformation was applied to obtain 

the final SC measures.
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3.3 Results of the PNC study

We applied the proposed MMM to jointly modeling the FC and SC measures in terms of 

gender and age group. We also investigated potential interactions between gender and age 

group in the MMM but didn’t identify significant interaction effects based on our data. 

Hence, the final MMM model included the main effects of gender and age. In Figure 2, 

we presented the model estimated structural connection probabilities for the four subject 

groups, i.e. πm(j)m(k), g . The general pattern of SC appeared to be similar across the groups 

where within-module SC tend to be stronger than between-module SC, indicating there is 

generally stronger structural connections between nodes that belong to the same functional 

module. This aligns with the significant role of white matter fiber tracts among brain regions 

that demonstrate coherent functional activities. In addition, the results showed that there was 

particularly strong structural connection among the three visual modules: Med Vis, OP Vis 

and Lat Vis, which are very close to each functionally and anatomically. This finding is 

consistent with previous findings of dense structural connectivity in visual cortex (Hagmann 

et al. 2008). Results from MMM allow us to investigate the neurodevelopmental related 

differences in SC across the networks. In Figure 3, we presented the estimated difference in 

structural connection probabilities between the older and younger age group for female. The 

results for male were similar and hence omitted here and later. Figure 3 showed a general 

increase in white fiber structural connections across the brain with the increase in age. In 

particular, we observed that the increase in white matter fiber connection was especially 

noticeable and more statistically significant for higher-order cognitive networks such as 

DMN, EC, FPL and FPR as compared to primary sensory and motor networks. Specifically, 

most of the significant increases were found in the fiber tracts connections within or between 

these higher-order cognitive networks and also in the fiber tracts connections between 

some of the cognitive networks and sensory networks, e.g. between EC and auditory/

visual networks. MMM revealed the most significant increase in SC is between DMN 

and EC where the probability of structural connection between them increases by about 

15%. Previous work based on cortical thickness indicated early maturation of structural 

networks in primary sensorimotor regions in childhood while protracted development of 

higher-order cognitive regions happen later during adolescence (Khundrakpam et al. 2012). 

MMM’s results in Figure 3 provide new findings from white fiber tracts connections that 

are consistent with the previous findings from cortical thickness, showing there is more 

significant increase in structural connections in high-order cognitive networks for older 

adolescents as compared to younger adolescents and children.

Figure 4 represents the estimated probability for the latent functional connectivity state for 

two subject groups: younger female and older female. For the tri-state functional connection, 

we presented the estimated probabilities for F = 0 and F = 1, corresponding to no connection 

and positive connection respectively. The estimated probabilities for F = − 1 is presented 

in the Supplementary Material because it is determined given the other two states and also 

because the understanding of negative correlations still remains elusive in neuroscience 

literature and research interests mainly focus on positive functional connections. Figure 4 

showed overall pattern of FC appeared to be similar across the groups with some differences 

in certain modules. As the general FC pattern, the highest probability of having positive 

connections, i.e. F = 1, were observed among within-module connections represented 
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by the diagonal blocks in Figure 4. For between-module connections, the probability of 

positive FCs was generally higher between modules with similar type of functionality. For 

example, we observed higher probability of positive FCs among primary sensory and motor 

networks (e.g. Med Vis, Op Vis, Lat Vis, SM, Aud) and among higher-order cognitive 

networks (e.g. DMN, EC, FPL and FPR), while the probability of positive FC between 

the two types of networks is generally lower. Previous studies provided evidence primarily 

from brain activation analysis Mesulam (1998) that the brain functionality can be grouped 

into primary sensory and motor functions (e.g. visual, auditory, motor) and higher-order 

cognition function (e.g. attention, emotion, memory, executive.). Our results contribute 

findings based on brain connectivity analysis to further support this paradigm and also 

provide new understanding on the connections between brain regions involved in these 

different functionalities.

To investigate neurodevelopmental related differences in FC across the networks, we display 

the MMM estimated difference in functional connection probabilities between the older 

and younger age group for female (Figure 5). The results for male were similar and hence 

omitted here and later. As age increase from 8–15 to 16–21, the probability of the state of 

having no FC (F=0) generally decreased across networks while the probability of positive 

FC (F=1) mostly increased, indicating the brain becomes more functionally ordered or 

connected during adolescence. In particular, with the increase of age, we found a significant 

increase in the probability of positive FC between SM and Lat Vis and between SM and 

Aud, which is consistent with findings in the literature (Cai et al. 2018).

A research question that attracts considerable interests in neurodevelopment studies is 

whether the function connectivity changes with age differ across the brain between region 

pairs that have direct structural connections and those that don’t. With the joint modeling 

of the FC and SC, MMM provides a useful analytical tool to investigate this problem. We 

evaluated the change in FC with increase of age under the two different latent structural 

connection states (Figure 6). Consistent with the findings in our marginal analysis on FC 

change, we found that with age increases, the probability of no FC generally decreases 

across networks and the probability of positive FC generally increases across networks, 

regardless of the latent structural connection state. An interesting new finding from the 

conditional analysis based on the latent structure state was that most significant changes in 

FC were observed at those edges with latent structural state of A = 0 while very limited 

age differences in FC were found for edges with A = 1. Considering the age range of the 

age groups in the study, our finding suggest that functional connection development from 

late childhood and early adolescence to late adolescence mainly happen at edges that do not 

have strong direct structural connections. These are typically long-range edges and edges 

that are functionally integrated not by local structural connections but rather via the global 

brain hierarchical organization. Our finding aligns with some previous studies that showed 

the strengthening of long-range functional connections and functional integration across the 

brain happen from late childhood to adolescence and early adulthood due to brain maturity 

during this period (Ernst et al. 2015).

As a comparison to the MMM model, we considered an alternative method that models SC 

and FC separately and conducts edge-wise analysis to assess between group differences. 
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Detailed information of the comparison model is presented in Supplementary Material. 

Figure 7 illustrated the significant age differences found by the comparison model in 

the structural and functional connections. Compared to MMM’s findings in Figure 3 and 

Figure 5, the comparison model was only able to identify changes in the SC and FC 

between a very few brain modules. Unlike MMM, the comparison model failed to reveal 

the strengthening of brain structural and functional connections with neurodevelopment. 

Furthermore, since the comparison method models the SC and FC separately, it was unable 

to provide the insights on the functional connection development conditional on the presence 

of structural connections. These results show that MMM provides a more powerful tool to 

obtain neurobiologically meaningful insights in neurodevelopment.

4 Application to simulated data

We evaluated the performance of the proposed MMM and study the accuracy of estimation 

and inference procedure using simulated data. To mimic the real data, we considered the 

setting where there were 4 subgroups each with 50 subjects, 2 covariates and 5 brain 

functional modules. Number of nodes in each brain module was 15, 15, 19, 20, 39, which 

were based on the module size of the visual networks, DMN and EC modules in the real 

data analysis. We generated two binary covariates corresponding to the age group and 

gender group. To specify the parameters in the latent structural connectivity state model, we 

chose a series of values for the Θ1 = (β, αu,−1, αu,1) parameters based on the range of their 

estimates from the PNC study. Similarly, we specified other parameters in the model based 

on their estimated value obtained from the PNC study, which are summarized in Table 2.

We simulated functional connectivity and structural connectivity measurements for each 

subject based on the specified parameters. We first generated the latent structural state for 

each connection from the Bernoulli distribution and then simulated the latent functional 

state conditioned on latent structural state from a trinomial distribution. Next, structural 

connectivity and functional connectivity measurements for each connection were generated 

based on the latent structural and latent functional state following the observed SC and FC 

models in (1) and (2). We conducted 1000 Monte Carlo simulation runs and generated 200 

parametric bootstrap samples for each simulated dataset to obtain the bootstrap variance 

estimation.

Figure 8 presents the estimation results of the module-wise parameters Θ1 = (β, αu,−1, αu,1) 

which are of most interest in the study. Results showed the proposed method successfully 

estimated these parameters across the module blocks with high accuracy and very small bias. 

In addition, the proposed bootstrap variance estimation demonstrated good performance 

where the average bootstrap variance estimates across simulation runs for each parameter 

were very close to the Monte Carlo empirical variance. Detailed results are presented in 

Section 3 in the Supplementary Material. Figure 9 displays the 95% confidence interval 

coverage probability for the covariate effects parameters. It also presents type I error and 

power for testing covariate effects hypothesis, e.g. H0 : β1 = 0 v.s. H1 : β1 ≠ 0, at each 

module block given 0.05 significance level. We found that the coverage probability were 

close to 95% for most parameters. The type I error at module blocks without covariate 

effects, i.e. α or β parameter is zero, was generally close to the 5% nominal level. The 
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statistical power for detecting non-zero covariate effects increased as the increase of the 

effect size as expected.

5 Discussion

In this paper, we present multimodal multilevel model (MMM) for jointly investigating brain 

networks using both functional and structural brain imaging modalities. It provides a tool to 

infer latent structural state, latent functional state and their inter-relationship based on noisy 

multimodal imaging observations. In addition, a formal statistical framework for modeling 

and testing group differences in brain networks is provided. The proposed module-specific 

latent network model allows investigation of heterogeneity in the connectivity states as 

well as covariate effects (i.e. neurodevelopment, disease-related, treatment-related) across 

different networks in the brain. Through simulation studies, we show that the proposed 

model can achieve accurate parameter estimation and valid inference. In addition, our 

analysis of the PNC study using the MMM brings new insights about the development 

of brain structural and functional connectivity during late childhood and adolescence. The 

computational complexity of the MMM is O(IQ2), where I is number of individuals and Q 
is number of nodes. The PNC analysis took 43 mins on a 1.4 GHz Quad-Core Intel Core 

i5 processor with 8 GB RAM. Codes are be provided at our github site https://github.com/

Emory-CBIS/MMM.

For MMM, we propose a module-wise parameterization based on brain network topology 

to achieve a balance between the computational efficiency and modeling precision in whole-

brain connectomics. We adopt one of the most highly cited brain module system by Smith 

et al. (2009). Functional modules such as Smith’s system has a close correspondence with 

structural modules (Sporns and Betzel 2016). As a sensitivity analysis, we consider an 

alternative module system used in the Power’s node system paper (Power et al. 2011). 

We obtain similar findings as those based on Smith’s system. Please refer to Section 7 of 

Supplementary Material for details.

The proposed MMM can be extended in multiple directions. For example, at the second 

level of MMM, the data generative models for the transformed FC and SC measures are 

specified based on the observed empirical distributions of these measures and are generally 

appropriate across different transformation functions. In practice, users can also check the 

validity of the form of the models based on the empirical distributions of the FC and SC 

measures in their studies. If needed, the data generative model for FC can be modified to 

accommodate non-Gaussianity, such as using the mixture of Gaussian. The EM algorithm 

can be modified to accommodate alternative data generative models. As another example of 

possible extensions, while MMM’s FC data-generative model currently only accounts for 

direct SC via direct white fiber tract connections, MMM can be extended to accommodate 

indirect SC via intermediate nodes (Kang et al. 2017). For example, one can add an 

additional latent structural state for indirect SC and model the latent structure state variable 

A using the multinomial distribution. MMM can also be extended to model time-varying 

FC. Specifically, We can modify the FC data generative model to model time-varying FC 

measures in terms of time-varying latent functional states which can be modeled via a 

multinomial distribution with time-varying multinomial proportions. In the latent network 
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modeling, the time-varying multinomial proportions can be modeled in terms of coavariate 

via a Generalized Linear Mixed Model (Hedeker 2003) which accounts for the correlation 

among the proportions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
A schematic representation of the MMM modeling framework.
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Fig. 2. 
MMM estimated probabilities of latent structural connection (SC) in different subject 

groups. Row (A) represents the younger group (Age 8–15) and Row (B) represents the 

older group (Age 16–21). The numeric value in each module block indicates the estimated 

probability and the color shade indicates the magnitude of the probability. Within-module 

SC is stronger compared with between-module SC. Modules with similar functionality, e.g. 

Med Vis, OP Vis and Lat Vis, are found to have stronger SC.
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Fig. 3. 
MMM estimated difference in structural connection (SC) probabilities between the older 

(16–21) and younger (8–15) age group. (A): the numeric values are the estimated age 

difference (older vs. younger) in the SC probabilities. We highlight in yellow the age 

differences that are are significant at the alpha=0.05 level, where the color of the 

numeric values indicates the direction of the difference (red=significant positive difference; 

blue=significant negative difference). (B): A graphical illustration of the significant 

differences in SC across brain networks presented in (A). Turquoise modules represent 

higher-order cognitive networks and yellow modules represent lower-order modules such as 

primary sensory and motor networks. The red lines show significantly increased SC with 

age, with the wider lines representing more significant age difference with smaller p-values.
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Fig. 4. 
MMM estimated probabilities for the latent functional connectivity state for two subject 

groups: (A) younger female and (B) older female. The numeric value in each module 

block indicates the estimated probability and the color shade indicates the magnitude. The 

highest probability of having positive connections, i.e. F= 1, were observed among within-

module connections represented by the diagonal blocks. For between-module connections, 

the probability of positive FCs were generally higher between modules with similar type of 

functionality.
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Fig. 5. 
MMM estimated difference in probabilities of functional connection state between the older 

(16–21) and younger (8–15) age group. (A): the estimated age difference (older vs. younger) 

for the probabilities of no FC (F=0) and positive FC (F=1). We highlight in yellow the age 

differences that are significant at the alpha=0.05 level, where the color of the numerical 

values indicates the direction of the difference (red=significant positive difference; 

blue=significant negative difference). With age increases, the probability of no FC (F=0) 

generally decreases across the networks and the probability of positive FC (F=1) generally 

increases across the networks, indicating the brain gets more functionally organized 

with neurodevelopment. (B): A graphical illustration of the significant age differences in 

functional connections across brain networks presented in (A). Turquoise modules represent 

higher-order cognitive networks and yellow modules represent lower-order modules such as 

primary sensory and motor networks. The blue lines show probabilities that significantly 

decreases with age increase and the red lines show probabilities that significantly increases. 

Wider lines represent more significant age differences with smaller p-value.
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Fig. 6. 
MMM estimated age difference in probabilities of functional connection states conditional 

on the structural state. (A): significant age differences (older vs younger) for no FC (F=0) 

and positive FC (F=1), conditioning on no SC (A=0). (B): significant age differences for FC, 

conditioning on the presence of SC (A=1).
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Fig. 7. 
Estimated age differences in probabilities of structural and functional connection based on 

the comparison model.
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Fig. 8. 
Results for estimating covariate effects parameters in MMM. We present the true values and 

the estimates based on the average across 1000 simulation replicates.
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Fig. 9. 
Empirical coverage probabilities for the 95% Confidence Interval and statistical testing 

results for the covariate effects parameters. In (A), numeric values represent the empirical 

coverage probabilities of the 95% Confidence Interval. In (B), numeric values represent the 

empirical rejection rate in the hypothesis testing. Module blocks are colored according to 

their true covariate effect size where blocks without covariate effects, i.e. with the parameter 

of 0, are shown as white. The rejection rate value represents type I error for the white 

module blocks without covariate effects and represents statistical power for the colored 

module blocks with covariate effects.
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Hu et al. Page 28

Table 1

Important Symbols and Parameters in the Model

A jk,g Latent structural connectivity for jth and kth node connection in gth group

F jk,g Latent functional connectivity for jth and kth node connection in gth group

Djk, g, ig Observed dMRI measure for jth and kth node connection in subject i in gth group

Rjk, g, ig Observed fMRI measure for jth and kth node connection in subject i in gth group

Θ 1 β, αu,−1, αu,1: Covariate effects parameters in latent network modeling (Level 2)

Θ 2 
ρu, γl

u, χl
u, ξl

u 2
: SC related parameters (Level 1)

Θ 3 μu,v, (σu,v)2: FC related parameters (Level 1)
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Hu et al. Page 29

Table 2

Parameters of structural and Functional Measure in Simulation

Structural State u=0 u=1

ρ 0.716 0.083

γ 0.186 0.399 0.415 0.115 0.519 0.366

χ 2.593 3.421 4.837 3.746 6.293 9.364

ξ 2 0.034 0.258 1.162 0.601 2.279 4.964

State u=0 u=1

v = −1 v = 0 v = 1 v = −1 v = 0 v = 1

Functional μ −0.188 −0.006 0.252 −0.101 0.168 0.528

σ 2 0.073 0.078 0.105 0.083 0.097 0.132
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